Improving time complexity of finding triplets - arrays

The program in question is to find the number of triplets in an array/list with a given sum.
My approach has been to first sort the array and then use the two-pointer technique to find such triplets. The overall time complexity turns out to be O(n^2).
Is there any way how I can further improve the time complexity?.

Related

How to rotate the arrays within O(logN) time

When I studied the algorithm course in class, the professor came up with the question that how to rotate the n length arrays. For example, for the arrays {1,2,3,4,5,6}, n=6. Let k=3, after rotating the arrays, it will change to {4,5,6,1,2,3}. I could only get the algorithm O(n) time that using the % operation. But my professor told me that there exists a O(logN) algorithm. So I wonder how it achieves it and prove of it.

Which sort takes O(n) in the given condition

I am preparing for a competition and stumbled upon this question: Considering a set of n elements which is sorted except for one element that appears out of order. Which of the following takes O(n) time?
Quick Sort
Heap Sort
Merge Sort
Bubble Sort
My reasoning is as follows:
I know Merge sort takes O(nlogn) even in best case so its not the answer.
Quick sort too will take O(n^2) since the array is almost sorted.
Bubble sort can be chosen but only if we modify it slightly to check whether a swap has been made in a pass or not.
Heap sort can be chosen as if we create the min heap of a sorted array it takes O(n) time since only one guy is not in place so he takes logn.
Hence I think its Heap sort. Is this reasoning correct? I would like to know if I'm missing something.
Let's start from the bubble sort. From my experience most resources I have used defined bubble sort with a stopping condition of not performing any swaps in an iteration (see e.g. Wikipedia). In this case indeed bubble sort will indeed stop after a linear number of steps. However, I remember that I have stumbled upon descriptions that stated a constant number of iterations, which makes your case quadratic. Therefore, all I can say about this case is "probably yes"—it depends on the definition used by the judges of the competition.
You are right regarding merge sort and quick sort—the classical versions of both algorithms enforce Θ(n log n) behavior on every input.
However, your reasoning regarding heap sort seems incorrect to me. In a typical implementation of heap sort, the heap is being built in the order opposite to the desired final order. Therefore, if you decide to build a min-heap, the outcome of the algorithm will be a reversed order, which—I guess—is not the desired one. If, on the other hand, you decide to build a max-heap, heap sort will obviously spend lots of time sifting elements up and down.
Therefore, in this case I'd go with bubble sort.
This is a bad question because you can guess which answer is supposed to be right, but it takes so many assumptions to make it it actually right that the question is meaningless.
If you code bubblesort as shown on the Wikipedia page, then it will stop in O(n) if the element that's out of order is "below" its proper place with respect to the sort iteration. If it's above, then it moves no more than one position toward its proper location on each pass.
To get the element unconditionally to its correct location in O(n), you'd need a variation of bubblesort that alternately makes passes in each direction.
The conventional implementations of the other sorts are O(n log n) on nearly sorted input, though Quicksort can be O(n^2) if you're not careful. A proper implementation with a Dutch National Flag partition is required to prevent bad behavior.
Heapsort takes only O(n) time to build the heap, but Theta(n log n) time to pull n items off the heap in sorted order, each in Theta(log n) time.

What is the running time of comb sort?

According to me, Comb sort should also run in sub quadratic time just like shell sort. This is because comb sort is to bubble sort just how shell sort is related to insertion sort. Shell sort sorts the array according to gap sequences applying insertion sort and similarly comb sort sorts the array according to gap sequences applying bubble sort. So what is the the running time of comb sort?
(This question has been unanswered for a while, so I'm converting my comment into an answer.)
Although there are similarities between shell sort and comb sort, the average-case runtime of comb sort is O(n2). Proving this is a bit tricky, and the technique that I've seen used to prove it is the incompressibility method, an information-theoretic technique involving Kolmogorov complexity.
Hope this helps!
With what sequence of increments?
If the increments are chosen to be: the set of all numbers of the form (2^p * 3^q), that are less than N, then, yes, the running time is better than quadratic (it's proportional to N times the square of the logarithm of N). With that set of increments, Combsort performs exactly the same exchanges as a Shellsort using the same increments (the "Pratt sequence"). But that's not what people usually have in mind when they're talking about Combsort.
In theory...
With increments that are decreasing geometrically (e.g. on each pass over the input the increment is, say, about 80% of the previous increment), which is what people usually mean when they talk about Combsort... yes, asymptotically, it is quadratic in both the worst-case and the average case. But...
In practice...
So long as the increments are relatively prime and the ratio between one increment and the next is sensible (80% is fine), n has to astronomically large before the average running time will be much more than n.log(n). I've sorted hundreds of millions of records at a time with Combsort, and I've only ever seen quadratic running times when I've deliberately engineered them by constructing "killer inputs". In practice, with relatively prime increments (and a ratio between adjacent increments of 1.25:1), even for millions of records, Combsort requires on average, about 3 times as many comparisons as a mergesort and typically takes between 2 and 3 times as long to run.

how to sort an array in C in one cycle?

Is there any algorythm to sort an array of float numbers in one cycle?
If you mean one pass, then no. Sorting generally requires either O(N log N). Single-pass implies O(N).
Radix sort takes O(N*k) with average key-length k. Even though it's linear time, it requires multiple passes. It is also not usually suitable for sorting floats.
Take a laptop with a quicksort program on it. Then put the laptop on a unicycle. Tada! Sorting in one cycle.
check Counting sort
it runs in O(N + M) time where N is the input array size and M is the sorting array size
There are some sorting algorithms that are O(n) in the best-case. See here.
No, there is no algorithm that is O(n). Possibly using as many parallel computers as there are elements in your array or using quantum computers, but if you want O(n) now on a regular computer, you can forget about it.
No.
<aside>#codinghorror: why must my post have >= 15 characters?</aside>
Sorting algorithm "in one cycle" - I believe you mean algorithm with linear complexity. In addition to these answers you can also check Bucket Sort Algorithm. It has average performance O(n+k).

Regarding in-place merge in an array

I came across the following question.
Given an array of n elements and an integer k where k < n. Elements {a0...ak} and
{ak+1...an} are already sorted. Give an algorithm to sort in O(n) time and O(1) space.
It does not seem to me like it can be done in O(n) time and O(1) space. The problem really seems to be asking how to do the merge step of mergesort but in-place. If it was possible, wouldn't mergesort be implemented that way? I am unable to convince myself though and need some opinion.
This seems to indicate that it is possible to do in O(lg^2 n) space. I cannot see how to prove that it is impossible to merge in constant space, but I cannot see how to do it either.
Edit:
Chasing references, Knuth Vol 3 - Exercise 5.5.3 says "A considerably more complicated algorithm of L. Trabb-Pardo provides the best possible answer to this problem: It is possible to do stable merging in O(n) time and stable sorting in O(n lg n) time, using only O(lg n) bits of auxiliary memory for a fixed number of index variables.
More references that I have not read. Thanks for an interesting problem.
Further edit:
This article claims that the article by Huang and Langston have an algorithm that merges two lists of size m and n in time O(m + n), so the answer to your question would seem to be yes. Unfortunately I do not have access to the article, so I must trust the second hand information. I'm not sure how to reconcile this with Knuth's pronouncement that the Trabb-Pardo algorithm is optimal. If my life depended on it, I'd go with Knuth.
I now see that this had been asked as and earlier Stack Overflow question a number of times. I don't have the heart to flag it as a duplicate.
Huang B.-C. and Langston M. A., Practical in-place merging, Comm. ACM 31 (1988) 348-352
There are several algorithms for doing this, none of which are very easy to intuit. The key idea is to use a part of the arrays to merge as a buffer, then doing a standard merge using this buffer for auxiliary space. If you can then reposition the elements so that the buffer elements are in the right place, you're golden.
I have written up an implementation of one of these algorithms on my personal site if you're interested in looking at it. It's based on the paper "Practical In-Place Merging" by Huang and Langston. You probably will want to look over that paper for some insight.
I've also heard that there are good adaptive algorithms for this, which use some fixed-size buffer of your choosing (which could be O(1) if you wanted), but then scale elegantly with the buffer size. I don't know any of these off the top of my head, but I'm sure a quick search for "adaptive merge" might turn something up.
No it isn't possible, although my job would be much easier if it was :).
You have a O(log n) factor which you can't avoid. You can choose to take it as time or space, but the only way to avoid it is to not sort. With O(log n) space you can build a list of continuations that keep track of where you stashed the elements that didn't quite fit. With recursion this can be made to fit in O(1) heap, but that's only by using O(log n) stack frames instead.
Here is the progress of merge-sorting odds and evens from 1-9. Notice how you require log-space accounting to track the order inversions caused by the twin constraints of constant space and linear swaps.
. -
135792468
. -
135792468
: .-
125793468
: .-
123795468
#.:-
123495768
:.-
123459768
.:-
123456798
.-
123456789
123456789
There are some delicate boundary conditions, slightly harder than binary search to get right, and even in this (possible) form, and therefore a bad homework problem; but a really good mental exercise.
Update
Apparently I am mistaken and there is an algorithm that provides O(n) time and O(1) space. I have downloaded the papers to enlighten myself, and withdraw this answer as incorrect.

Resources