How to efficiently shuffle a tensor with different permutations - permutation

I have the following problem: I have a 4-dim tensor (b, c, h, w) that I would like to shuffle within c that is divided into n_groups with different permutation for each h.
Let's say c=16 and n_groups is 4 ---> num_elements=4 (in a group).
So, within these 4 c's I would like to shuffle h's.
solution screenshot
The solution above works but is very slow, I have not found any clue to accelerate it.
Do you have any suggestion how it could be improved?

Related

Optimizing sparse matrix solve time

Our simulations have large very sparse sets of SPD equations (a resistive network with current sources). We solve Ax = b, where A is conductance matrix and b is the current vector. We have effective solution methods (Eigen/sparse and/or Tim Davis's LDL). During the simulation, only a few of the elements in A change between time steps, but we need to factorize the entire matrix for the new solution (though we can avoid the ordering step in many cases).
We are wondering if there are methods that could segregate the fixed portion in A from the dynamic portions, factorize the fixed portions separately from the dynamic, then combine the two for the solution (forward/back substitution). From a top level understanding of standard solution methods, my sense is that this is not possible. But .... ??
Thanks in advance
Kevin

computing function of neighbors efficiently on lattice

I'm studying the Ising model, and I'm trying to efficiently compute a function H(σ) where σ is the current state of an LxL lattice (that is, σ_ij ∈ {+1, -1} for i,j ∈ {1,2,...,L}). To compute H for a particular σ, I need to perform the following calculation:
where ⟨i j⟩ indicates that sites σ_i and σ_j are nearest neighbors and (suppose) J is a constant.
A couple of questions:
Should I store my state σ as an LxL matrix or as an L2 list? Is one better than the other for memory accessing in RAM (which I guess depends on the way I'm accessing elements...)?
In either case, how can I best compute H?
Really I think this boils down to how can I access (and manipulate) the neighbors of every state most efficiently.
Some thoughts:
I see that if I loop through each element in the list or matrix that I'll be double counting, so is there a "best" way to return the unique neighbors?
Is there a better data structure that I'm not thinking of?
Your question is a bit broad and a bit confusing for me, so excuse me if my answer is not the one you are looking for, but I hope it will help (a bit).
An array is faster than a list when it comes to indexing. A matrix is a 2D array, like this for example (where N and M are both L for you):
That means that you first access a[i] and then a[i][j].
However, you can avoid this double access, by emulating a 2D array with a 1D array. In that case, if you want to access element a[i][j] in your matrix, you would now do, a[i * L + j].
That way you load once, but you multiply and add your variables, but this may still be faster in some cases.
Now as for the Nearest Neighbor question, it seems that you are using a square-lattice Ising model, which means that you are working in 2 dimensions.
A very efficient data structure for Nearest Neighbor Search in low dimensions is the kd-tree. The construction of that tree takes O(nlogn), where n is the size of your dataset.
Now you should think if it's worth it to build such a data structure.
PS: There is a plethora of libraries implementing the kd-tree, such as CGAL.
I encountered this problem during one of my school assignments and I think the solution depends on which programming language you are using.
In terms of efficiency, there is no better way than to write a for loop to sum neighbours(which are actually the set of 4 points{ (i+/-1,j+/-1)} for a given (i,j). However, when simd(sse etc) functions are available, you can re-express this as a convolution with a 2d kernel {0 1 0;1 0 1;0 1 0}. so if you use a numerical library which exploits simd functions you can obtain significant performance increase. You can see the example implementation of this here(https://github.com/zawlin/cs5340/blob/master/a1_code/denoiseIsingGibbs.py) .
Note that in this case, the performance improvement is huge because to evaluate it in python I need to write an expensive for loop.
In terms of work, there is in fact some waste as the unecessary multiplications and sum with zeros at corners and centers. So whether you can experience performance improvement depends quite a bit on your programming environment( if you are already in c/c++, it can be difficult and you need to use mkl etc to obtain good improvement)

How to remove apparent redundency in numpy vector operations?

New to python and not sure about efficiency issues here. For vectors x, y, and z that represent the coordinates of n particles I can do the following computation
import numpy as np
X=np.subtract.outer(x,x)
Y=np.subtract.outer(y,y)
Z=np.subtract.outer(z,z)
R=np.sqrt(X**2+Y**2+Z**2)
A=X/R
np.fill_diagonal(A,0)
a=np.sum(A,axis=0)
With this calculation there is about a factor of 2 in redundancy in so far as multiplications and divisions go as the diagonals are not needed and the lower diagonal is just the negative of the upper diagonal. I plan to use this kind of computation inside a function call that is used by odeint - i.e. it would be called a lot and the vectors will be large - as large as my computer will handle. To remove it, naively I would end up doing a for loop which presumably is a stupid thing to do. Can I get rid of this redundancy in a vectorized way or is it even worth the effort?
Update: Based on the suggestions below, the only way I could see to improve was
ut=np.triu_indices(n,1)
X=x[ut[0]]-x[ut[1]]
With similar expressions for Y and Z and using pdist to find R. This construction only calculates the upper triangular part. Looking at the source code for pdist I am not convinced it does anything particularly smart so I think my expression above would be equally good. The use of squareform only produces the symmetric form. For the antisymmetric may as well use
B=np.zeros((n,n),dtype=np.float64)
B(ut[0],ut[1])=A
B=B-B.T
This cannot be slower than square form because this is pretty much exactly what squareform does. Since the function is called often it would seem to me that ut should be made static along with storage for others (X,Y,Z,A,B). However being new to python I'm not sure how that is done.

Most mutually distant k elements (clustering?)

I have a simple machine learning question:
I have n (~110) elements, and a matrix of all the pairwise distances. I would like to choose the 10 elements that are most far apart. That is, I want to
Maximize:
Choose 10 different elements.
Return min distance over (all pairings within the 10).
My distance metric is symmetric and respects the triangle inequality.
What kind of algorithm can I use? My first instinct is to do the following:
Cluster the n elements into 20
clusters.
Replace each cluster with just the
element of that cluster that is
furthest from the mean element of
the original n.
Use brute force to solve the
problem on the remaining 20
candidates. Luckily, 20 choose 10 is
only 184,756.
Edit: thanks to etarion's insightful comment, changed "Return sum of (distances)" to "Return min distance" in the optimization problem statement.
Here's how you might approach this combinatorial optimization problem by taking the convex relaxation.
Let D be an upper triangular matrix with your distances on the upper triangle. I.e. where i < j, D_i,j is the distance between elements i and j. (Presumably, you'll have zeros on the diagonal, as well.)
Then your objective is to maximize x'*D*x, where x is binary valued with 10 elements set to 1 and the rest to 0. (Setting the ith entry in x to 1 is analogous to selecting the ith element as one of your 10 elements.)
The "standard" convex optimization thing to do with a combinatorial problem like this is to relax the constraints such that x need not be discrete valued. Doing so gives us the following problem:
maximize y'*D*y
subject to: 0 <= y_i <= 1 for all i, 1'*y = 10
This is (morally) a quadratic program. (If we replace D with D + D', it'll become a bona fide quadratic program and the y you get out should be no different.) You can use an off-the-shelf QP solver, or just plug it in to the convex optimization solver of your choice (e.g. cvx).
The y you get out need not be (and probably won't be) a binary vector, but you can convert the scalar values to discrete ones in a bunch of ways. (The simplest is probably to let x be 1 in the 10 entries where y_i is highest, but you might need to do something a little more complicated.) In any case, y'*D*y with the y you get out does give you an upper bound for the optimal value of x'*D*x, so if the x you construct from y has x'*D*x very close to y'*D*y, you can be pretty happy with your approximation.
Let me know if any of this is unclear, notation or otherwise.
Nice question.
I'm not sure if it can be solved exactly in an efficient manner, and your clustering based solution seems reasonable. Another direction to look at would be local search method such as simulated annealing and hill climbing.
Here's an obvious baseline I would compare any other solution against:
Repeat 100 times:
Greedily select the datapoint that whose removal decreases the objective function the least and remove it.

KD-Trees and missing values (vector comparison)

I have a system that stores vectors and allows a user to find the n most similar vectors to the user's query vector. That is, a user submits a vector (I call it a query vector) and my system spits out "here are the n most similar vectors." I generate the similar vectors using a KD-Tree and everything works well, but I want to do more. I want to present a list of the n most similar vectors even if the user doesn't submit a complete vector (a vector with missing values). That is, if a user submits a vector with three dimensions, I still want to find the n nearest vectors (stored vectors are of 11 dimensions) I have stored.
I have a couple of obvious solutions, but I'm not sure either one seem very good:
Create multiple KD-Trees each built using the most popular subset of dimensions a user will search for. That is, if a user submits a query vector of thee dimensions, x, y, z, I match that query to my already built KD-Tree which only contains vectors of three dimensions, x, y, z.
Ignore KD-Trees when a user submits a query vector with missing values and compare the query vector to the vectors (stored in a table in a DB) one by one using something like a dot product.
This has to be a common problem, any suggestions? Thanks for the help.
Your first solution might be fastest for queries (since the tree-building doesn't consider splits in directions that you don't care about), but it would definitely use a lot of memory. And if you have to rebuild the trees repeatedly, it could get slow.
The second option looks very slow unless you only have a few points. And if that's the case, you probably didn't need a kd-tree in the first place :)
I think the best solution involves getting your hands dirty in the code that you're working with. Presumably the nearest-neighbor search computes the distance between the point in the tree leaf and the query vector; you should be able to modify this to handle the case where the point and the query vector are different sizes. E.g. if the points in the tree are given in 3D, but your query vector is only length 2, then the "distance" between the point (p0, p1, p2) and the query vector (x0, x1) would be
sqrt( (p0-x0)^2 + (p1-x1)^2 )
I didn't dig into the java code that you linked to, but I can try to find exactly where the change would need to go if you need help.
-Chris
PS - you might not need the sqrt in the equation above, since distance squared is usually equivalent.
EDIT
Sorry, didn't realize it would be so obvious in the source code. You should use this version of the neighbor function:
nearest(double [] key, int n, Checker<T> checker)
And implement your own Checker class; see their EuclideanDistance.java to see the Euclidean version. You may also need to comment out any KeySizeException that the query code throws, since you know that you can handle differently sized keys.
Your second option looks like a reasonable solution for what you want.
You could also populate the missing dimensions with the most important( or average or whatever you think it should be) values if there are any.
You could try using the existing KD tree -- by taking both branches when the split is for a dimension that is not supplied by the source vector. This should take less time than doing a brute force search, and might be less trouble than trying to maintain a bunch of specialized trees for dimension subsets.
You would need to adapt your N-closest algorithm (without more info I can't advise you on that...), and for distance you would use the sum of the squares of only those elements supplied by the source vector.
Here's what I ended up doing: When a user didn't specify a value (when their query vector lacked a dimension), I I simply adjusted my matching range (in the API) to something huge so that I match any value.

Resources