Generic Quicksort in C [closed] - c

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 10 months ago.
Improve this question
Can anyone tell me what am I doing wrong in this generic quicksort code following this pseudocode Quicksort & Partition, the algorithm works, because I have already done it with integers only without the compare function by passing an int array to the quicksort and partition functions, but I have tried to make it work for both int and strings. In this code I have tested only the int values, but the code doesn't work, the output is the initial value of the array, it's the same exact thing for the strings I get the same initial array as an output. I have commented the string part because they get sorted the same way as the integers. This is the integer code that works Integer working code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//prototipi delle funzioni
typedef int (*compare_function)(const void *, const void *);
void generic_quicksort(void *v, int i, int f, size_t size, compare_function compare);
void generic_swap(void *a, void *b, size_t size);
int generic_partition(void *v, int i, int f, size_t size, compare_function compare);
void print_int_array(const int *array, size_t len) {
size_t i;
for (i = 0; i < len; i++)
printf("%d | ", array[i]);
putchar('\n');
}
//funzione di confronto
int compare_int(const void *, const void *);
int compare_str(const void *a, const void *b) {
const char **ia = (const char **)a;
const char **ib = (const char **)b;
return strcmp(*ia, *ib);
/* strcmp functions works exactly as expected from
comparison function */
}
void print_cstring_array(char **array, size_t len) {
size_t i;
for (i = 0; i < len; i++)
printf("%s | ", array[i]);
putchar('\n');
}
int main() {
int v[] = { 5, 4, 3, 2, 1 };
char *strings[] = { "Zorro", "Alex", "Celine", "Bill", "Forest", "Dexter" };
int n = sizeof(v) / sizeof(int);
print_int_array(v, n);
generic_quicksort((void *)v, 0, n - 1, sizeof(int), compare_int);
print_int_array(v, n);
/*
int s = sizeof(strings) / sizeof(*char);
print_cstring_array(strings, s);
generic_quicksort((void *)strings, 0, s - 1, sizeof(*char), compare_str);
print_cstring_array(strings, s);
*/
return 0;
}
int compare_int(const void *a, const void *b) {
return *((int*)a) - *((int*)b);
}
void generic_quicksort(void *v, int i, int f, size_t size, int (*comp)(const void *, const void *)) {
if (i >= f)
return;
int p = generic_partition(v, i, f, size, comp);
generic_quicksort(v, i, p - 1, size, comp);
generic_quicksort(v, p + 1, f, size, comp);
}
void generic_swap(void *a, void *b, size_t size) {
void *tmp = malloc(size);
memcpy(tmp, a, size);
memcpy(a, b, size);
memcpy(b, tmp, size);
free(tmp);
}
int generic_partition(void *v, int i, int f, size_t size, int (*comp)(const void *, const void *)) {
void *x = malloc(size);
int k, j;
memcpy(x, v + (i * size), size);
k = i - 1;
for (j = i; j <= f - 1; j++) {
if (comp(v + (j * size), x) <= 0) {
k++;
generic_swap(v + (k * size), v + (j * size), size);
}
}
generic_swap(v + ((k + 1) * size), v + (f * size), size);
free(x);
return (k + 1);
}

There are multiple problems in the code:
int n = sizeof(v) / sizeof(int); is risky: there is a silent assumption about the type of v. You should write int n = sizeof(v) / sizeof(*v);
The convention to pass the indices of the first and last elements of the slice is confusing and not idiomatic in C, you should pass the index of the first element and the index of the element after the last one. This allows for unsigned index types and empty arrays.
v + (j * size) uses void pointer arithmetics, which is an extension not available on all systems. Use unsigned char pointers for this.
the comparison function for integers has undefined behavior for large absolute values because subtracting them may cause an arithmetic overflow. You should use this instead:
int compare_int(const void *a, const void *b) {
int ia = *(const int *)a;
int ib = *(const int *)b;
return (ia > ib) - (ia < ib);
}
generic_swap uses malloc and memcpy. This causes much overhead for small elements, you should use a simple loop:
void generic_swap(void *a, void *b, size_t size) {
unsigned char *pa = (unsigned char *)a;
unsigned char *pb = (unsigned char *)b;
while (size-- > 0) {
unsigned char c = *pa;
*pa++ = *pb;
*pb++ = c;
}
}
The generic_partition in the reference uses the last element as the pivot, but you initialize x from the first element. You should write memcpy(x, v + (f * size), size);. This is causing the failure. The current code might work by coincidence for the int version. Using the first or the last element as a pivot causes worst case behavior on sorted arrays.
Here is a modified version:
#include <stdio.h>
#include <string.h>
//prototipi delle funzioni
typedef int (*compare_function)(const void *, const void *);
void generic_quicksort(void *v, int i, int f, size_t size, compare_function compare);
//funzione di confronto
int compare_int(const void *a, const void *b) {
int ia = *(const int *)a;
int ib = *(const int *)b;
return (ia > ib) - (ia < ib);
}
int compare_str(const void *a, const void *b) {
const char *sa = *(const char * const *)a;
const char *sb = *(const char * const *)b;
return strcmp(sa, sb);
}
void print_int_array(const int *array, size_t len) {
size_t i;
if (len > 0) {
printf("%d", array[0]);
for (i = 1; i < len; i++)
printf("| %d", array[i]);
}
putchar('\n');
}
void print_cstring_array(const char * const *array, size_t len) {
size_t i;
if (len > 0) {
printf("%s", array[0]);
for (i = 1; i < len; i++)
printf(" | %s", array[i]);
}
putchar('\n');
}
static void generic_swap(void *a, void *b, size_t size) {
unsigned char *pa = (unsigned char *)a;
unsigned char *pb = (unsigned char *)b;
while (size-- > 0) {
unsigned char c = *pa;
*pa++ = *pb;
*pb++ = c;
}
}
static int generic_partition(void *v, int i, int f, size_t size,
int (*comp)(const void *, const void *))
{
unsigned char *p = (unsigned char *)v;
int j, k = i;
// using first element as pivot
for (j = i + 1; j < f; j++) {
if (comp(p + j * size, p + i * size) <= 0) {
k++;
generic_swap(p + k * size, p + j * size, size);
}
}
/* swap the pivot to the end of the left part */
generic_swap(p + i * size, p + k * size, size);
return k;
}
void generic_quicksort(void *v, int i, int f, size_t size,
int (*comp)(const void *, const void *))
{
if (f > i + 1) {
int p = generic_partition(v, i, f, size, comp);
generic_quicksort(v, i, p, size, comp);
generic_quicksort(v, p + 1, f, size, comp);
}
}
int main() {
int v[] = { 5, 4, 3, 2, 1 };
int n = sizeof(v) / sizeof(*v);
const char *strings[] = { "Zorro", "Alex", "Celine", "Bill", "Forest", "Dexter" };
int s = sizeof(strings) / sizeof(*strings);
print_int_array(v, n);
generic_quicksort((void *)v, 0, n, sizeof(*v), compare_int);
print_int_array(v, n);
print_cstring_array(strings, s);
generic_quicksort((void *)strings, 0, s, sizeof(*strings), compare_str);
print_cstring_array(strings, s);
return 0;
}
Note that choosing the first or the last element as the pivot leads to worst case complexity for a sorted array. The depth of recursion for generic_quicksort will be the length of the array, potentially causing a stack overflow.
Here is a modified version that is protected against this, but still has quadratic time complexity on a sorted array:
void generic_quicksort(void *v, int i, int f, size_t size,
int (*comp)(const void *, const void *))
{
while (f > i + 1) {
int p = generic_partition(v, i, f, size, comp);
if (p - i < f - p) {
generic_quicksort(v, i, p, size, comp);
i = p + 1;
} else {
generic_quicksort(v, p + 1, f, size, comp);
f = p;
}
}
}

Related

3 way quicksort (C implementation)

I try to implement some of the algorithms pure generic using C. I stick with the 3-way quicksort but somehow the implementation does not give correct output. The output nearly sorted but some keys aren't where it should be. The code is below. Thanks in advance.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
static void swap(void *x, void *y, size_t size) {
void *tmp = malloc(size);
memcpy(tmp, x, size);
memcpy(x, y, size);
memcpy(y, tmp, size);
free(tmp);
}
static int cmpDouble(const void *i, const void *j) {
if (*(double *)i < *(double *)j)
return 1;
else if (*(double *)i == *(double *)j)
return 0;
else
return -1;
}
void qsort3way(void *base, int lo, int hi, size_t size,
int (*cmp)(const void *, const void *)) {
if (hi <= lo)
return;
else {
char *ptr = (char*)base;
char *v = ptr + lo * size;
int lt = lo, gt = hi;
int i = lo;
while (i <= gt) {
int c = cmp(v, ptr + i * size);
if (c < 0)
swap(ptr + (lt++) * size, ptr + (i++) * size, size);
else if (c > 0)
swap(ptr + i * size, ptr + (gt--) * size, size);
else
i++;
}
qsort3way(base, lo, lt - 1, size, cmp);
qsort3way(base, gt + 1, hi, size, cmp);
}
}
int main(void) {
int i;
double *d = (double*)malloc(sizeof(double) * 100);
for (i = 0; i < 100; i++)
d[i] = (double)rand();
qsort3way(d, 0, 100 -1, sizeof(double), cmpDouble);
for (i = 0; i < 100; i++)
printf("%.10lf\n", d[i]);
free(d);
return 0;
}
sample output:
41.0000000000
153.0000000000
288.0000000000
2082.0000000000
292.0000000000
1869.0000000000
491.0000000000
778.0000000000
1842.0000000000
6334.0000000000
2995.0000000000
8723.0000000000
3035.0000000000
3548.0000000000
4827.0000000000
3902.0000000000
4664.0000000000
5436.0000000000
4966.0000000000
5537.0000000000
5447.0000000000
7376.0000000000
5705.0000000000
6729.0000000000
6868.0000000000
7711.0000000000
9961.0000000000
8942.0000000000
9894.0000000000
9040.0000000000
9741.0000000000
After reading the book link that you provide to #JohnBollinger. I understand how your algorithm work. Your problem is that your pivot move, but you don't change the value of v. Your pivot is at the index lt
char *ptr = base;
int lt = lo, gt = hi; // lt is the pivot
int i = lo + 1; // we don't compare pivot with itself
while (i <= gt) {
int c = cmp(ptr + lt * size, ptr + i * size);
if (c < 0) {
swap(ptr + lt++ * size, ptr + i++ * size, size);
}
else if (c > 0)
swap(ptr + i * size, ptr + gt-- * size, size);
else
i++;
}
qsort3way(base, lo, lt - 1, size, cmp);
qsort3way(base, gt + 1, hi, size, cmp);
I propose you a "proper" solution:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
typedef void qsort3way_swap(void *a, void *b);
typedef int qsort3way_cmp(void const *a, void const *b);
static void qsort3way_aux(char *array_begin, char *array_end, size_t size,
qsort3way_cmp *cmp, qsort3way_swap *swap) {
if (array_begin < array_end) {
char *i = array_begin + size;
char *lower = array_begin;
char *greater = array_end;
while (i < greater) {
int ret = cmp(lower, i);
if (ret < 0) {
swap(i, lower);
i += size;
lower += size;
} else if (ret > 0) {
greater -= size;
swap(i, greater);
} else {
i += size;
}
}
qsort3way_aux(array_begin, lower, size, cmp, swap);
qsort3way_aux(greater, array_end, size, cmp, swap);
}
}
static void qsort3way(void *array_begin, void *array_end, size_t size,
qsort3way_cmp *cmp, qsort3way_swap *swap) {
qsort3way_aux(array_begin, array_end, size, cmp, swap);
}
static void swap_int_aux(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;
}
static void swap_int(void *a, void *b) { swap_int_aux(a, b); }
static int cmp_int_aux(int const *a, int const *b) {
if (*a < *b) {
return 1;
} else if (*a > *b) {
return -1;
} else {
return 0;
}
}
static int cmp_int(void const *a, void const *b) { return cmp_int_aux(a, b); }
static void print_int(char const *intro, int const *array, size_t const size) {
printf("%s:", intro);
for (size_t i = 0; i < size; i++) {
printf(" %d", array[i]);
}
printf("\n");
}
#define SIZE 42
int main(void) {
int array[SIZE];
srand((unsigned int)time(NULL));
for (size_t i = 0; i < SIZE; i++) {
array[i] = rand() % SIZE - SIZE / 2;
}
print_int("before", array, SIZE);
qsort3way(array, array + SIZE, sizeof *array, cmp_int, swap_int);
print_int("after", array, SIZE);
}
Note: The optimization int i = lo + 1; and char *i = array_begin + size; are mandatory. Because in the case where the function compare return that pivot != pivot this will lead to a infinite recursion. How this would be possible?
The function cmp is bug.
double has strange power... A double can be not equal to itself! (-nan).
The implementation does not give the correct result because it is wrong. Pretty badly wrong, in fact, given that it's supposed to be a three-way quicksort and not a regular one.
One basic problem is that you've omitted the bit where you move the pivot(s) into their proper position after the main partitioning loop. For standard quicksort, that requires one extra swap or assignment after the loop, depending on implementation details. For a three-way quicksort that involves one or two extra loops to move the potentially-many values equal to the pivot into their positions.
A more insidious problem is the one #Stargateur first pointed out: you track the pivot element by pointer, not by value, and you (sometimes) swap the original value out from that position in the course of the partitioning loop.
Furthermore, your main partitioning loop is wrong for a three-way quicksort, too. When you encounter an element equal to the pivot you just leave it in place, but you need instead to move it to one end or the other (or to some kind of auxiliary storage, if you're willing to incur that memory cost) so that you can perform that move to the middle at the end. In a sense, the previous problem is a special case of this one -- you're not reserving space for or tracking the pivot values. Fixing this will solve the previous problem as well.
I'm not sure what reference you used to prepare your implementation, or whether you built it from scratch, but Geeks for Geeks has a C++ (but pretty much also C) implementation for int arrays that you might want to check out.
Your implementation is incorrect because the pivot may move during the partitioning phase and you use a pointer for the comparison which no longer points to it. Implementations in other languages use the value of the pivot instead of its address.
Note also these shortcomings:
recursing both ways may cause stack overflow on pathological distributions. In you case, an array that is already sorted is a pathological distribution.
the comparison function should return the opposite values: -1 if a < b, +1 is a > b and 0 if a == b.
the API is non-standard and confusing: you should pass the number of elements instead of a range with included bounds.
Here is a corrected and commented version:
#include <stdio.h>
#include <stdlib.h>
static void swap(unsigned char *x, unsigned char *y, size_t size) {
/* sub-optimal, but better than malloc */
while (size-- > 0) {
unsigned char c = *x;
*x++ = *y;
*y++ = c;
}
}
void qsort3way(void *base, int n, size_t size,
int (*cmp)(const void *, const void *))
{
unsigned char *ptr = (unsigned char *)base;
while (n > 1) {
/* use first element as pivot, pointed to by lt */
int i = 1, lt = 0, gt = n;
while (i < gt) {
int c = cmp(ptr + lt * size, ptr + i * size);
if (c > 0) {
/* move smaller element before the pivot range */
swap(ptr + lt * size, ptr + i * size, size);
lt++;
i++;
} else if (c < 0) {
/* move larger element to the end */
gt--;
swap(ptr + i * size, ptr + gt * size, size);
/* test with that element again */
} else {
/* leave identical element alone */
i++;
}
}
/* array has 3 parts:
* from 0 to lt excluded: elements smaller than pivot
* from lt to gt excluded: elements identical to pivot
* from gt to n excluded: elements greater than pivot
*/
/* recurse on smaller part, loop on larger to minimize
stack use for pathological distributions */
if (lt < n - gt) {
qsort3way(ptr, lt, size, cmp);
ptr += gt * size;
n -= gt;
} else {
qsort3way(ptr + gt * size, n - gt, size, cmp);
n = lt;
}
}
}
static int cmp_double(const void *i, const void *j) {
/* this comparison function does not handle NaNs */
if (*(const double *)i < *(const double *)j)
return -1;
if (*(const double *)i > *(const double *)j)
return +1;
else
return 0;
}
int main(void) {
double d[100];
int i;
for (i = 0; i < 100; i++)
d[i] = rand() / ((double)RAND_MAX + 1);
qsort3way(d, 100, sizeof(*d), cmp_double);
for (i = 0; i < 100; i++)
printf("%.10lf\n", d[i]);
return 0;
}

Quicksort implementation in c

I have a quicksort program which executes as shown. But the last element is not getting sorted. Can anyone tell me how to modify the program to obtain the correct result.
#include <stdlib.h>
#include <stdio.h>
static void swap(void *x, void *y, size_t l)
{
char *a = x, *b = y, c;
while(l--)
{
c = *a;
*a++ = *b;
*b++ = c;
}
}
static void sort(char *array, size_t size, int (*cmp)(void*,void*), int begin, int end)
{
if (end > begin)
{
void *pivot = array + begin;
int l = begin + size;
int r = end;
while(l < r)
{
if (cmp(array+l,pivot) <= 0)
{
l += size;
}
else if ( cmp(array+r, pivot) > 0 )
{
r -= size;
}
else if ( l < r )
{
swap(array+l, array+r, size);
}
}
l -= size;
swap(array+begin, array+l, size);
sort(array, size, cmp, begin, l);
sort(array, size, cmp, r, end);
}
}
void qsort(void *array, size_t nitems, size_t size, int (*cmp)(void*,void*))
{
sort(array, size, cmp, 0, (nitems-1)*size);
}
typedef int type;
int type_cmp(void *a, void *b){ return (*(type*)a)-(*(type*)b); }
int main(void)
{ /* simple test case for type=int */
int num_list[]={5,4,3,2,1};
int len=sizeof(num_list)/sizeof(type);
char *sep="";
int i;
qsort(num_list,len,sizeof(type),type_cmp);
printf("sorted_num_list={");
for(i=0; i<len; i++){
printf("%s%d",sep,num_list[i]);
sep=", ";
}
printf("};\n");
return 0;
}
Result:
sorted_num_list={2, 3, 4, 5, 1};
Why?
I tried doing (nitems)*size. But when I try the same for strings, it gives me error
The problem comes from this line:
sort(array, size, cmp, 0, (nitems-1)*size);
nitems is your number of items, here 5, you're substracting one so your quick sort will only sort the 4 first elements. Remove the -1 and it will work.
sort(array, size, cmp, 0, nitems*size);
2 mistakes here...
First change qsort() function names to qsort_user() or any other name then the qsort() because qsort() is the standard function defined in stdlib.h
Then change this line
sort(array, size, cmp, 0, (nitems-1)*size);
to
sort(array, size, cmp, 0, (nitems)*size);

pointer arithmetic and "generic" in c

I tried to put program a generic method in C to identify the biggest element of an array.
At first, I programmed this:
int compare(const void* a, const void* b) {
if(a < b)
return 0;
return 1;
}
int main(void) {
int (*prt)(const void*, const void*);
prt=compare;
printf("%i",(*prt)(1,1));
return EXIT_SUCCESS;
}
This works fine, but if I try to put the function pointer prt
in a new method, I do not know how to handle it.
Addionally i dont know how to handle void* types.
void* maximum(int len, void* array, size_t size, int (*cmp)(const void*, const void*));
int compare(const void* a, const void* b) {
if(a < b)
return 0;
return 1;
}
int main(void) {
int (*prt)(const void*, const void*);
prt=compare;
printf("%i",(*prt)(1,1));
int array[6] = {3, 1, 0 , 4 , 3, 9};
maximum(len,array,0,prt);
return EXIT_SUCCESS;
}
void* maximum(int len, void* array, size_t size, int (*cmp)(const void*, const void*)) {
void* temp;
temp = array[0];
printf("%i",a);
int i;
for(i = 1; i < len; i++) {
if((*cmp)(temp,array[i]) == 0) {
temp = array[i];
}
}
return 0;
}
There are many errors... e.g. the variable temp or if((*cmp)(temp,array[i]) == 0).
Do you have an idea how to use not defined datatypes?
You are comparing addresses instead of values:
int compare(const void* a, const void* b) {
if(a < b)
return 0;
return 1;
}
Should be:
int compare(const void* a, const void* b) {
if(*(int *)a < *(int *)b)
return 0;
return 1;
}
Here is an example that can be taken as a base code.
#include <stdio.h>
int cmp( const void *a, const void *b )
{
return *( const int * )a < *( const int * )b;
}
void * maximum( const void *array, size_t size, size_t len,
int cmp( const void *, const void *) )
{
const void *max = array;
size_t i = 1;
for ( ; i < size; i++ )
{
if ( cmp( ( const char * )max, ( const char * )array + i * len ) )
{
max = ( const char * )array + i * len;
}
}
return ( void * )max;
}
int main(void)
{
int array[] = { 3, 1, 0 , 4 , 3, 9 };
int *max =
maximum( array, sizeof( array )/ sizeof( *array ), sizeof( int ), cmp );
printf( "Maximum = %d\n", *max );
return 0;
}
The output is
Maximum = 9
#include <stdio.h>
#include <stdlib.h>
void *maximum(int len, void* array, size_t size, int (*cmp)(const void*, const void*));
//comparison function must know about type.
//Because it is not known for functions like memcmp that type what is the layout.
int intcmp(const int *x, const int *y){
return *x < *y ? -1 : *x > *y;
}
int main(void) {
int array[6] = {3, 1, 0 , 4 , 3, 9};
int *p = maximum(sizeof(array)/sizeof(*array), array, sizeof(*array), (int (*)(const void*,const void*))intcmp);
printf("%d\n", *p);//9
return EXIT_SUCCESS;
}
void *maximum(int len, void *array, size_t size, int (*cmp)(const void*, const void*)) {
int i;
void *temp = array;
for(i = 1; i < len; i++) {
if(cmp((char*)array + size*i, temp)>0) {
temp = (char*)array + size*i;
}
}
return temp;
}

qsort structures on the basis of one element sorting [duplicate]

I'm not C expert and I've read through the forum, but I still need some advice regarding a sorting problem on C.
I have 4 dynamic arrays of doubles in C. All of them are the same size, and lets say n. What I want to do is to sort all of them using one of the arrays as first order and a second array as my second order. So if the arrays are *x, *y, *w and *z. I want to sort them according to the values of *x, then *y.
I must do this efficiently because the arrays are quite large.
Any help will be much appreciated.
The easy way to do this would be to map your four separate arrays onto a single array of a struct type like
struct rec {
double x;
double y;
double w;
double z;
};
struct rec *arr = malloc( sizeof *arr * N ); // where N is the number of
// elements in each array
if ( !arr )
// malloc failed, handle error somehow
for ( size_t i = 0; i < N; i++ )
{
arr[i].x = x[i];
arr[i].y = y[i];
arr[i].w = w[i];
arr[i].z = z[i];
}
and then create a comparison function to pass to qsort:
int cmpRec( const void *lhs, const void *rhs )
{
struct rec *l = lhs;
struct rec *r = rhs;
if ( l->x < r->x )
return -1;
else if ( l->x > r->x )
return 1;
else
{
if ( l->y < r->y )
return -1;
else if ( l->y > r->y )
return 1;
else
return 0;
}
return 0;
}
Now you can use the qsort library function to sort that array of struct:
qsort( arr, N, sizeof *arr, cmpRec );
Once that array is sorted, you can map the results back onto your four original arrays.
Clearly, sorting this using standard qsort() is not going to work; there isn't a mechanism for passing four arrays.
Equally clearly, if the data were structured as an array of structures, then using qsort() would be feasible.
Question 1: Is it feasible to create an array of structures, load it, sort it, and then unload back into the original arrays?
Question 2: Another option is to sort an array of integers:
int indexes[n];
for (int i = 0; i < n; i++)
indexes[i] = i;
qsort(indexes, n, sizeof(indexes[0]), comparator);
The comparator function would have to be able to access the x and y arrays as file scope variables:
int comparator(void const *v1, void const *v2)
{
int i1 = *(int *)v1;
int i2 = *(int *)v2;
extern double *x, *y;
if (x[i1] > x[i2])
return +1;
else if (x[i1] < x[i2])
return -1;
else if (y[i1] > y[i2])
return +1;
else if (y[i1] < y[i2])
return -1;
else
return 0;
}
You'd then be able to access the arrays using x[indexes[i]] etc to access the ith element in sorted order.
Is that acceptable?
If that is not convenient either, then you will end up writing your own sort; it isn't horribly painful, but will require some care.
I spent some time adapting an existing sort test framework to this scenario. The full code is quite large because it includes a lot of testing support code. The core function (compare, swap, partition and quicksort) are here (122 lines, including comment and blank lines):
/* SO 20271977 - sort arrays x, y, z, w (type double, size n) in parallel based on values in x and y */
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
/* SOF so-20271977.h */
#include <stddef.h>
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
extern void quicksort_random(Array4 *A);
/* EOF so-20271977.h */
#include <assert.h>
#include <stdlib.h> /* lrand48() */
/*
** Note that a more careful implementation would use nrand48() instead
** of lrand48() to prevent its random number generation from interfering
** with other uses of the x-rand48() functions.
*/
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition);
static size_t partition_random(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
The test framework (quite ridiculously elaborate if it weren't that I already had a variant of it on hand) is 369 lines including blank lines and comment lines — and all the code above:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define FLTFMT "%13.6f"
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
static int trace = 0;
static void *xmalloc(size_t size)
{
void *space = malloc(size);
if (space == 0)
{
fprintf(stderr, "Out of memory (%zu)\n", size);
exit(1);
}
return space;
}
void quicksort_last(Array4 *A);
void quicksort_random(Array4 *A);
void selectionsort(Array4 *A);
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static void dump_array(char const *tag, Array4 const *A)
{
printf("%s [%zu..%zu]:\n", tag, (size_t)0, A->n-1);
for (size_t i = 0; i < A->n; i++)
printf("(" FLTFMT ", " FLTFMT ", " FLTFMT ", " FLTFMT ")\n",
A->x[i], A->y[i], A->z[i], A->w[i]);
}
static void chk_sort(Array4 const *A)
{
for (size_t i = 0; i < A->n - 1; i++)
{
//if (compare(A, i, i+1) > 0)
{
if (A->x[i] > A->x[i+1])
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1]);
}
else if ((A->x[i] == A->x[i+1] && A->y[i] > A->y[i+1]))
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT ", "
"A.y[%zu] = " FLTFMT ", A.y[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1], i, A->y[i], i+1, A->y[i+1]);
}
}
}
}
static inline void set(Array4 *A, size_t p, double d)
{
A->x[p] = d;
A->y[p] = d + drand48() - 0.5;
A->z[p] = d / 2.0;
A->w[p] = d * 2.0;
}
static void load_random(Array4 *A)
{
size_t size = A->n;
for (size_t i = 0; i < size; i++)
{
A->x[i] = drand48() * size;
A->y[i] = drand48() * size + drand48() - 0.5;
A->z[i] = drand48() * size / 2.0;
A->w[i] = drand48() * size * 2.0;
}
}
static void load_ascending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, i);
}
static void load_descending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_uniform(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n);
}
static void load_organpipe(Array4 *A)
{
for (size_t i = 0; i <= A->n / 2; i++)
set(A, i, i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_invorganpipe(Array4 *A)
{
size_t range = A->n / 2;
for (size_t i = 0; i < A->n / 2; i++)
set(A, i, range - i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, i - range);
}
typedef void (*Load)(Array4 *A);
typedef void (*Sort)(Array4 *A);
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void test_one_sort(Array4 *A, Sort sort, char const *s_tag,
char const *l_tag, char const *z_tag)
{
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("Before", A);
}
clock_t start = clock();
(*sort)(A);
clock_t finish = clock();
double sec = (finish - start) / (double)CLOCKS_PER_SEC;
printf("%s-%s-%s: %13.6f\n", z_tag, l_tag, s_tag, sec);
chk_sort(A);
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("After", A);
}
fflush(stdout);
}
static Array4 *alloc_array(size_t size)
{
Array4 *A = xmalloc(sizeof(*A));
A->n = size;
A->x = xmalloc(size * sizeof(A->x[0]));
A->y = xmalloc(size * sizeof(A->y[0]));
A->z = xmalloc(size * sizeof(A->z[0]));
A->w = xmalloc(size * sizeof(A->w[0]));
return A;
}
static Array4 *dup_array(Array4 *A)
{
size_t size = A->n;
Array4 *B = alloc_array(size);
if (B != 0)
{
B->n = size;
memmove(B->x, A->x, size * sizeof(A->x[0]));
memmove(B->y, A->y, size * sizeof(A->y[0]));
memmove(B->z, A->z, size * sizeof(A->z[0]));
memmove(B->w, A->w, size * sizeof(A->w[0]));
}
return B;
}
static void free_array(Array4 *A)
{
free(A->x);
free(A->y);
free(A->z);
free(A->w);
free(A);
}
static void test_set_sorts(Array4 *A, char const *l_tag, char const *z_tag)
{
struct sorter
{
Sort function;
char const *tag;
} sort[] =
{
{ quicksort_last, "QS.L" },
{ quicksort_random, "QS.R" },
{ selectionsort, "SS.N" },
};
enum { NUM_SORTS = sizeof(sort) / sizeof(sort[0]) };
for (int i = 0; i < NUM_SORTS; i++)
{
Array4 *B = dup_array(A);
test_one_sort(B, sort[i].function, sort[i].tag, l_tag, z_tag);
free(B);
}
}
static void test_set_loads(size_t size, char const *z_tag)
{
struct loader
{
Load function;
char const *tag;
} load[] =
{
{ load_random, "R" },
{ load_ascending, "A" },
{ load_descending, "D" },
{ load_organpipe, "O" },
{ load_invorganpipe, "I" },
{ load_uniform, "U" },
};
enum { NUM_LOADS = sizeof(load) / sizeof(load[0]) };
Array4 *A = alloc_array(size);
for (int i = 0; i < NUM_LOADS; i++)
{
load[i].function(A);
test_set_sorts(A, load[i].tag, z_tag);
}
free_array(A);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static size_t partition_random(Array4 *A, size_t p, size_t r);
static size_t partition_last(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Quick Sort Wrapper function - specifying partitioning about last element */
void quicksort_last(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_last);
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
static size_t partition_last(Array4 *A, size_t p, size_t r)
{
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
/* Selection Sort algorithm */
void selectionsort(Array4 *A)
{
size_t r = A->n;
for (size_t p = 0; p < r; p++)
{
for (size_t i = p; i < r; i++)
{
if (compare(A, p, i) > 0)
swap(A, p, i);
}
}
}
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
int main(void)
{
srand48((long)time(0));
for (size_t i = 10; i <= 40; i += 10)
{
char buffer[10];
snprintf(buffer, sizeof(buffer), "%zuK", i);
test_set_loads(1000*i, buffer);
}
return 0;
}
If you can't use qsort with
typedef struct Point {
double x;
double y;
double w;
double z;
} Point;
Use qsort with
typedef struct UglyThing {
double x;
int i;
} UglyThing;
Create an array of size n, fill x with x values, i with index.
Call qsort. At the end, i will store the permutation order.
Swap the three other arrays according to the permutation order.
Then do the same with little arrays ("with same x") in the y direction.
If this ugly trick is not possible, then I don't see any other solution than reinventing the wheel.
(edit : I have just seen Andrew said something very close to this answer...sorry!)
Bye,
Francis

Array sorting in C

I'm not C expert and I've read through the forum, but I still need some advice regarding a sorting problem on C.
I have 4 dynamic arrays of doubles in C. All of them are the same size, and lets say n. What I want to do is to sort all of them using one of the arrays as first order and a second array as my second order. So if the arrays are *x, *y, *w and *z. I want to sort them according to the values of *x, then *y.
I must do this efficiently because the arrays are quite large.
Any help will be much appreciated.
The easy way to do this would be to map your four separate arrays onto a single array of a struct type like
struct rec {
double x;
double y;
double w;
double z;
};
struct rec *arr = malloc( sizeof *arr * N ); // where N is the number of
// elements in each array
if ( !arr )
// malloc failed, handle error somehow
for ( size_t i = 0; i < N; i++ )
{
arr[i].x = x[i];
arr[i].y = y[i];
arr[i].w = w[i];
arr[i].z = z[i];
}
and then create a comparison function to pass to qsort:
int cmpRec( const void *lhs, const void *rhs )
{
struct rec *l = lhs;
struct rec *r = rhs;
if ( l->x < r->x )
return -1;
else if ( l->x > r->x )
return 1;
else
{
if ( l->y < r->y )
return -1;
else if ( l->y > r->y )
return 1;
else
return 0;
}
return 0;
}
Now you can use the qsort library function to sort that array of struct:
qsort( arr, N, sizeof *arr, cmpRec );
Once that array is sorted, you can map the results back onto your four original arrays.
Clearly, sorting this using standard qsort() is not going to work; there isn't a mechanism for passing four arrays.
Equally clearly, if the data were structured as an array of structures, then using qsort() would be feasible.
Question 1: Is it feasible to create an array of structures, load it, sort it, and then unload back into the original arrays?
Question 2: Another option is to sort an array of integers:
int indexes[n];
for (int i = 0; i < n; i++)
indexes[i] = i;
qsort(indexes, n, sizeof(indexes[0]), comparator);
The comparator function would have to be able to access the x and y arrays as file scope variables:
int comparator(void const *v1, void const *v2)
{
int i1 = *(int *)v1;
int i2 = *(int *)v2;
extern double *x, *y;
if (x[i1] > x[i2])
return +1;
else if (x[i1] < x[i2])
return -1;
else if (y[i1] > y[i2])
return +1;
else if (y[i1] < y[i2])
return -1;
else
return 0;
}
You'd then be able to access the arrays using x[indexes[i]] etc to access the ith element in sorted order.
Is that acceptable?
If that is not convenient either, then you will end up writing your own sort; it isn't horribly painful, but will require some care.
I spent some time adapting an existing sort test framework to this scenario. The full code is quite large because it includes a lot of testing support code. The core function (compare, swap, partition and quicksort) are here (122 lines, including comment and blank lines):
/* SO 20271977 - sort arrays x, y, z, w (type double, size n) in parallel based on values in x and y */
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
/* SOF so-20271977.h */
#include <stddef.h>
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
extern void quicksort_random(Array4 *A);
/* EOF so-20271977.h */
#include <assert.h>
#include <stdlib.h> /* lrand48() */
/*
** Note that a more careful implementation would use nrand48() instead
** of lrand48() to prevent its random number generation from interfering
** with other uses of the x-rand48() functions.
*/
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition);
static size_t partition_random(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
The test framework (quite ridiculously elaborate if it weren't that I already had a variant of it on hand) is 369 lines including blank lines and comment lines — and all the code above:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define FLTFMT "%13.6f"
typedef struct Array4
{
size_t n;
double *x;
double *y;
double *z;
double *w;
} Array4;
static int trace = 0;
static void *xmalloc(size_t size)
{
void *space = malloc(size);
if (space == 0)
{
fprintf(stderr, "Out of memory (%zu)\n", size);
exit(1);
}
return space;
}
void quicksort_last(Array4 *A);
void quicksort_random(Array4 *A);
void selectionsort(Array4 *A);
static inline int compare(Array4 const *A, size_t p, size_t r)
{
if (A->x[p] < A->x[r])
return -1;
else if (A->x[p] > A->x[r])
return +1;
if (A->y[p] < A->y[r])
return -1;
else if (A->y[p] > A->y[r])
return +1;
else
return 0;
}
static void dump_array(char const *tag, Array4 const *A)
{
printf("%s [%zu..%zu]:\n", tag, (size_t)0, A->n-1);
for (size_t i = 0; i < A->n; i++)
printf("(" FLTFMT ", " FLTFMT ", " FLTFMT ", " FLTFMT ")\n",
A->x[i], A->y[i], A->z[i], A->w[i]);
}
static void chk_sort(Array4 const *A)
{
for (size_t i = 0; i < A->n - 1; i++)
{
//if (compare(A, i, i+1) > 0)
{
if (A->x[i] > A->x[i+1])
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1]);
}
else if ((A->x[i] == A->x[i+1] && A->y[i] > A->y[i+1]))
{
printf("Out of order: A.x[%zu] = " FLTFMT ", A.x[%zu] = " FLTFMT ", "
"A.y[%zu] = " FLTFMT ", A.y[%zu] = " FLTFMT "\n",
i, A->x[i], i+1, A->x[i+1], i, A->y[i], i+1, A->y[i+1]);
}
}
}
}
static inline void set(Array4 *A, size_t p, double d)
{
A->x[p] = d;
A->y[p] = d + drand48() - 0.5;
A->z[p] = d / 2.0;
A->w[p] = d * 2.0;
}
static void load_random(Array4 *A)
{
size_t size = A->n;
for (size_t i = 0; i < size; i++)
{
A->x[i] = drand48() * size;
A->y[i] = drand48() * size + drand48() - 0.5;
A->z[i] = drand48() * size / 2.0;
A->w[i] = drand48() * size * 2.0;
}
}
static void load_ascending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, i);
}
static void load_descending(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_uniform(Array4 *A)
{
for (size_t i = 0; i < A->n; i++)
set(A, i, A->n);
}
static void load_organpipe(Array4 *A)
{
for (size_t i = 0; i <= A->n / 2; i++)
set(A, i, i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, A->n - i);
}
static void load_invorganpipe(Array4 *A)
{
size_t range = A->n / 2;
for (size_t i = 0; i < A->n / 2; i++)
set(A, i, range - i);
for (size_t i = A->n / 2 + 1; i < A->n; i++)
set(A, i, i - range);
}
typedef void (*Load)(Array4 *A);
typedef void (*Sort)(Array4 *A);
typedef size_t (*Part)(Array4 *A, size_t p, size_t r);
static void test_one_sort(Array4 *A, Sort sort, char const *s_tag,
char const *l_tag, char const *z_tag)
{
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("Before", A);
}
clock_t start = clock();
(*sort)(A);
clock_t finish = clock();
double sec = (finish - start) / (double)CLOCKS_PER_SEC;
printf("%s-%s-%s: %13.6f\n", z_tag, l_tag, s_tag, sec);
chk_sort(A);
if (trace)
{
printf("%s-%s-%s:", z_tag, l_tag, s_tag);
dump_array("After", A);
}
fflush(stdout);
}
static Array4 *alloc_array(size_t size)
{
Array4 *A = xmalloc(sizeof(*A));
A->n = size;
A->x = xmalloc(size * sizeof(A->x[0]));
A->y = xmalloc(size * sizeof(A->y[0]));
A->z = xmalloc(size * sizeof(A->z[0]));
A->w = xmalloc(size * sizeof(A->w[0]));
return A;
}
static Array4 *dup_array(Array4 *A)
{
size_t size = A->n;
Array4 *B = alloc_array(size);
if (B != 0)
{
B->n = size;
memmove(B->x, A->x, size * sizeof(A->x[0]));
memmove(B->y, A->y, size * sizeof(A->y[0]));
memmove(B->z, A->z, size * sizeof(A->z[0]));
memmove(B->w, A->w, size * sizeof(A->w[0]));
}
return B;
}
static void free_array(Array4 *A)
{
free(A->x);
free(A->y);
free(A->z);
free(A->w);
free(A);
}
static void test_set_sorts(Array4 *A, char const *l_tag, char const *z_tag)
{
struct sorter
{
Sort function;
char const *tag;
} sort[] =
{
{ quicksort_last, "QS.L" },
{ quicksort_random, "QS.R" },
{ selectionsort, "SS.N" },
};
enum { NUM_SORTS = sizeof(sort) / sizeof(sort[0]) };
for (int i = 0; i < NUM_SORTS; i++)
{
Array4 *B = dup_array(A);
test_one_sort(B, sort[i].function, sort[i].tag, l_tag, z_tag);
free(B);
}
}
static void test_set_loads(size_t size, char const *z_tag)
{
struct loader
{
Load function;
char const *tag;
} load[] =
{
{ load_random, "R" },
{ load_ascending, "A" },
{ load_descending, "D" },
{ load_organpipe, "O" },
{ load_invorganpipe, "I" },
{ load_uniform, "U" },
};
enum { NUM_LOADS = sizeof(load) / sizeof(load[0]) };
Array4 *A = alloc_array(size);
for (int i = 0; i < NUM_LOADS; i++)
{
load[i].function(A);
test_set_sorts(A, load[i].tag, z_tag);
}
free_array(A);
}
/* Main Quick Sort function */
static void quicksort_partition(Array4 *A, size_t p, size_t r, Part partition)
{
if (p < r)
{
size_t q = (*partition)(A, p, r);
assert(p <= q && q <= r);
if (q > 0)
quicksort_partition(A, p, q-1, partition);
quicksort_partition(A, q+1, r, partition);
}
}
static size_t partition_random(Array4 *A, size_t p, size_t r);
static size_t partition_last(Array4 *A, size_t p, size_t r);
/* Quick Sort Wrapper function - specifying random partitioning */
void quicksort_random(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_random);
}
/* Quick Sort Wrapper function - specifying partitioning about last element */
void quicksort_last(Array4 *A)
{
quicksort_partition(A, 0, A->n - 1, partition_last);
}
static inline size_t random_int(size_t p, size_t r)
{
return(lrand48() % (r - p + 1) + p);
}
static inline void swap(Array4 *A, size_t i, size_t j)
{
double d;
d = A->x[i];
A->x[i] = A->x[j];
A->x[j] = d;
d = A->y[i];
A->y[i] = A->y[j];
A->y[j] = d;
d = A->z[i];
A->z[i] = A->z[j];
A->z[j] = d;
d = A->w[i];
A->w[i] = A->w[j];
A->w[j] = d;
}
static size_t partition_random(Array4 *A, size_t p, size_t r)
{
size_t pivot = random_int(p, r);
swap(A, pivot, r);
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
static size_t partition_last(Array4 *A, size_t p, size_t r)
{
size_t i = p-1;
size_t j = p;
while (j <= r)
{
if (compare(A, j, r) <= 0)
swap(A, j, ++i);
j++;
}
return i;
}
/* Selection Sort algorithm */
void selectionsort(Array4 *A)
{
size_t r = A->n;
for (size_t p = 0; p < r; p++)
{
for (size_t i = p; i < r; i++)
{
if (compare(A, p, i) > 0)
swap(A, p, i);
}
}
}
/*
** To apply this to the real code, where there are 4 arrays to be sorted
** in parallel, you might write:
**
** Array4 a;
** a.x = x;
** a.y = y;
** a.z = z;
** a.w = w;
** a.n = n;
** quicksort_random(&a);
**
** Or even:
**
** quicksort_random((Array4){ .n = n, .x = x, .y = y, .z = z, .w = w });
**
** combining designated initializers and compound literals. Or you could write a
** trivial wrapper so that you can call:
**
** quicksort_random_wrapper(n, x, y, z, w);
*/
int main(void)
{
srand48((long)time(0));
for (size_t i = 10; i <= 40; i += 10)
{
char buffer[10];
snprintf(buffer, sizeof(buffer), "%zuK", i);
test_set_loads(1000*i, buffer);
}
return 0;
}
If you can't use qsort with
typedef struct Point {
double x;
double y;
double w;
double z;
} Point;
Use qsort with
typedef struct UglyThing {
double x;
int i;
} UglyThing;
Create an array of size n, fill x with x values, i with index.
Call qsort. At the end, i will store the permutation order.
Swap the three other arrays according to the permutation order.
Then do the same with little arrays ("with same x") in the y direction.
If this ugly trick is not possible, then I don't see any other solution than reinventing the wheel.
(edit : I have just seen Andrew said something very close to this answer...sorry!)
Bye,
Francis

Resources