Calculator for pi stopping - c

I'm trying to calculate pi with the precision of 10 decimal places. And the efficiency has to be the best(speed and memory allocation). The programming language is C in CodeBlocks.
I don't want to change the formula I'm using:
Problem: after a while, the resulting number stops incrementing but the iteration doesn't stop.
I'm not sure if this is a math problem or some kind of variable overflow.
The resulting number is 3.1415926431 and the number I want to achieve is 3.1415926535.
Every time the incrementation stops at this specific number and the iteration continues. Is there a possibility of an overflow or something?
Now I'm printing out every thousandth iteration (just the see the process) This will be deleted in the end.
notice the
a = n; a *= 4 * a; is for memory efficiency, there are more similar cuts I did.
code I'm using
#include <stdio.h>
#include <math.h>
#include <time.h>
int main(){
double time_spent = 0.0;
clock_t begin = clock();
int n=1;
double resultNumber= 1;
double pi = 3.1415926535;
double pi2 = pi / 2;
double a;
while(1){
a = n;
a *= 4 * a;
resultNumber *= a / (a - 1);
n++;
if (fabs(resultNumber - pi2) < pow(10,-10))
break;
if (n%1000==0) {
printf("%.10f %d\n", resultNumber*2, n);
}
}
clock_t end = clock();
time_spent += (double)(end - begin) / CLOCKS_PER_SEC;
printf("The elapsed time is %f seconds", time_spent);
return 0;
}
You can try it out here:
https://onlinegdb.com/q2Gil1DHdy

Is there a possibility of an overflow or something?
The precision of floating-point numbers is limited. In a typical C implementation, double has 53 bits of mantissa, which corresponds to about 15 significant decimal digits. But the range of such FP numbers is much larger than +/- 1015, so when your FP number is large enough, the units digit is not significant. Then subtracting 1 from it will not produce a different number. When your a reaches that point, the quotient a / (a - 1) will be identically 1, so multiplying by that will not change the working result.
It's possible that you would get enough additional precision by using long double instead of double. That might help both in getting you more terms in your product before the problem described above sets in, and also by reducing the relative magnitude of FP rounding errors earlier in the computation.

You can rescue a little of the accuracy by the following trick:
4n² / (4n² - 1) = 1 + 1 / (4n² - 1)
For large n, these factors are close to 1 and challenge the floating-point representation. You can use the identity
(1 + a)(1 + b)(1 + c)... = 1 + (a + b + c...) + (ab + ac + ... + bc + ...) ...
So for small terms a, b, c... (when the second order terms disappear), it is more accurate to use the approximation 1 + (a + b + c...), of course summing inside the parenthesis first.

Related

Simple integration that depends on floating point equality

I have the following very-crude integration calculator:
// definite integrate on one variable
// using basic trapezoid approach
float integrate(float start, float end, float step, float (*func)(float x))
{
if (start >= (end-step))
return 0;
else {
float x = start; // make it a bit more math-like
float segment = step * (func(x) + func(x+step))/2;
return segment + integrate(x+step, end, step, func);
}
}
And an example usage:
static float square(float x) {return x*x;}
int main(void)
{
// Integral x^2 from 0->2 should be ~ 2.6
float start=0.0, end=2.0, step=0.01;
float answer = integrate(start, end, step, square);
printf("The integral from %.2f to %.2f for X^2 = %.2f\n", start, end, answer );
}
$ run
The integral from 0.00 to 2.00 for X^2 = 2.67
What happens if the equality check at start >= (end-step) doesn't work? For example, if it evaluates something to 2.99997 instead of 3 and so does another loop (or one less loop). Is there a way to prevent that, or do most math-type calculators just work in decimals or some extension to the 'normal' floating points?
If you are given step, one way to write a loop (and you should use a loop for this, not recursion) is:
float x;
for (float i = 0; (x = start + i*step) < end - step/2; ++i)
…
Some points about this:
We keep an integer count with i. As long as there are a reasonable number of steps, there will be no floating-point rounding error in this. (We could make i and int, but float can count integer values perfectly well, and using float avoids an int-to-float conversion in i*step.)
Instead of incrementing x (or start as it is passed by recursion) repeatedly, we recalculate it each time as start + i*step. This has only two possible rounding errors, in the multiplication and in the addition, so it avoids accumulating errors over repeated additions.
We use end - step/2 as the threshold. This allows us to catch the desired endpoint even if the calculated x drifts as far away from end as end - step/2. And that is about the best we can do, because if it is drifting farther than half a step away from the ideally spaced points, we cannot tell if it has drifted +step/2 from end-step or -step/2 from end.
This presumes that step is an integer division of end-start, or pretty close to it, so that there are a whole number of steps in the loop. If it is not, the loop should be redesigned a bit to stop one step earlier and then calculate a step of partial width at the end.
At the beginning, I mentioned being given step. An alternative is you might be given a number of steps to use, and then the step width would be calculated from that. In that case, we would use an integer number of steps to control the loop. The loop termination condition would not involve floating-point rounding at all. We could calculate x as (float) i / NumberOfSteps * (end-start) + start.
Two improvements can be made easily.
Using recursion is a bad idea. Each additional call creates a new stack frame. For a sufficiently large number of steps, you will trigger a Stack Overflow. Use a loop instead.
Normally, you would avoid the rounding problem by using start, end and n, the number of steps. The location of the kth interval would be at start + k * (end - start) / n;
So you could rewrite your function as
float integrate(float start, float end, int n, float (*func)(float x))
{
float next = start;
float sum = 0.0f;
for(int k = 0; k < n; k++) {
float x = next;
next = start + k * (end - start) / n;
sum += 0.5f * (next - x) * (func(x) + func(next));
}
return sum;
}

How to compute the digits of an irrational number one by one?

I want to read digit by digit the decimals of the sqrt of 5 in C.
The square root of 5 is 2,23606797749979..., so this'd be the expected output:
2
3
6
0
6
7
9
7
7
...
I've found the following code:
#include<stdio.h>
void main()
{
int number;
float temp, sqrt;
printf("Provide the number: \n");
scanf("%d", &number);
// store the half of the given number e.g from 256 => 128
sqrt = number / 2;
temp = 0;
// Iterate until sqrt is different of temp, that is updated on the loop
while(sqrt != temp){
// initially 0, is updated with the initial value of 128
// (on second iteration = 65)
// and so on
temp = sqrt;
// Then, replace values (256 / 128 + 128 ) / 2 = 65
// (on second iteration 34.46923076923077)
// and so on
sqrt = ( number/temp + temp) / 2;
}
printf("The square root of '%d' is '%f'", number, sqrt);
}
But this approach stores the result in a float variable, and I don't want to depend on the limits of the float types, as I would like to extract like 10,000 digits, for instance. I also tried to use the native sqrt() function and casting it to string number using this method, but I faced the same issue.
What you've asked about is a very hard problem, and whether it's even possible to do "one by one" (i.e. without working space requirement that scales with how far out you want to go) depends on both the particular irrational number and the base you want it represented in. For example, in 1995 when a formula for pi was discovered that allows computing the nth binary digit in O(1) space, this was a really big deal. It was not something people expected to be possible.
If you're willing to accept O(n) space, then some cases like the one you mentioned are fairly easy. For example, if you have the first n digits of the square root of a number as a decimal string, you can simply try appending each digit 0 to 9, then squaring the string with long multiplication (same as you learned in grade school), and choosing the last one that doesn't overshoot. Of course this is very slow, but it's simple. The easy way to make it a lot faster (but still asymptotically just as bad) is using an arbitrary-precision math library in place of strings. Doing significantly better requires more advanced approaches and in general may not be possible.
As already noted, you need to change the algorithm into a digit-by-digit one (there are some examples in the Wikipedia page about the methods of computing of the square roots) and use an arbitrary precision arithmetic library to perform the calculations (for instance, GMP).
In the following snippet I implemented the before mentioned algorithm, using GMP (but not the square root function that the library provides). Instead of calculating one decimal digit at a time, this implementation uses a larger base, the greatest multiple of 10 that fits inside an unsigned long, so that it can produce 9 or 18 decimal digits at every iteration.
It also uses an adapted Newton method to find the actual "digit".
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <gmp.h>
unsigned long max_ul(unsigned long a, unsigned long b)
{
return a < b ? b : a;
}
int main(int argc, char *argv[])
{
// The GMP functions accept 'unsigned long int' values as parameters.
// The algorithm implemented here can work with bases other than 10,
// so that it can evaluate more than one decimal digit at a time.
const unsigned long base = sizeof(unsigned long) > 4
? 1000000000000000000
: 1000000000;
const unsigned long decimals_per_digit = sizeof(unsigned long) > 4 ? 18 : 9;
// Extract the number to be square rooted and the desired number of decimal
// digits from the command line arguments. Fallback to 0 in case of errors.
const unsigned long number = argc > 1 ? atoi(argv[1]) : 0;
const unsigned long n_digits = argc > 2 ? atoi(argv[2]) : 0;
// All the variables used by GMP need to be properly initialized before use.
// 'c' is basically the remainder, initially set to the original number
mpz_t c;
mpz_init_set_ui(c, number);
// At every iteration, the algorithm "move to the left" by two "digits"
// the reminder, so it multplies it by base^2.
mpz_t base_squared;
mpz_init_set_ui(base_squared, base);
mpz_mul(base_squared, base_squared, base_squared);
// 'p' stores the digits of the root found so far. The others are helper variables
mpz_t p;
mpz_init_set_ui(p, 0UL);
mpz_t y;
mpz_init(y);
mpz_t yy;
mpz_init(yy);
mpz_t dy;
mpz_init(dy);
mpz_t dx;
mpz_init(dx);
mpz_t pp;
mpz_init(pp);
// Timing, for testing porpuses
clock_t start = clock(), diff;
unsigned long x_max = number;
// Each "digit" correspond to some decimal digits
for (unsigned long i = 0,
last = (n_digits + decimals_per_digit) / decimals_per_digit + 1UL;
i < last; ++i)
{
// Find the greatest x such that: x * (2 * base * p + x) <= c
// where x is in [0, base), using a specialized Newton method
// pp = 2 * base * p
mpz_mul_ui(pp, p, 2UL * base);
unsigned long x = x_max;
for (;;)
{
// y = x * (pp + x)
mpz_add_ui(yy, pp, x);
mpz_mul_ui(y, yy, x);
// dy = y - c
mpz_sub(dy, y, c);
// If y <= c we have found the correct x
if ( mpz_sgn(dy) <= 0 )
break;
// Newton's step: dx = dy/y' where y' = 2 * x + pp
mpz_add_ui(yy, yy, x);
mpz_tdiv_q(dx, dy, yy);
// Update x even if dx == 0 (last iteration)
x -= max_ul(mpz_get_si(dx), 1);
}
x_max = base - 1;
// The actual format of the printed "digits" is up to you
if (i % 4 == 0)
{
if (i == 0)
printf("%lu.", x);
putchar('\n');
}
else
printf("%018lu", x);
// p = base * p + x
mpz_mul_ui(p, p, base);
mpz_add_ui(p, p, x);
// c = (c - y) * base^2
mpz_sub(c, c, y);
mpz_mul(c, c, base_squared);
}
diff = clock() - start;
long int msec = diff * 1000L / CLOCKS_PER_SEC;
printf("\n\nTime taken: %ld.%03ld s\n", msec / 1000, msec % 1000);
// Final cleanup
mpz_clear(c);
mpz_clear(base_squared);
mpz_clear(p);
mpz_clear(pp);
mpz_clear(dx);
mpz_clear(y);
mpz_clear(dy);
mpz_clear(yy);
}
You can see the outputted digits here.
Your title says:
How to compute the digits of an irrational number one by one?
Irrational numbers are not limited to most square roots. They also include numbers of the form log(x), exp(z), sin(y), etc. (transcendental numbers). However, there are some important factors that determine whether or how fast you can compute a given irrational number's digits one by one (that is, from left to right).
Not all irrational numbers are computable; that is, no one has found a way to approximate them to any desired length (whether by a closed form expression, a series, or otherwise).
There are many ways numbers can be expressed, such as by their binary or decimal expansions, as continued fractions, as series, etc. And there are different algorithms to compute a given number's digits depending on the representation.
Some formulas compute a given number's digits in a particular base (such as base 2), not in an arbitrary base.
For example, besides the first formula to extract the digits of π without computing the previous digits, there are other formulas of this type (known as BBP-type formulas) that extract the digits of certain irrational numbers. However, these formulas only work for a particular base, not all BBP-type formulas have a formal proof, and most importantly, not all irrational numbers have a BBP-type formula (essentially, only certain log and arctan constants do, not numbers of the form exp(x) or sqrt(x)).
On the other hand, if you can express an irrational number as a continued fraction (which all real numbers have), you can extract its digits from left to right, and in any base desired, using a specific algorithm. What is more, this algorithm works for any real number constant, including square roots, exponentials (e and exp(x)), logarithms, etc., as long as you know how to express it as a continued fraction. For an implementation see "Digits of pi and Python generators". See also Code to Generate e one Digit at a Time.

Comparing the ratio of two values to 1

I'm working via a basic 'Programming in C' book.
I have written the following code based off of it in order to calculate the square root of a number:
#include <stdio.h>
float absoluteValue (float x)
{
if(x < 0)
x = -x;
return (x);
}
float squareRoot (float x, float epsilon)
{
float guess = 1.0;
while(absoluteValue(guess * guess - x) >= epsilon)
{
guess = (x/guess + guess) / 2.0;
}
return guess;
}
int main (void)
{
printf("SquareRoot(2.0) = %f\n", squareRoot(2.0, .00001));
printf("SquareRoot(144.0) = %f\n", squareRoot(144.0, .00001));
printf("SquareRoot(17.5) = %f\n", squareRoot(17.5, .00001));
return 0;
}
An exercise in the book has said that the current criteria used for termination of the loop in squareRoot() is not suitable for use when computing the square root of a very large or a very small number.
Instead of comparing the difference between the value of x and the value of guess^2, the program should compare the ratio of the two values to 1. The closer this ratio gets to 1, the more accurate the approximation of the square root.
If the ratio is just guess^2/x, shouldn't my code inside of the while loop:
guess = (x/guess + guess) / 2.0;
be replaced by:
guess = ((guess * guess) / x ) / 1 ; ?
This compiles but nothing is printed out into the terminal. Surely I'm doing exactly what the exercise is asking?
To calculate the ratio just do (guess * guess / x) that could be either higher or lower than 1 depending on your implementation. Similarly, your margin of error (in percent) would be absoluteValue((guess * guess / x) - 1) * 100
All they want you to check is how close the square root is. By squaring the number you get and dividing it by the number you took the square root of you are just checking how close you were to the original number.
Example:
sqrt(4) = 2
2 * 2 / 4 = 1 (this is exact so we get 1 (2 * 2 = 4 = 4))
margin of error = (1 - 1) * 100 = 0% margin of error
Another example:
sqrt(4) = 1.999 (lets just say you got this)
1.999 * 1.999 = 3.996
3.996/4 = .999 (so we are close but not exact)
To check margin of error:
.999 - 1 = -.001
absoluteValue(-.001) = .001
.001 * 100 = .1% margin of error
How about applying a little algebra? Your current criterion is:
|guess2 - x| >= epsilon
You are elsewhere assuming that guess is nonzero, so it is algebraically safe to convert that to
|1 - x / guess2| >= epsilon / guess2
epsilon is just a parameter governing how close the match needs to be, and the above reformulation shows that it must be expressed in terms of the floating-point spacing near guess2 to yield equivalent precision for all evaluations. But of course that's not possible because epsilon is a constant. This is, in fact, exactly why the original criterion gets less effective as x diverges from 1.
Let us instead write the alternative expression
|1 - x / guess2| >= delta
Here, delta expresses the desired precision in terms of the spacing of floating point values in the vicinity of 1, which is related to a fixed quantity sometimes called the "machine epsilon". You can directly select the required precision via your choice of delta, and you will get the same precision for all x, provided that no arithmetic operations overflow.
Now just convert that back into code.
Suggest a different point of view.
As this method guess_next = (x/guess + guess) / 2.0;, once the initial approximation is in the neighborhood, the number of bits of accuracy doubles. Example log2(FLT_EPSILON) is about -23, so 6 iterations are needed. (Think 23, 12, 6, 3, 2, 1)
The trouble with using guess * guess is that it may vanish, become 0.0 or infinity for a non-zero x.
To form a quality initial guess:
assert(x > 0.0f);
int expo;
float signif = frexpf(x, &expo);
float guess = ldexpf(signif, expo/2);
Now iterate N times (e.g. 6), (N based on FLT_EPSILON, FLT_DECIMAL_DIG or FLT_DIG.)
for (i=0; i<N; i++) {
guess = (x/guess + guess) / 2.0f;
}
The cost of perhaps an extra iteration is saved by avoiding an expensive termination condition calculation.
If code wants to compare a/b nearest to 1.0f
Simply use some epsilon factor like 1 or 2.
float a = guess;
float b = x/guess;
assert(b);
float q = a/b;
#define FACTOR (1.0f /* some value 1.0f to maybe 2,3 or 4 */)
if (q >= 1.0f - FLT_EPSILON*N && q <= 1.0f + FLT_EPSILON*N) {
close_enough();
}
First lesson in numerical analysis: for floating point numbers x+y has the potential for large relative errors, especially when the sum is near zero, but x*y has very limited relative errors.

C weird approximation on floating point [duplicate]

This question already has answers here:
Is floating point math broken?
(31 answers)
Closed 8 years ago.
I have the following code:
#include<stdio.h>
int main(int argc, char const *argv[])
{
float min, max, step;
min = -0.85, max = 0.85, step = 0.002;
int rank = 3, total = 4;
float step1 = min + (max - min) * rank / total; // should be 0.425
printf("%f %.7g\n", step1, step1); // 0.425000 0.4250001
float step2 = min + (max - min) * (rank + 1) / total - step; //should be 0.848
printf("%f %.7g\n", step2, step2); // 0.848000 0.848
float noc = (step2 - step1 + step) / step; //should be 212,5
printf("%f %.7g\n", noc, noc); // 212.499985 212.5
int nol = 1200;
int result = (int)nol * noc; //should be 255000
printf("%d\n", result); // 254999
return 0;
}
This is a fragment of code isolated from a project I have to do. The final result should be 255000, but for some causes, it shows 254999. Can someone please explain me what happens in the process? I have read somewhere that multiplying a floating number with 10^k and then dividing back solves such problems, but in this case, due to the variable step varying from 0.000001 to 0.1, I can't actually use that (in the same way, I can't use a defined EPSILON). What else can I do?
Thanks in advance!
P.S.: I have used double and long double as well, but with same problems, only this time error propagates from a further decimal. I am using gcc 4.8.2, under Ubuntu 14.04.1.
Truncation vs. rounding.
Due to subtle rounding effect of FP arithmetic, the product nol * noc may be slightly less than an integer value. Conversion to int results in fractional truncation. Suggest rounding before conversion to int.
#include <math.h>
int result = (int) roundf(nol * noc);
the significant problem(s) are:
1) mixing floating point and double with integer math
--so the compiler promotes all the math to float (or double)
2) not all numbers can be expressed exactly in float
3) --the initialization of min, max, step are taking double literals
and converting them to float
--even double cannot express all values exactly
--some precision is lost when performing the conversion from double to float
4) this code excerpt: (rank + 1) / total is always = 1
--(although the many conversions may result in being 'not exactly' 1)
5) argc and argv are not referenced in your code.
--this, given that all warnings are enabled, will rise two warnings
at compile time about unused parameters
6) this line in your code is not correct syntax
--(although the compiler might not complain) #include<stdio.h>
--it should be #include <stdio.h>
--sometimes spaces count, sometimes they dont

Efficient implementation of natural logarithm (ln) and exponentiation

I'm looking for implementation of log() and exp() functions provided in C library <math.h>. I'm working with 8 bit microcontrollers (OKI 411 and 431). I need to calculate Mean Kinetic Temperature. The requirement is that we should be able to calculate MKT as fast as possible and with as little code memory as possible. The compiler comes with log() and exp() functions in <math.h>. But calling either function and linking with the library causes the code size to increase by 5 Kilobytes, which will not fit in one of the micro we work with (OKI 411), because our code already consumed ~12K of available ~15K code memory.
The implementation I'm looking for should not use any other C library functions (like pow(), sqrt() etc). This is because all library functions are packed in one library and even if one function is called, the linker will bring whole 5K library to code memory.
EDIT
The algorithm should be correct up to 3 decimal places.
Using Taylor series is not the simplest neither the fastest way of doing this. Most professional implementations are using approximating polynomials. I'll show you how to generate one in Maple (it is a computer algebra program), using the Remez algorithm.
For 3 digits of accuracy execute the following commands in Maple:
with(numapprox):
Digits := 8
minimax(ln(x), x = 1 .. 2, 4, 1, 'maxerror')
maxerror
Its response is the following polynomial:
-1.7417939 + (2.8212026 + (-1.4699568 + (0.44717955 - 0.056570851 * x) * x) * x) * x
With the maximal error of: 0.000061011436
We generated a polynomial which approximates the ln(x), but only inside the [1..2] interval. Increasing the interval is not wise, because that would increase the maximal error even more. Instead of that, do the following decomposition:
So first find the highest power of 2, which is still smaller than the number (See: What is the fastest/most efficient way to find the highest set bit (msb) in an integer in C?). That number is actually the base-2 logarithm. Divide with that value, then the result gets into the 1..2 interval. At the end we will have to add n*ln(2) to get the final result.
An example implementation for numbers >= 1:
float ln(float y) {
int log2;
float divisor, x, result;
log2 = msb((int)y); // See: https://stackoverflow.com/a/4970859/6630230
divisor = (float)(1 << log2);
x = y / divisor; // normalized value between [1.0, 2.0]
result = -1.7417939 + (2.8212026 + (-1.4699568 + (0.44717955 - 0.056570851 * x) * x) * x) * x;
result += ((float)log2) * 0.69314718; // ln(2) = 0.69314718
return result;
}
Although if you plan to use it only in the [1.0, 2.0] interval, then the function is like:
float ln(float x) {
return -1.7417939 + (2.8212026 + (-1.4699568 + (0.44717955 - 0.056570851 * x) * x) * x) * x;
}
The Taylor series for e^x converges extremely quickly, and you can tune your implementation to the precision that you need. (http://en.wikipedia.org/wiki/Taylor_series)
The Taylor series for log is not as nice...
If you don't need floating-point math for anything else, you may compute an approximate fractional base-2 log pretty easily. Start by shifting your value left until it's 32768 or higher and store the number of times you did that in count. Then, repeat some number of times (depending upon your desired scale factor):
n = (mult(n,n) + 32768u) >> 16; // If a function is available for 16x16->32 multiply
count<<=1;
if (n < 32768) n*=2; else count+=1;
If the above loop is repeated 8 times, then the log base 2 of the number will be count/256. If ten times, count/1024. If eleven, count/2048. Effectively, this function works by computing the integer power-of-two logarithm of n**(2^reps), but with intermediate values scaled to avoid overflow.
Would basic table with interpolation between values approach work? If ranges of values are limited (which is likely for your case - I doubt temperature readings have huge range) and high precisions is not required it may work. Should be easy to test on normal machine.
Here is one of many topics on table representation of functions: Calculating vs. lookup tables for sine value performance?
Necromancing.
I had to implement logarithms on rational numbers.
This is how I did it:
Occording to Wikipedia, there is the Halley-Newton approximation method
which can be used for very-high precision.
Using Newton's method, the iteration simplifies to (implementation), which has cubic convergence to ln(x), which is way better than what the Taylor-Series offers.
// Using Newton's method, the iteration simplifies to (implementation)
// which has cubic convergence to ln(x).
public static double ln(double x, double epsilon)
{
double yn = x - 1.0d; // using the first term of the taylor series as initial-value
double yn1 = yn;
do
{
yn = yn1;
yn1 = yn + 2 * (x - System.Math.Exp(yn)) / (x + System.Math.Exp(yn));
} while (System.Math.Abs(yn - yn1) > epsilon);
return yn1;
}
This is not C, but C#, but I'm sure anybody capable to program in C will be able to deduce the C-Code from that.
Furthermore, since
logn(x) = ln(x)/ln(n).
You have therefore just implemented logN as well.
public static double log(double x, double n, double epsilon)
{
return ln(x, epsilon) / ln(n, epsilon);
}
where epsilon (error) is the minimum precision.
Now as to speed, you're probably better of using the ln-cast-in-hardware, but as I said, I used this as a base to implement logarithms on a rational numbers class working with arbitrary precision.
Arbitrary precision might be more important than speed, under certain circumstances.
Then, use the logarithmic identities for rational numbers:
logB(x/y) = logB(x) - logB(y)
In addition to Crouching Kitten's answer which gave me inspiration, you can build a pseudo-recursive (at most 1 self-call) logarithm to avoid using polynomials. In pseudo code
ln(x) :=
If (x <= 0)
return NaN
Else if (!(1 <= x < 2))
return LN2 * b + ln(a)
Else
return taylor_expansion(x - 1)
This is pretty efficient and precise since on [1; 2) the taylor series converges A LOT faster, and we get such a number 1 <= a < 2 with the first call to ln if our input is positive but not in this range.
You can find 'b' as your unbiased exponent from the data held in the float x, and 'a' from the mantissa of the float x (a is exactly the same float as x, but now with exponent biased_0 rather than exponent biased_b). LN2 should be kept as a macro in hexadecimal floating point notation IMO. You can also use http://man7.org/linux/man-pages/man3/frexp.3.html for this.
Also, the trick
unsigned long tmp = *(ulong*)(&d);
for "memory-casting" double to unsigned long, rather than "value-casting", is very useful to know when dealing with floats memory-wise, as bitwise operators will cause warnings or errors depending on the compiler.
Possible computation of ln(x) and expo(x) in C without <math.h> :
static double expo(double n) {
int a = 0, b = n > 0;
double c = 1, d = 1, e = 1;
for (b || (n = -n); e + .00001 < (e += (d *= n) / (c *= ++a)););
// approximately 15 iterations
return b ? e : 1 / e;
}
static double native_log_computation(const double n) {
// Basic logarithm computation.
static const double euler = 2.7182818284590452354 ;
unsigned a = 0, d;
double b, c, e, f;
if (n > 0) {
for (c = n < 1 ? 1 / n : n; (c /= euler) > 1; ++a);
c = 1 / (c * euler - 1), c = c + c + 1, f = c * c, b = 0;
for (d = 1, c /= 2; e = b, b += 1 / (d * c), b - e/* > 0.0000001 */;)
d += 2, c *= f;
} else b = (n == 0) / 0.;
return n < 1 ? -(a + b) : a + b;
}
static inline double native_ln(const double n) {
// Returns the natural logarithm (base e) of N.
return native_log_computation(n) ;
}
static inline double native_log_base(const double n, const double base) {
// Returns the logarithm (base b) of N.
return native_log_computation(n) / native_log_computation(base) ;
}
Try it Online
Building off #Crouching Kitten's great natural log answer above, if you need it to be accurate for inputs <1 you can add a simple scaling factor. Below is an example in C++ that i've used in microcontrollers. It has a scaling factor of 256 and it's accurate to inputs down to 1/256 = ~0.04, and up to 2^32/256 = 16777215 (due to overflow of a uint32 variable).
It's interesting to note that even on an STMF103 Arm M3 with no FPU, the float implementation below is significantly faster (eg 3x or better) than the 16 bit fixed-point implementation in libfixmath (that being said, this float implementation still takes a few thousand cycles so it's still not ~fast~)
#include <float.h>
float TempSensor::Ln(float y)
{
// Algo from: https://stackoverflow.com/a/18454010
// Accurate between (1 / scaling factor) < y < (2^32 / scaling factor). Read comments below for more info on how to extend this range
float divisor, x, result;
const float LN_2 = 0.69314718; //pre calculated constant used in calculations
uint32_t log2 = 0;
//handle if input is less than zero
if (y <= 0)
{
return -FLT_MAX;
}
//scaling factor. The polynomial below is accurate when the input y>1, therefore using a scaling factor of 256 (aka 2^8) extends this to 1/256 or ~0.04. Given use of uint32_t, the input y must stay below 2^24 or 16777216 (aka 2^(32-8)), otherwise uint_y used below will overflow. Increasing the scaing factor will reduce the lower accuracy bound and also reduce the upper overflow bound. If you need the range to be wider, consider changing uint_y to a uint64_t
const uint32_t SCALING_FACTOR = 256;
const float LN_SCALING_FACTOR = 5.545177444; //this is the natural log of the scaling factor and needs to be precalculated
y = y * SCALING_FACTOR;
uint32_t uint_y = (uint32_t)y;
while (uint_y >>= 1) // Convert the number to an integer and then find the location of the MSB. This is the integer portion of Log2(y). See: https://stackoverflow.com/a/4970859/6630230
{
log2++;
}
divisor = (float)(1 << log2);
x = y / divisor; // FInd the remainder value between [1.0, 2.0] then calculate the natural log of this remainder using a polynomial approximation
result = -1.7417939 + (2.8212026 + (-1.4699568 + (0.44717955 - 0.056570851 * x) * x) * x) * x; //This polynomial approximates ln(x) between [1,2]
result = result + ((float)log2) * LN_2 - LN_SCALING_FACTOR; // Using the log product rule Log(A) + Log(B) = Log(AB) and the log base change rule log_x(A) = log_y(A)/Log_y(x), calculate all the components in base e and then sum them: = Ln(x_remainder) + (log_2(x_integer) * ln(2)) - ln(SCALING_FACTOR)
return result;
}

Resources