About hide information on DCT coefficient - dct

I am learning algorithm to hide information on DCT coefficient and my document write like this:
For JPEG images, the original data are DCT tables after quantization. Each DCT table contains 64 coefficients, each of which is an integer whose value is in the range [-2048; 2047]. The high-frequency domain often has many consecutive 0 values, if hiding information here, it can increase the size of the image because the long sequence of zeros is interrupted, reducing the image compression ability. The feature of the DCT table is that the closer to the end of the table, the smaller the value tends to be.
Here's my document's picture:
enter image description here
Anyone know why coefficients's value is in the range [-2048; 2047]? Please help me with this

Related

CDO regridding and calculating grid fractions

I have a global IGBP land use dataset in which the land cover exists out of forest cover (depicted with a '1') and non-forest cover (depicted with a '0'), hence, each land grid cell has either the value 1 or 0.
This dataset has a spatial resolution of approximately 1 km at the equator, however, I am going to regrid the dataset to a spatial resolution of approx 100 km at the equator. For this new grid resolution I want to calculate the fraction of forest cover (so the fraction of 1's) for each grid cell, but I am not sure how this can be done without GIS. Is there a way to do this with cdo remapping or perhaps with python?
Thank you in advance!
if you want to translate to a new grid that is an integer multiple of the original then you can do
cdo gridboxmean,n,m in.nc out.nc
where n and m are the numbers of points to average over in the lon and lat directions.
Otherwise you can interpolate using the conversative remapping which means that you don't need to worry if the new grid is not a multiple of the old
cdo remapcon,new_grid_specification in.nc out.nc
Note that in the latter case, however, the result is only first order accurate. There is also a slightly slower second order conservative remapping available using the command remapcon2. The paper describing the two implemented conservative remapping methods is Jones (1999). For further info on remapping you can also see my video guide.
Thanks to Robert for reminding also that you may need to convert to float, which would mean using the option
cdo -b f32

Hide information on DCT coefficient

I am learning algorithm to hide information on DCT coefficient and my document write like this:
For JPEG images, the original data are DCT tables after quantization. Each DCT table contains 64 coefficients, each of which is an integer whose value is in the range [-2048; 2047]. The high-frequency domain often has many consecutive 0 values, if hiding information here, it can increase the size of the image because the long sequence of zeros is interrupted, reducing the image compression ability. The feature of the DCT table is that the closer to the end of the table, the smaller the value tends to be.
enter image description here
Anyone know why coefficients's value is in the range [-2048; 2047]? Please help me with this

What is the difference between Static HDR and dynamic HDR?

HDR is a high dynamic range which is widely used in video devices to have better viewing experience.
What is the difference between static HDR and dynamic HDR?
Dynamic HDR can achieve higher HDR media quality across a variety of
displays.
The following presentation: SMPTE ST 2094 and Dynamic Metadata summarizes the subject of Dynamic Metadata:
Dynamic Metadata for Color Volume Transforms (DMCVT)
- Can preserve the creative intent in HDR media across a variety of displays
- Carried in files, video streams, packaged media
- Standardized in SMPTE ST 2094
It all starts with digital Quantization.
Assume you need to approximate the numbers between 0 and 1,000,000 using only 1000 possible values.
Your first option is using uniform quantification:
Values in range [0, 999] are mapped to 0, range [1000, 1999] are mapped to 1, [2000, 2999] are mapped to 2, and so on...
When you need to restore the original data, you can't restore it accurately, so you need to get the value with minimal average error.
0 is mapped to 500 (to the center of the range [0, 999]).
1 is mapped to 1500 (to the center of the range [1000, 1999]).
When you restore the quntized data, you are loosing lots of information.
The information you loose is called "Quantization error".
The common HDR video applies 10 bits per color component (10 bits for Y component, 10 bits for U and 10 bits for V). Or 10 bits for red, 10 for green and 10 for blue in RGB color space.
10 bits can store 1024 possible values (values in range [0, 1023]).
Assume you have a very good monitor that can display 1,000,001 different brightness levels (0 is darkest and 1000000 is the brightest).
Now you need to quantize the 1,000,001 levels to 1024 values.
Since the response of the human visual system to brightness level is not linear, the uniform quantization illustrated above, is sub-optimal.
The quantization to 10 bits is performed after applying a gamma function.
Example for gamma function: divide each value by 1000000 (new range is [0,1]), compute square root of each value, and multiply the result by 1000000.
Apply the quantization after the gamma function.
The result is: keeping more accuracy on the darker values, on expanse of the brighter values.
The monitor do the opposite operation (de-quantization, and inverse gamma).
Preforming the quantization after applying gamma function results a better quality for the human visual system.
In reality, square root is not the best gamma function.
There are three types of standard HDR static gamma functions:
HLG - Hybrid Log Gamma
PQ - Perceptual Quantizer
HDR10 - Static Metadata
Can we do better?
What if we could select the optimal "gamma functions" for each video frame?
Example for Dynamic Metadata:
Consider the case where all the brightness levels in the image are in range [500000, 501000]:
Now we can map all the levels to 10 bits, without any quantization.
All we need to do is send 500000 as minimum level, and 501000 as minimum level in the image metadata.
Instead of quantization, we can just subtract 500000 from each value.
The monitor that receives the image, reads the metadata, and knows to add 500000 to each value - so there is a perfect data reconstruction (no quantization errors).
Assume the levels of the next image is in range 400000 to 401000, so we need to adjust the metadata (dynamically).
DMCVT - Dynamic Metadata for Color Volume Transform
The true math of DMCVT is much more complicated than the example above (and much more than quantization), but it's based on the same principles - adjusting the metadata dynamically according to the scene and display, can achieve better quality compared to static gamma (or static metadata).
In case you are still reading...
I am really not sure that the main advantage of DMCVT is reducing the quantization errors.
(It was just simpler to give an example of reducing the quantization errors).
Reducing the conversion errors:
Accurate conversion from the digital representation of the input (e.g BT.2100 to the optimal pixel value of the display (like the RGB voltage of the pixel) requires "heavy math".
The conversion process is called Color Volume Transformation.
Displays replaces the heavy computation with mathematical approximations (using look up tables and interpolations [I suppose]).
Another advantage of DMCVT, is moving the "heavy math" from the display to the video post-production process.
The computational resources in the video post-production stage are in order of magnitudes higher than the display resources.
In the post-production stage, the computers can calculate metadata that helps the display performing much more accurate Color Volume Transformation (with less computational resources), and reduce the conversion errors considerably.
Example from the presentation:
Why does "HDR static gamma functions" called static?
Opposed to DMCVT, the static gamma functions are fixed across the entire movie, or fixed (pre-defined) across the entire "system".
For example: Most PC systems (PC and monitors) are using sRGB color space (not HDR).
The sRGB standard uses the following fixed gamma function:
.
Both the PC system and the display knows from advance, that they are working in sRGB standard, and knows that this is the gamma function that is used (without adding any metadata, or adding one byte of metadata that marks the video data as sRGB).

How to compress/archive a temperature curve effectively?

Summary: The industrial thermometer is used to sample temperature at the technology device. For few months, the samples are simply stored in the SQL database. Are there any well-known ways to compress the temperature curve so that much longer history could be stored effectively (say for the audit purpose)?
More details: Actually, there are much more thermometers, and possibly other sensors related to the technology. And there are well known time intervals where the curve belongs to a batch processed on the machine. The temperature curves should be added to the batch documentation.
My idea was that the temperature is a smooth function that could be interpolated somehow -- say the way a sound is compressed using MP3 format. The compression need not to be looseless. However, it must be possible to reconstruct the temperature curve (not necessarily the identical sample values, and the identical sampling interval) -- say, to be able to plot the curve or to tell what was the temperature in certain time.
The raw sample values from the SQL table would be processed, the compressed version would be stored elsewhere (possibly also in SQL database, as a blob), and later the raw samples can be deleted to save the database space.
Is there any well-known and widely used approach to the problem?
A simple approach would be code the temperature into a byte or two bytes, depending on the range and precision you need, and then to write the first temperature to your output, followed by the difference between temperatures for all the rest. For two-byte temperatures you can restrict the range some and write one or two bytes depending on the difference with a variable-length integer. E.g. if the high bit of the first byte is set, then the next byte contains 8 more bits of difference, allowing for 15 bits of difference. Most of the time it will be one byte, based on your description.
Then take that stream and feed it to a standard lossless compressor, e.g. zlib.
Any lossiness should be introduced at the sampling step, encoding only the number of bits you really need to encode the required range and precision. The rest of the process should then be lossless to avoid systematic drift in the decompressed values.
Subtracting successive values is the simplest predictor. In that case the prediction of the next value is the value before it. It may also be the most effective, depending on the noisiness of your data. If your data is really smooth, then you could try a higher-order predictor to see if you get better performance. E.g. a predictor for the next point using the last two points is 2a - b, where a is the previous point and b is the point before that, or using the last three points 3a - 3b + c, where c is the point before b. (These assume equal time steps between each.)

Efficient comparison of 1 million vectors containing (float, integer) tuples

I am working in a chemistry/biology project. We are building a web-application for fast matching of the user's experimental data with predicted data in a reference database. The reference database will contain up to a million entries. The data for one entry is a list (vector) of tuples containing a float value between 0.0 and 20.0 and an integer value between 1 and 18. For instance (7.2394 , 2) , (7.4011, 1) , (9.9367, 3) , ... etc.
The user will enter a similar list of tuples and the web-app must then return the - let's say - top 50 best matching database entries.
One thing is crucial: the search algorithm must allow for discrepancies between the query data and the reference data because both can contain small errors in the float values (NOT in the integer values). (The query data can contain errors because it is derived from a real-life experiment and the reference data because it is the result of a prediction.)
Edit - Moved text to answer -
How can we get an efficient ranking of 1 query on 1 million records?
You should add a physicist to the project :-) This is a very common problem to compare functions e.g. look here:
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Correlation_function
In the first link you can read: "The SEQUEST algorithm for analyzing mass spectra makes use of autocorrelation in conjunction with cross-correlation to score the similarity of an observed spectrum to an idealized spectrum representing a peptide."
An efficient linear scan of 1 million records of that type should take a fraction of a second on a modern machine; a compiled loop should be able to do it at about memory bandwidth, which would transfer that in a two or three milliseconds.
But, if you really need to optimise this, you could construct a hash table of the integer values, which would divide the job by the number of integer bins. And, if the data is stored sorted by the floats, that improves the locality of matching by those; you know you can stop once you're out of tolerance. Storing the offsets of each of a number of bins would give you a position to start.
I guess I don't see the need for a fancy algorithm yet... describe the problem a bit more, perhaps (you can assume a fairly high level of chemistry and physics knowledge if you like; I'm a physicist by training)?
Ok, given the extra info, I still see no need for anything better than a direct linear search, if there's only 1 million reference vectors and the algorithm is that simple. I just tried it, and even a pure Python implementation of linear scan took only around three seconds. It took several times longer to make up some random data to test with. This does somewhat depend on the rather lunatic level of optimisation in Python's sorting library, but that's the advantage of high level languages.
from cmath import *
import random
r = [(random.uniform(0,20), random.randint(1,18)) for i in range(1000000)]
# this is a decorate-sort-undecorate pattern
# look for matches to (7,9)
# obviously, you can use whatever distance expression you want
zz=[(abs((7-x)+(9-y)),x,y) for x,y in r]
zz.sort()
# return the 50 best matches
[(x,y) for a,x,y in zz[:50]]
Can't you sort the tuples and perform binary search on the sorted array ?
I assume your database is done once for all, and the positions of the entries is not important. You can sort this array so that the tuples are in a given order. When a tuple is entered by the user, you just look in the middle of the sorted array. If the query value is larger of the center value, you repeat the work on the upper half, otherwise on the lower one.
Worst case is log(n)
If you can "map" your reference data to x-y coordinates on a plane there is a nifty technique which allows you to select all points under a given distance/tolerance (using Hilbert curves).
Here is a detailed example.
One approach we are trying ourselves which allows for the discrepancies between query and reference is by binning the float values. We are testing and want to offer the user the choice of different bin sizes. Bin sizes will be 0.1 , 0.2 , 0.3 or 0.4. So binning leaves us with between 50 and 200 bins, each with a corresponding integer value between 0 and 18, where 0 means there was no value within that bin. The reference data can be pre-binned and stored in the database. We can then take the binned query data and compare it with the reference data. One approach could be for all bins, subtract the query integer value from the reference integer value. By summing up all differences we get the similarity score, with the the most similar reference entries resulting in the lowest scores.
Another (simpler) search option we want to offer is where the user only enters the float values. The integer values in both query as reference list can then be set to 1. We then use Hamming distance to compute the difference between the query and the reference binned values. I have previously asked about an efficient algorithm for that search.
This binning is only one way of achieving our goal. I am open to other suggestions. Perhaps we can use Principal Component Analysis (PCA), as described here

Resources