Cortex M0+/GCC Division with Rounding - c

I'm trying to implement an integer division with rounding. Obviously, by default integer division does floor and I was thinking I could use the remainder to determine if I should add 1 to my result.
Processor cycles are at a premium in this solution (running at 10s of kHz), so I'm seeking ways to do this with minimal overhead or ideally get the result "for free" as part of the existing division calculation
My question is, does anyone know of a good way of achieving this on the G0 which does not actually have a division instruction. Do I need to go into the disassembly and just see what it's doing? Do I need to write my own assembly code? Are there accepted solutions for this?
Note: Quotient and divisor are both arbitrary, and not constant integers.

My question is, does anyone know of a good way of achieving this on the G0 which does not actually have a division instruction.
I do not know of any general purpose approach faster than what the compiler would already do.
There are ways to be faster than general purpose code if:
The range of the numerator (dividend) is non-negative.
The range of the denominator (divisor) is positive.
We can ignore INT_MIN/-1
Rounding mode ties are away from 0 (shown below) rather than ties to even.
Let q = rounded_division(a, b)
General purpose:
Use div() which computes a/b and a%b in a single operation.
#include <stdlib.h>
div_t qr = div(a, b);
if (qr.quot >= 0) {
if (a >= 0) {
if (b/2 > r.rem) qr.quot++;
} else {
if (b/2 < r.rem) qr.quot--;
}
} else {
if (a >= 0) {
if (b/2 < r.rem) qr.quot--;
} else {
if (b/2 > r.rem) qr.quot++;
}
}
When a >= 0 and b > 0 and a + b/2 does not overflow:
Add half the divisor before dividing.
q = (a + b/2)/b;
When a + b/2 (a - b/2) does not overflow:
Add half (with select sign) to the divisor before dividing.
// If a and b have the same sign ...
if ((a < 0) == (b < 0)) {
q = (a + b/2)/b;
} else {
q = (a - b/2)/b;
}
The rounding done here is "round to nearest, ties away from 0".
Some potential optimizations possible with sign compares yet often harder to understand. Often the compile will emit good code without such crafted code. Example:
// if ((a < 0) == (b < 0)) {
if (!((a ^ b) & INT_MIN)) {
Division by 0 and INT_MIN/-1 remain undefined behavior (UB).
(I hope I coded all the cases right. Somewhat late. so will review again later.)

Related

What is an efficient algorithm to find all the factors of an integer?

I was writing a very simple program to examine if a number could divide another number evenly:
// use the divider squared to reduce iterations
for(divider = 2; (divider * divider) <= number; divider++)
if(number % divider == 0)
print("%d can divided by %d\n", number, divider);
Now I was curious if the task could be done by finding the square root of number and compare it to divider. However, it seems that sqrt() isn't really able to boost the efficiency. How was sqrt() handled in C and how can I boost the efficiency of sqrt()? Also, is there any other way to approach the answer with even greater efficiency?
Also, the
number % divider == 0
is used to test if divider could evenly divide number, is there also a more efficient way to do the test besides using %?
I'm not going to address what the best algorithm to find all factors of an integer is. Instead I would like to comment on your current method.
There are thee conditional tests cases to consider
(divider * divider) <= number
divider <= number/divider
divider <= sqrt(number)
See Conditional tests in primality by trial division for more detials.
The case to use depends on your goals and hardware.
The advantage of case 1 is that it does not require a division. However, it can overflow when divider*divider is larger than the largest integer. Case two does not have the overflow problem but it requires a division. For case3 the sqrt only needs to be calculated once but it requires that the sqrt function get perfect squares correct.
But there is something else to consider many instruction sets, including the x86 instruction set, return the remainder as well when doing a division. Since you're already doing number % divider this means that you get it for free when doing number / divider.
Therefore, case 1 is only useful on system where the division and remainder are not calculated in one instruction and you're not worried about overflow.
Between case 2 and case3 I think the main issue is again the instruction set. Choose case 2 if the sqrt is too slow compared to case2 or if your sqrt function does not calculate perfect squares correctly. Choose case 3 if the instruction set does not calculate the divisor and remainder in one instruction.
For the x86 instruction set case 1, case 2 and case 3 should give essentially equal performance. So there should be no reason to use case 1 (however see a subtle point below) . The C standard library guarantees that the sqrt of perfect squares are done correctly. So there is no disadvantage to case 3 either.
But there is one subtle point about case 2. I have found that some compilers don't recognize that the division and remainder are calculated together. For example in the following code
for(divider = 2; divider <= number/divider; divider++)
if(number % divider == 0)
GCC generates two division instruction even though only one is necessary. One way to fix this is to keep the division and reminder close like this
divider = 2, q = number/divider, r = number%divider
for(; divider <= q; divider++, q = number/divider, r = number%divider)
if(r == 0)
In this case GCC produces only one division instruction and case1, case 2 and case 3 have the same performance. But this code is a bit less readable than
int cut = sqrt(number);
for(divider = 2; divider <= cut; divider++)
if(number % divider == 0)
so I think overall case 3 is the best choice at least with the x86 instruction set.
However, it seems that sqrt() isn't really able to boost the efficiency
That is to be expected, as the saved multiplication per iteration is largely dominated by the much slower division operation inside the loop.
Also, the number % divider = 0 is used to test if divider could evenly divide number, is there also a more efficient way to do the test besides using %?
Not that I know of. Checking whether a % b == 0 is at least as hard as checking a % b = c for some c, because we can use the former to compute the latter (with one extra addition). And at least on Intel architectures, computing the latter is just as computationally expensive as a division, which is amongst the slowest operations in typical, modern processors.
If you want significantly better performance, you need a better factorization algorithm, of which there are plenty. One particular simple one with runtime O(n1/4) is Pollard's ρ algorithm. You can find a straightforward C++ implementation in my algorithms library. Adaption to C is left as an exercise to the reader:
int rho(int n) { // will find a factor < n, but not necessarily prime
if (~n & 1) return 2;
int c = rand() % n, x = rand() % n, y = x, d = 1;
while (d == 1) {
x = (1ll*x*x % n + c) % n;
y = (1ll*y*y % n + c) % n;
y = (1ll*y*y % n + c) % n;
d = __gcd(abs(x - y), n);
}
return d == n ? rho(n) : d;
}
void factor(int n, map<int, int>& facts) {
if (n == 1) return;
if (rabin(n)) { // simple randomized prime test (e.g. Miller–Rabin)
// we found a prime factor
facts[n]++;
return;
}
int f = rho(n);
factor(n/f, facts);
factor(f, facts);
}
Constructing the factors of n from its prime factors is then an easy task. Just use all possible exponents for the found prime factors and combine them in each possible way.
In C, you can take square roots of floating point numbers with the sqrt() family of functions in the header <math.h>.
Taking square roots is usually slower than dividing because the algorithm to take square roots is more complicated than the division algorithm. This is not a property of the C language but of the hardware that executes your program. On modern processors, taking square roots can be just as fast as dividing. This holds, for example, on the Haswell microarchitecture.
However, if the algorithmic improvements are good, the slightly slower speed of a sqrt() call usually doesn't matter.
To only compare up to the square root of number, employ code like this:
#include <math.h>
/* ... */
int root = (int)sqrt((double)number);
for(divider = 2; divider <= root; divider++)
if(number % divider = 0)
print("%d can divided by %d\n", number, divider);
This is just my random thought, so please comment and critisize it if it's wrong.
The idea is to precompute all the prime numbers below a certain range and use it as a table.
Looping though the table, check if the prime number is a factor, if it is, then increament the counter for that prime number, if not then increment the index. Terminate when the index reaches the end or the prime number to check exceeds the input.
At end, the result is a table of all the prime factors of the input, and their counts. Then generating all natual factors should be trival, isn't it?
Worst case, the loop needs to go to the end, then it takes 6542 iterations.
Considering the input is [0, 4294967296] this is similar to O(n^3/8).
Here's MATLAB code that implements this method:
if p is generated by p=primes(65536); this method would work for all inputs between [0, 4294967296] (but not tested).
function [ output_non_zero ] = fact2(input, p)
output_table=zeros(size(p));
i=1;
while(i<length(p));
if(input<1.5)
break;
% break condition: input is divided to 1,
% all prime factors are found.
end
if(rem(input,p(i))<1)
% if dividable, increament counter and don't increament index
% keep checking until not dividable
output_table(i)=output_table(i)+1;
input = input/p(i);
else
% not dividable, try next
i=i+1;
end
end
% remove all zeros, should be handled more efficiently
output_non_zero = [p(output_table~=0);...
output_table(output_table~=0)];
if(input > 1.5)
% the last and largest prime factor could be larger than 65536
% hence would skip from the table, add it to the end of output
% if exists
output_non_zero = [output_non_zero,[input;1]];
end
end
test
p=primes(65536);
t = floor(rand()*4294967296);
b = fact2(t, p);
% check if all prime factors adds up and they are all primes
assert((prod(b(1,:).^b(2,:))==t)&&all(isprime(b(1,:))), 'test failed');

How to avoid branching in C for this operation

Is there a way to remove the following if-statement to check if the value is below 0?
int a = 100;
int b = 200;
int c = a - b;
if (c < 0)
{
c += 3600;
}
The value of c should lie between 0 and 3600. Both a and b are signed. The value of a also should lie between 0 and 3600. (yes, it is a counting value in 0.1 degrees). The value gets reset by an interrupt to 3600, but if that interrupt comes too late it underflows, which is not of a problem, but the software should still be able to handle it. Which it does.
We do this if (c < 0) check at quite some places where we are calculating positions. (Calculating a new position etc.)
I was used to pythons modulo operator to use the signedness of the divisor where our compiler (C89) is using the dividend signedness.
Is there some way to do this calculation differently?
example results:
a - b = c
100 - 200 = 3500
200 - 100 = 100
Good question! How about this?
c += 3600 * (c < 0);
This is one way we preserve branch predictor slots.
What about this (assuming 32-bit ints):
c += 3600 & (c >> 31);
c >> 31 sets all bits to the original MSB, which is 1 for negative numbers and and 0 for others in 2-complement.
Negative number shift right is formally implementation-defined according to C standard documents, however it's almost always implemented with MSB copying (common processors can do it in a single instruction).
This will surely result in no branches, unlike (c < 0) which might be implemented with branch in some cases.
Why are you worried about the branch? [Reason explained in comments to the question.]
The alternative is something like:
((a - b) + 3600) % 3600
This assumes a and b are in the range 0..3600 already; if they're not under control, the more general solution is the one Drew McGowen suggests:
((a - b) % 3600 + 3600) % 3600
The branch miss has to be very expensive to make that much calculation worthwhile.
#skjaidev showed how to do it without branching. Here's how to automatically avoid multiplication as well when ints are twos-complement:
#if ((3600 & -0) == 0) && ((3600 & -1) == 3600)
c += 3600 & -(c < 0);
#else
c += 3600 * (c < 0);
#endif
What you want to do is modular arithmetic. Your 2's complement machine already does this with integer math. So, by mapping your values into 2's complement arithmetic, you can get the modolo operation free.
The trick is represent your angle as a fraction of 360 degrees between 0 and 1-epsilon. Of course, then your constant angles would have to represented similarly, but that shouldn't be hard; its just a bit of math we can hide in a conversion function (er, macro).
The value in this idea is that if you add or subtract angles, you'll get a value whose fraction part you want, and whose integer part you want to throw away. If we represent the fraction as a 32 bit fixed point number with the binary point at 2^32 (e.g., to the left of what is normally considered to be a sign bit), any overflows of the fraction simply fall off the top of the 32 bit value for free. So, you do all integer math, and "overflow" removal happens for free.
So I'd rewrite your code (preserving the idea of degrees times 10):
typedef unsigned int32 angle; // angle*3600/(2^32) represents degrees
#define angle_scale_factor 1193046.47111111 // = 2^32/3600
#define make_angle(degrees) (unsigned int32)((degrees%3600)*angle_scale_factor )
#define make_degrees(angle) (angle/(angle_scale_factor*10)) // produces float number
...
angle a = make_angle(100); // compiler presumably does compile-time math to compute 119304647
angle b = make_angle(200); // = 238609294
angle c = a - b; // compiler should generate integer subtract, which computes 4175662649
#if 0 // no need for this at all; other solutions execute real code to do something here
if (c < 0) // this can't happen
{ c += 3600; } // this is the wrong representation for our variant
#endif
// speed doesn't matter here, we're doing output:
printf("final angle %f4.2 = \n", make_degrees(c)); // should print 350.00
I have not compiled and run this code.
Changes to make this degrees times 100 or times 1 are pretty easy; modify the angle_scale_factor. If you have a 16 bit machine, switching to 16 bits is similarly easy; if you have 32 bits, and you still want to only do 16 bit math, you will need to mask the value to be printed to 16 bits.
This solution has one other nice property: you've documented which variables are angles (and have funny representations). OP's original code just called them ints, but that's not what they represent; a future maintainer will get suprised by the original code, especially if he finds the subtraction isolated from the variables.

Take the average of two signed numbers in C

Let us say we have x and y and both are signed integers in C, how do we find the most accurate mean value between the two?
I would prefer a solution that does not take advantage of any machine/compiler/toolchain specific workings.
The best I have come up with is:(a / 2) + (b / 2) + !!(a % 2) * !!(b %2) Is there a solution that is more accurate? Faster? Simpler?
What if we know if one is larger than the other a priori?
Thanks.
D
Editor's Note: Please note that the OP expects answers that are not subject to integer overflow when input values are close to the maximum absolute bounds of the C int type. This was not stated in the original question, but is important when giving an answer.
After accept answer (4 yr)
I would expect the function int average_int(int a, int b) to:
1. Work over the entire range of [INT_MIN..INT_MAX] for all combinations of a and b.
2. Have the same result as (a+b)/2, as if using wider math.
When int2x exists, #Santiago Alessandri approach works well.
int avgSS(int a, int b) {
return (int) ( ((int2x) a + b) / 2);
}
Otherwise a variation on #AProgrammer:
Note: wider math is not needed.
int avgC(int a, int b) {
if ((a < 0) == (b < 0)) { // a,b same sign
return a/2 + b/2 + (a%2 + b%2)/2;
}
return (a+b)/2;
}
A solution with more tests, but without %
All below solutions "worked" to within 1 of (a+b)/2 when overflow did not occur, but I was hoping to find one that matched (a+b)/2 for all int.
#Santiago Alessandri Solution works as long as the range of int is narrower than the range of long long - which is usually the case.
((long long)a + (long long)b) / 2
#AProgrammer, the accepted answer, fails about 1/4 of the time to match (a+b)/2. Example inputs like a == 1, b == -2
a/2 + b/2 + (a%2 + b%2)/2
#Guy Sirton, Solution fails about 1/8 of the time to match (a+b)/2. Example inputs like a == 1, b == 0
int sgeq = ((a<0)==(b<0));
int avg = ((!sgeq)*(a+b)+sgeq*(b-a))/2 + sgeq*a;
#R.., Solution fails about 1/4 of the time to match (a+b)/2. Example inputs like a == 1, b == 1
return (a-(a|b)+b)/2+(a|b)/2;
#MatthewD, now deleted solution fails about 5/6 of the time to match (a+b)/2. Example inputs like a == 1, b == -2
unsigned diff;
signed mean;
if (a > b) {
diff = a - b;
mean = b + (diff >> 1);
} else {
diff = b - a;
mean = a + (diff >> 1);
}
If (a^b)<=0 you can just use (a+b)/2 without fear of overflow.
Otherwise, try (a-(a|b)+b)/2+(a|b)/2. -(a|b) is at least as large in magnitude as both a and b and has the opposite sign, so this avoids the overflow.
I did this quickly off the top of my head so there might be some stupid errors. Note that there are no machine-specific hacks here. All behavior is completely determined by the C standard and the fact that it requires twos-complement, ones-complement, or sign-magnitude representation of signed values and specifies that the bitwise operators work on the bit-by-bit representation. Nope, the relative magnitude of a|b depends on the representation...
Edit: You could also use a+(b-a)/2 when they have the same sign. Note that this will give a bias towards a. You can reverse it and get a bias towards b. My solution above, on the other hand, gives bias towards zero if I'm not mistaken.
Another try: One standard approach is (a&b)+(a^b)/2. In twos complement it works regardless of the signs, but I believe it also works in ones complement or sign-magnitude if a and b have the same sign. Care to check it?
Edit: version fixed by #chux - Reinstate Monica:
if ((a < 0) == (b < 0)) { // a,b same sign
return a/2 + b/2 + (a%2 + b%2)/2;
} else {
return (a+b)/2;
}
Original answer (I'd have deleted it if it hadn't been accepted).
a/2 + b/2 + (a%2 + b%2)/2
Seems the simplest one fitting the bill of no assumption on implementation characteristics (it has a dependency on C99 which specifying the result of / as "truncated toward 0" while it was implementation dependent for C90).
It has the advantage of having no test (and thus no costly jumps) and all divisions/remainder are by 2 so the use of bit twiddling techniques by the compiler is possible.
For unsigned integers the average is the floor of (x+y)/2. But the same fails for signed integers. This formula fails for integers whose sum is an odd -ve number as their floor is one less than their average.
You can read up more at Hacker's Delight in section 2.5
The code to calculate average of 2 signed integers without overflow is
int t = (a & b) + ((a ^ b) >> 1)
unsigned t_u = (unsigned)t
int avg = t + ( (t_u >> 31 ) & (a ^ b) )
I have checked it's correctness using Z3 SMT solver
Just a few observations that may help:
"Most accurate" isn't necessarily unique with integers. E.g. for 1 and 4, 2 and 3 are an equally "most accurate" answer. Mathematically (not C integers):
(a+b)/2 = a+(b-a)/2 = b+(a-b)/2
Let's try breaking this down:
If sign(a)!=sign(b) then a+b will will not overflow. This case can be determined by comparing the most significant bit in a two's complement representation.
If sign(a)==sign(b) then if a is greater than b, (a-b) will not overflow. Otherwise (b-a) will not overflow. EDIT: Actually neither will overflow.
What are you trying to optimize exactly? Different processor architectures may have different optimal solutions. For example, in your code replacing the multiplication with an AND may improve performance. Also in a two's complement architecture you can simply (a & b & 1).
I'm just going to throw some code out, not looking too fast but perhaps someone can use and improve:
int sgeq = ((a<0)==(b<0));
int avg = ((!sgeq)*(a+b)+sgeq*(b-a))/2 + sgeq*a
I would do this, convert both to long long(64 bit signed integers) add them up, this won't overflow and then divide the result by 2:
((long long)a + (long long)b) / 2
If you want the decimal part, store it as a double.
It is important to note that the result will fit in a 32 bit integer.
If you are using the highest-rank integer, then you can use:
((double)a + (double)b) / 2
This answer fits to any number of integers:
int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
decimal avg = 0;
for (int i = 0; i < array.Length; i++){
avg = (array[i] - avg) / (i+1) + avg;
}
expects avg == 5.0 for this test

What is wrong with INT32_MIN/-1?

John Regehr's blog post A Guide to Undefined Behavior in C and C++, Part 1 contains the following "safe" function for "performing integer division without executing undefined behavior":
int32_t safe_div_int32_t (int32_t a, int32_t b) {
if ((b == 0) || ((a == INT32_MIN) && (b == -1))) {
report_integer_math_error();
return 0;
} else {
return a / b;
}
}
I'm wondering what is wrong with the division (a/b) when a = INT32_MIN and b = -1. Is it undefined? If so why?
I think it's because the absolute value of INT32_MIN is 1 larger than INT32_MAX. So INT32_MIN/-1 actually equals INT32_MAX + 1 which would overflow.
So for 32-bit integers, there are 4,294,967,296 values.
There are 2,147,483,648 values for negative numbers (-2,147,483,648 to -1).
There is 1 value for zero (0).
There are 2,147,483,647 values for positive numbers (1 to 2,147,483,647) because 0 took 1 value away from the positive numbers.
This is because int32_t is represented using two's-complement, and numbers with N bits in two's-complement range from −2^(N−1) to 2^(N−1)−1. Therefore, when you carry out the division, you get: -2^(31) / -1 = 2^(N-1). Notice that the result is larger than 2^(N-1)-1, meaning you get an overflow!
The other posters are correct about the causes of the overflow. The implication of the overflow on most machines is that INT_MIN / -1 => INT_ MIN. The same thing happens when multiplying by -1. This is an unexpected and possibly dangerous result. I've seen a fixed-point motor controller go out of control because it didn't check for this condition.
Because INT32_MIN is defined as (-INT32_MAX-1) = -(INT32_MAX+1) and when divided by -1, this would be (INT32+MAX) => there is an integer overflow. I must say, that is a nice way to check for overflows. Thoughtfully written code. +1 to the developer.

Optimize me! (C, performance) -- followup to bit-twiddling question

Thanks to some very helpful stackOverflow users at Bit twiddling: which bit is set?, I have constructed my function (posted at the end of the question).
Any suggestions -- even small suggestions -- would be appreciated. Hopefully it will make my code better, but at the least it should teach me something. :)
Overview
This function will be called at least 1013 times, and possibly as often as 1015. That is, this code will run for months in all likelihood, so any performance tips would be helpful.
This function accounts for 72-77% of the program's time, based on profiling and about a dozen runs in different configurations (optimizing certain parameters not relevant here).
At the moment the function runs in an average of 50 clocks. I'm not sure how much this can be improved, but I'd be thrilled to see it run in 30.
Key Observation
If at some point in the calculation you can tell that the value that will be returned will be small (exact value negotiable -- say, below a million) you can abort early. I'm only interested in large values.
This is how I hope to save the most time, rather than by further micro-optimizations (though these are of course welcome as well!).
Performance Information
smallprimes is a bit array (64 bits); on average about 8 bits will be set, but it could be as few as 0 or as many as 12.
q will usually be nonzero. (Notice that the function exits early if q and smallprimes are zero.)
r and s will often be 0. If q is zero, r and s will be too; if r is zero, s will be too.
As the comment at the end says, nu is usually 1 by the end, so I have an efficient special case for it.
The calculations below the special case may appear to risk overflow, but through appropriate modeling I have proved that, for my input, this will not occur -- so don't worry about that case.
Functions not defined here (ugcd, minuu, star, etc.) have already been optimized; none take long to run. pr is a small array (all in L1). Also, all functions called here are pure functions.
But if you really care... ugcd is the gcd, minuu is the minimum, vals is the number of trailing binary 0s, __builtin_ffs is the location of the leftmost binary 1, star is (n-1) >> vals(n-1), pr is an array of the primes from 2 to 313.
The calculations are currently being done on a Phenom II 920 x4, though optimizations for i7 or Woodcrest are still of interest (if I get compute time on other nodes).
I would be happy to answer any questions you have about the function or its constituents.
What it actually does
Added in response to a request. You don't need to read this part.
The input is an odd number n with 1 < n < 4282250400097. The other inputs provide the factorization of the number in this particular sense:
smallprimes&1 is set if the number is divisible by 3, smallprimes&2 is set if the number is divisible by 5, smallprimes&4 is set if the number is divisible by 7, smallprimes&8 is set if the number is divisible by 11, etc. up to the most significant bit which represents 313. A number divisible by the square of a prime is not represented differently from a number divisible by just that number. (In fact, multiples of squares can be discarded; in the preprocessing stage in another function multiples of squares of primes <= lim have smallprimes and q set to 0 so they will be dropped, where the optimal value of lim is determined by experimentation.)
q, r, and s represent larger factors of the number. Any remaining factor (which may be greater than the square root of the number, or if s is nonzero may even be less) can be found by dividing factors out from n.
Once all the factors are recovered in this way, the number of bases, 1 <= b < n, to which n is a strong pseudoprime are counted using a mathematical formula best explained by the code.
Improvements so far
Pushed the early exit test up. This clearly saves work so I made the change.
The appropriate functions are already inline, so __attribute__ ((inline)) does nothing. Oddly, marking the main function bases and some of the helpers with __attribute ((hot)) hurt performance by almost 2% and I can't figure out why (but it's reproducible with over 20 tests). So I didn't make that change. Likewise, __attribute__ ((const)), at best, did not help. I was more than slightly surprised by this.
Code
ulong bases(ulong smallprimes, ulong n, ulong q, ulong r, ulong s)
{
if (!smallprimes & !q)
return 0;
ulong f = __builtin_popcountll(smallprimes) + (q > 1) + (r > 1) + (s > 1);
ulong nu = 0xFFFF; // "Infinity" for the purpose of minimum
ulong nn = star(n);
ulong prod = 1;
while (smallprimes) {
ulong bit = smallprimes & (-smallprimes);
ulong p = pr[__builtin_ffsll(bit)];
nu = minuu(nu, vals(p - 1));
prod *= ugcd(nn, star(p));
n /= p;
while (n % p == 0)
n /= p;
smallprimes ^= bit;
}
if (q) {
nu = minuu(nu, vals(q - 1));
prod *= ugcd(nn, star(q));
n /= q;
while (n % q == 0)
n /= q;
} else {
goto BASES_END;
}
if (r) {
nu = minuu(nu, vals(r - 1));
prod *= ugcd(nn, star(r));
n /= r;
while (n % r == 0)
n /= r;
} else {
goto BASES_END;
}
if (s) {
nu = minuu(nu, vals(s - 1));
prod *= ugcd(nn, star(s));
n /= s;
while (n % s == 0)
n /= s;
}
BASES_END:
if (n > 1) {
nu = minuu(nu, vals(n - 1));
prod *= ugcd(nn, star(n));
f++;
}
// This happens ~88% of the time in my tests, so special-case it.
if (nu == 1)
return prod << 1;
ulong tmp = f * nu;
long fac = 1 << tmp;
fac = (fac - 1) / ((1 << f) - 1) + 1;
return fac * prod;
}
You seem to be wasting much time doing divisions by the factors. It is much faster to replace a division with a multiplication by the reciprocal of divisor (division: ~15-80(!) cycles, depending on the divisor, multiplication: ~4 cycles), IF of course you can precompute the reciprocals.
While this seems unlikely to be possible with q, r, s - due to the range of those vars, it is very easy to do with p, which always comes from the small, static pr[] array. Precompute the reciprocals of those primes and store them in another array. Then, instead of dividing by p, multiply by the reciprocal taken from the second array. (Or make a single array of structs.)
Now, obtaining exact division result by this method requires some trickery to compensate for rounding errors. You will find the gory details of this technique in this document, on page 138.
EDIT:
After consulting Hacker's Delight (an excellent book, BTW) on the subject, it seems that you can make it even faster by exploiting the fact that all divisions in your code are exact (i.e. remainder is zero).
It seems that for every divisor d which is odd and base B = 2word_size, there exists a unique multiplicative inverse d⃰ which satisfies the conditions: d⃰ < B and d·d⃰ ≡ 1 (mod B). For every x which is an exact multiple of d, this implies x/d ≡ x·d⃰ (mod B). Which means you can simply replace a division with a multiplication, no added corrections, checks, rounding problems, whatever. (The proofs of these theorems can be found in the book.) Note that this multiplicative inverse need not be equal to the reciprocal as defined by the previous method!
How to check whether a given x is an exact multiple of d - i.e. x mod d = 0 ? Easy! x mod d = 0 iff x·d⃰ mod B ≤ ⌊(B-1)/d⌋. Note that this upper limit can be precomputed.
So, in code:
unsigned x, d;
unsigned inv_d = mulinv(d); //precompute this!
unsigned limit = (unsigned)-1 / d; //precompute this!
unsigned q = x*inv_d;
if(q <= limit)
{
//x % d == 0
//q == x/d
} else {
//x % d != 0
//q is garbage
}
Assuming the pr[] array becomes an array of struct prime:
struct prime {
ulong p;
ulong inv_p; //equal to mulinv(p)
ulong limit; //equal to (ulong)-1 / p
}
the while(smallprimes) loop in your code becomes:
while (smallprimes) {
ulong bit = smallprimes & (-smallprimes);
int bit_ix = __builtin_ffsll(bit);
ulong p = pr[bit_ix].p;
ulong inv_p = pr[bit_ix].inv_p;
ulong limit = pr[bit_ix].limit;
nu = minuu(nu, vals(p - 1));
prod *= ugcd(nn, star(p));
n *= inv_p;
for(;;) {
ulong q = n * inv_p;
if (q > limit)
break;
n = q;
}
smallprimes ^= bit;
}
And for the mulinv() function:
ulong mulinv(ulong d) //d needs to be odd
{
ulong x = d;
for(;;)
{
ulong tmp = d * x;
if(tmp == 1)
return x;
x *= 2 - tmp;
}
}
Note you can replace ulong with any other unsigned type - just use the same type consistently.
The proofs, whys and hows are all available in the book. A heartily recommended read :-).
If your compiler supports GCC function attributes, you can mark your pure functions with this attribute:
ulong star(ulong n) __attribute__ ((const));
This attribute indicates to the compiler that the result of the function depends only on its argument(s). This information can be used by the optimiser.
Is there a reason why you've opencoded vals() instead of using __builtin_ctz() ?
It is still somewhat unclear, what you are searching for. Quite frequently number theoretic problems allow huge speedups by deriving mathematical properties that the solutions must satisfiy.
If you are indeed searching for the integers that maximize the number of non-witnesses for the MR test (i.e. oeis.org/classic/A141768 that you mention) then it might be possible to use that the number of non-witnesses cannot be larger than phi(n)/4 and that the integers for which have this many non-witnesses are either are the product of two primes of the form
(k+1)*(2k+1)
or they are Carmichael numbers with 3 prime factors.
I'd think above some limit all integers in the sequence have this form and that it is possible to verify this by proving an upper bound for the witnesses of all other integers.
E.g. integers with 4 or more factors always have at most phi(n)/8 non-witnesses. Similar results can be derived from you formula for the number of bases for other integers.
As for micro-optimizations: Whenever you know that an integer is divisible by some quotient, then it is possible to replace the division by a multiplication with the inverse of the quotient modulo 2^64. And the tests n % q == 0 can be replaced by a test
n * inverse_q < max_q,
where inverse_q = q^(-1) mod 2^64 and max_q = 2^64 / q.
Obviously inverse_q and max_q need to be precomputed, to be efficient, but since you are using a sieve, I assume this should not be an obstacle.
Small optimization but:
ulong f;
ulong nn;
ulong nu = 0xFFFF; // "Infinity" for the purpose of minimum
ulong prod = 1;
if (!smallprimes & !q)
return 0;
// no need to do this operations before because of the previous return
f = __builtin_popcountll(smallprimes) + (q > 1) + (r > 1) + (s > 1);
nn = star(n);
BTW: you should edit your post to add star() and other functions you use definition
Try replacing this pattern (for r and q too):
n /= p;
while (n % p == 0)
n /= p;
With this:
ulong m;
...
m = n / p;
do {
n = m;
m = n / p;
} while ( m * p == n);
In my limited tests, I got a small speedup (10%) from eliminating the modulo.
Also, if p, q or r were constant, the compiler will replace the divisions by multiplications. If there are few choices for p, q or r, or if certain ones are more frequent, you might gain something by specializing the function for those values.
Have you tried using profile-guided optimisation?
Compile and link the program with the -fprofile-generate option, then run the program over a representative data set (say, a day's worth of computation).
Then re-compile and link it with the -fprofile-use option instead.
1) I would make the compiler spit out the assembly it generates and try and deduce if what it does is the best it can do... and if you spot problems, change the code so the assembly looks better. This way you can also make sure that functions you hope it'll inline (like star and vals) are really inlined. (You might need to add pragma's, or even turn them into macros)
2) It's great that you try this on a multicore machine, but this loop is singlethreaded. I'm guessing that there is an umbrella functions which splits the load across a few threads so that more cores are used?
3) It's difficult to suggest speed ups if what the actual function tries to calculate is unclear. Typically the most impressive speedups are not achieved with bit twiddling, but with a change in the algorithm. So a bit of comments might help ;^)
4) If you really want a speed up of 10* or more, check out CUDA or openCL which allows you to run C programs on your graphics hardware. It shines with functions like these!
5) You are doing loads of modulo and divides right after each other. In C this is 2 separate commands (first '/' and then '%'). However in assembly this is 1 command: 'DIV' or 'IDIV' which returns both the remainder and the quotient in one go:
B.4.75 IDIV: Signed Integer Divide
IDIV r/m8 ; F6 /7 [8086]
IDIV r/m16 ; o16 F7 /7 [8086]
IDIV r/m32 ; o32 F7 /7 [386]
IDIV performs signed integer division. The explicit operand provided is the divisor; the dividend and destination operands are implicit, in the following way:
For IDIV r/m8, AX is divided by the given operand; the quotient is stored in AL and the remainder in AH.
For IDIV r/m16, DX:AX is divided by the given operand; the quotient is stored in AX and the remainder in DX.
For IDIV r/m32, EDX:EAX is divided by the given operand; the quotient is stored in EAX and the remainder in EDX.
So it will require some inline assembly, but I'm guessing there'll be a significant speedup as there are a few places in your code which can benefit from this.
Make sure your functions get inlined. If they're out-of-line, the overhead might add up, especially in the first while loop. The best way to be sure is to examine the assembly.
Have you tried pre-computing star( pr[__builtin_ffsll(bit)] ) and vals( pr[__builtin_ffsll(bit)] - 1) ? That would trade some simple work for an array lookup, but it might be worth it if the tables are small enough.
Don't compute f until you actually need it (near the end, after your early-out). You can replace the code around BASES_END with something like
BASES_END:
ulong addToF = 0;
if (n > 1) {
nu = minuu(nu, vals(n - 1));
prod *= ugcd(nn, star(n));
addToF = 1;
}
// ... early out if nu == 1...
// ... compute f ...
f += addToF;
Hope that helps.
First some nitpicking ;-) you should be more careful about the types that you are using. In some places you seem to assume that ulong is 64 bit wide, use uint64_t there. And also for all other types, rethink carefully what you expect of them and use the appropriate type.
The optimization that I could see is integer division. Your code does that a lot, this is probably the most expensive thing you are doing. Division of small integers (uint32_t) maybe much more efficient than by big ones. In particular for uint32_t there is an assembler instruction that does division and modulo in one go, called divl.
If you use the appropriate types your compiler might do that all for you. But you'd better check the assembler (option -S to gcc) as somebody already said. Otherwise it is easy to include some little assembler fragments here and there. I found something like that in some code of mine:
register uint32_t a asm("eax") = 0;
register uint32_t ret asm("edx") = 0;
asm("divl %4"
: "=a" (a), "=d" (ret)
: "0" (a), "1" (ret), "rm" (divisor));
As you can see this uses special registers eax and edx and stuff like that...
Did you try a table lookup version of the first while loop? You could divide smallprimes in 4 16 bit values, look up their contribution and merge them. But maybe you need the side effects.
Did you try passing in an array of primes instead of splitting them in smallprimes, q, r and s? Since I don't know what the outer code does, I am probably wrong, but there is a chance that you also have a function to convert some primes to a smallprimes bitmap, and inside this function, you convert the bitmap back to an array of primes, effecively. In addition, you seem to do identical processing for elements of smallprimes, q, r, and s. It should save you a tiny amount of processing per call.
Also, you seem to know that the passed in primes divide n. Do you have enough knowledge outside about the power of each prime that divides n? You could save a lot of time if you can eliminate the modulo operation by passing in that information to this function. In other words, if n is pow(p_0,e_0)*pow(p_1,e_1)*...*pow(p_k,e_k)*n_leftover, and if you know more about these e_is and n_leftover, passing them in would mean a lot of things you don't have to do in this function.
There may be a way to discover n_leftover (the unfactored part of n) with less number of modulo operations, but it is only a hunch, so you may need to experiment with it a bit. The idea is to use gcd to remove known factors from n repeatedly until you get rid of all known prime factors. Let me give some almost-c-code:
factors=p_0*p_1*...*p_k*q*r*s;
n_leftover=n/factors;
do {
factors=gcd(n_leftover, factors);
n_leftover = n_leftover/factors;
} while (factors != 1);
I am not at all certain this will be better than the code you have, let alone the combined mod/div suggestions you can find in other answers, but I think it is worth a try. I feel that it will be a win, especially for numbers with high numbers of small prime factors.
You're passing in the complete factorization of n, so you're factoring consecutive integers and then using the results of that factorization here. It seems to me that you might benefit from doing some of this at the time of finding the factors.
BTW, I've got some really fast code for finding the factors you're using without doing any division. It's a little like a sieve but produces factors of consecutive numbers very quickly. Can find it and post if you think it may help.
edit had to recreate the code here:
#include
#define SIZE (1024*1024) //must be 2^n
#define MASK (SIZE-1)
typedef struct {
int p;
int next;
} p_type;
p_type primes[SIZE];
int sieve[SIZE];
void init_sieve()
{
int i,n;
int count = 1;
primes[1].p = 3;
sieve[1] = 1;
for (n=5;SIZE>n;n+=2)
{
int flag = 0;
for (i=1;count>=i;i++)
{
if ((n%primes[i].p) == 0)
{
flag = 1;
break;
}
}
if (flag==0)
{
count++;
primes[count].p = n;
sieve[n>>1] = count;
}
}
}
int main()
{
int ptr,n;
init_sieve();
printf("init_done\n");
// factor odd numbers starting with 3
for (n=1;1000000000>n;n++)
{
ptr = sieve[n&MASK];
if (ptr == 0) //prime
{
// printf("%d is prime",n*2+1);
}
else //composite
{
// printf ("%d has divisors:",n*2+1);
while(ptr!=0)
{
// printf ("%d ",primes[ptr].p);
sieve[n&MASK]=primes[ptr].next;
//move the prime to the next number it divides
primes[ptr].next = sieve[(n+primes[ptr].p)&MASK];
sieve[(n+primes[ptr].p)&MASK] = ptr;
ptr = sieve[n&MASK];
}
}
// printf("\n");
}
return 0;
}
The init function creates a factor base and initializes the sieve. This takes about 13 seconds on my laptop. Then all numbers up to 1 billion are factored or determined to be prime in another 25 seconds. Numbers less than SIZE are never reported as prime because they have 1 factor in the factor base, but that could be changed.
The idea is to maintain a linked list for every entry in the sieve. Numbers are factored by simply pulling their factors out of the linked list. As they are pulled out, they are inserted into the list for the next number that will be divisible by that prime. This is very cache friendly too. The sieve size must be larger than the largest prime in the factor base. As is, this sieve could run up to 2**40 in about 7 hours which seems to be your target (except for n needing to be 64 bits).
Your algorithm could be merged into this to make use of the factors as they are identified rather than packing bits and large primes into variables to pass to your function. Or your function could be changed to take the linked list (you could create a dummy link to pass in for the prime numbers outside the factor base).
Hope it helps.
BTW, this is the first time I've posted this algorithm publicly.
just a thought but maybe using your compilers optimization options would help, if you haven't already. another thought would be that if money isn't an issue you could use the Intel C/C++ compiler, assuming your using an Intel processor. I'd also assume that other processor manufacturers (AMD, etc.) would have similar compilers
If you are going to exit immediately on (!smallprimes&!q) why not do that test before even calling the function, and save the function call overhead?
Also, it seems like you effectively have 3 different functions which are linear except for the smallprimes loop.
bases1(s,n,q), bases2(s,n,q,r), and bases3(s,n,q,r,s).
It might be a win to actually create those as 3 separate functions without the branches and gotos, and call the appropriate one:
if (!(smallprimes|q)) { r = 0;}
else if (s) { r = bases3(s,n,q,r,s);}
else if (r) { r = bases2(s,n,q,r); }
else { r = bases1(s,n,q);
This would be most effective if previous processing has already given the calling code some 'knowledge' of which function to execute and you don't have to test for it.
If the divisions you're using are with numbers that aren’t known at compile time, but are used frequently at runtime (dividing by the same number many times), then I would suggest using the libdivide library, which basically implements at runtime the optimisations that compilers do for compile time constants (using shifts masks etc.). This can provide a huge benefit. Also avoiding using x % y == 0 for something like z = x/y, z * y == x as ergosys suggested above should also have a measurable improvement.
Does the code on your top post is the optimized version? If yes, there is still too many divide operations which greatly eat CPU cycles.
This code is overexecute innecessarily a bit
if (!smallprimes & !q)
return 0;
change to logical and &&
if (!smallprimes && !q)
return 0;
will make it short circuited faster without eveluating q
And the following code
ulong bit = smallprimes & (-smallprimes);
ulong p = pr[__builtin_ffsll(bit)];
which is used to find the last set bit of smallprimes. Why don't you use the simpler way
ulong p = pr[__builtin_ctz(smallprimes)];
Another culprit for decreased performance maybe too many program branching. You may consider changing to some other less-branch or branch-less equivalents

Resources