Operator "<<= " : What does it it mean? - c

I need help solving this problem in my mind, so if anyone had a similar problem it would help me.
Here's my code:
char c=0xAB;
printf("01:%x\n", c<<2);
printf("02:%x\n", c<<=2);
printf("03:%x\n", c<<=2);
Why the program prints:
01:fffffeac
02:ffffffac
03:ffffffb0
What I expected to print, that is, what I got on paper is:
01:fffffeac
02:fffffeac
03:fffffab0
I obviously realized I didn't know what the operator <<= was doing, I thought c = c << 2.
If anyone can clarify this, I would be grateful.

You're correct in thinking that
c <<= 2
is equivalent to
c = c << 2
But you have to remember that c is a single byte (on almost all systems), it can only contain eight bits, while a value like 0xeac requires 12 bits.
When the value 0xeac is assigned back to c then the value will be truncated and the top bits will simply be ignored, leaving you with 0xac (which when promoted to an int becomes 0xffffffac).

<<= means shift and assign. It's the compound assignment version of c = c << 2;.
There's several problems here:
char c=0xAB; is not guaranteed to give a positive result, since char could be an 8 bit signed type. See Is char signed or unsigned by default?. In which case 0xAB will get translated to a negative number in an implementation-defined way. Avoid this bug by always using uint8_t when dealing with raw binary bytes.
c<<2 is subject to Implicit type promotion rules - specifically c will get promoted to a signed int. If the previous issue occured where your char got a negative value, c now holds a negative int.
Left-shifting negative values in C invokes undefined behavior - it is always a bug. Shifting signed operands in general is almost never correct.
%x isn't a suitable format specifier to print the int you ended up with, nor is it suitable for char.
As for how to fix the code, it depends on what you wish to achieve. It's recommended to cast to uint32 before shifting.

Related

Effect of type casting on printf function

Here is a question from my book,
Actually, I don't know what will be the effect on printf function, so I tried the statements in the original system of C lang. Here is my code:
#include <stdio.h>
void main() {
int x = 4;
printf("%hi\n", x);
printf("%hu\n", x);
printf("%i\n", x);
printf("%u\n", x);
printf("%li\n", x);
printf("%lu\n", x);
}
Try it online!
So, the output is very simple. But, is this really the solution to above problem?
There are numerous problems in this question that make it unsuitable for teaching C.
First, to work on this problem at all, we have to assume a non-standard C implementation is used. In standard C, %x is a complete conversion specification, so %xu and %xd cannot be; the conversion specification has already ended before the u or d. And the uses of z in a conversion specification interferes with its standard use for size_t.
Nonetheless, let’s assume this C variant does not have those standard conversion specifications and instead uses the ones shown in the table but that this C variant otherwise conforms to the C standard with minimal changes.
Our next problem is that, in Y num = 42;, we have a plain Y, not the signed Y or unsigned Y shown in the table. Let’s assume signed Y is intended.
Then num is a signed four-bit integer. The greatest value it can represent is 01112 = 710. So it cannot represent 42. Attempting to initialize it with 42 results in a conversion specified by C 2018 6.3.1.3, which says, in part:
Otherwise, the new type is signed and the value cannot be represented in it; either the result is implementation-defined or an implementation-defined signal is raised.
The result is we do not know what value is in num or even whether the program continues to execute; it may trap and terminate.
Well, let’s assume this implementation just takes the low bits of the value. 42 is 1010102, so its low four bits are 1010. So if the bits in num are 1010, it is negative. The C standard permits several methods of representation for negative numbers, but we will assume the overwhelmingly most common one, two’s complement, so the bits 1010 in num represent −6.
Now, we get to the printf statements. Except the problem text shows Printf, which is not defined by the C standard. (Are you sure this problem relates to C code at all?) Let’s assume it means printf.
In printf("%xu",num);, if the conversion specification is supposed to work like the ones in standard C, then the corresponding argument should be an unsigned X value that has been promoted to int for the function call. As a two-bit unsigned integer, an unsigned X can represent 0, 1, 2, or 3. Passing it −6 is not defined. So we do not know what the program will print. It might take just the low two bits, 10, and print “2”. Or it might use all the bits and print “-6”. Both of those would be consistent with the requirement that the printf behave as specified for values that are in the range representable by unsigned X.
In printf("%xd",num); and printf("%yu",num);, the same problem exists.
In printf("%yd",num);, we are correctly passing a signed Y value for a signed Y conversion specification, so “-6” is printed.
Then printf("%zu",num); has the same problem with the value mismatched for the type.
Finally, in printf("%zd",num);, the value is again in the correct range, and “-6” is printed.
From all the assumptions we had to make and all the points where the behavior is undefined, you can see this is a terrible exercise. You should question the quality of the book it is in and of any school using it.

Bitwise operation results in unexpected variable size

Context
We are porting C code that was originally compiled using an 8-bit C compiler for the PIC microcontroller. A common idiom that was used in order to prevent unsigned global variables (for example, error counters) from rolling over back to zero is the following:
if(~counter) counter++;
The bitwise operator here inverts all the bits and the statement is only true if counter is less than the maximum value. Importantly, this works regardless of the variable size.
Problem
We are now targeting a 32-bit ARM processor using GCC. We've noticed that the same code produces different results. So far as we can tell, it looks like the bitwise complement operation returns a value that is a different size than we would expect. To reproduce this, we compile, in GCC:
uint8_t i = 0;
int sz;
sz = sizeof(i);
printf("Size of variable: %d\n", sz); // Size of variable: 1
sz = sizeof(~i);
printf("Size of result: %d\n", sz); // Size of result: 4
In the first line of output, we get what we would expect: i is 1 byte. However, the bitwise complement of i is actually four bytes which causes a problem because comparisons with this now will not give the expected results. For example, if doing (where i is a properly-initialized uint8_t):
if(~i) i++;
we will see i "wrap around" from 0xFF back to 0x00. This behaviour is different in GCC compared with when it used to work as we intended in the previous compiler and 8-bit PIC microcontroller.
We are aware that we can resolve this by casting like so:
if((uint8_t)~i) i++;
or, by
if(i < 0xFF) i++;
however in both of these workarounds, the size of the variable must be known and is error-prone for the software developer. These kinds of upper bounds checks occur throughout the codebase. There are multiple sizes of variables (eg., uint16_t and unsigned char etc.) and changing these in an otherwise working codebase is not something we're looking forward to.
Question
Is our understanding of the problem correct, and are there options available to resolving this that do not require re-visiting each case where we've used this idiom? Is our assumption correct, that an operation like bitwise complement should return a result that is the same size as the operand? It seems like this would break, depending on processor architectures. I feel like I'm taking crazy pills and that C should be a bit more portable than this. Again, our understanding of this could be wrong.
On the surface this might not seem like a huge issue but this previously-working idiom is used in hundreds of locations and we're eager to understand this before proceeding with expensive changes.
Note: There is a seemingly similar but not exact duplicate question here: Bitwise operation on char gives 32 bit result
I didn't see the actual crux of the issue discussed there, namely, the result size of a bitwise complement being different than what's passed into the operator.
What you are seeing is the result of integer promotions. In most cases where an integer value is used in an expression, if the type of the value is smaller than int the value is promoted to int. This is documented in section 6.3.1.1p2 of the C standard:
The following may be used in an expression wherever an intor
unsigned int may be used
An object or expression with an integer type (other than intor unsigned int) whose integer conversion rank is less
than or equal to the rank of int and unsigned int.
A bit-field of type _Bool, int ,signed int, orunsigned int`.
If an int can represent all values of the original type (as
restricted by the width, for a bit-field), the value is
converted to an int; otherwise, it is converted to an
unsigned int. These are called the integer promotions. All
other types are unchanged by the integer promotions.
So if a variable has type uint8_t and the value 255, using any operator other than a cast or assignment on it will first convert it to type int with the value 255 before performing the operation. This is why sizeof(~i) gives you 4 instead of 1.
Section 6.5.3.3 describes that integer promotions apply to the ~ operator:
The result of the ~ operator is the bitwise complement of its
(promoted) operand (that is, each bit in the result is set if and only
if the corresponding bit in the converted operand is not set). The
integer promotions are performed on the operand, and the
result has the promoted type. If the promoted type is an unsigned
type, the expression ~E is equivalent to the maximum value
representable in that type minus E.
So assuming a 32 bit int, if counter has the 8 bit value 0xff it is converted to the 32 bit value 0x000000ff, and applying ~ to it gives you 0xffffff00.
Probably the simplest way to handle this is without having to know the type is to check if the value is 0 after incrementing, and if so decrement it.
if (!++counter) counter--;
The wraparound of unsigned integers works in both directions, so decrementing a value of 0 gives you the largest positive value.
in sizeof(i); you request the size of the variable i, so 1
in sizeof(~i); you request the size of the type of the expression, which is an int, in your case 4
To use
if(~i)
to know if i does not value 255 (in your case with an the uint8_t) is not very readable, just do
if (i != 255)
and you will have a portable and readable code
There are multiple sizes of variables (eg., uint16_t and unsigned char etc.)
To manage any size of unsigned :
if (i != (((uintmax_t) 2 << (sizeof(i)*CHAR_BIT-1)) - 1))
The expression is constant, so computed at compile time.
#include <limits.h> for CHAR_BIT and #include <stdint.h> for uintmax_t
Here are several options for implementing “Add 1 to x but clamp at the maximum representable value,” given that x is some unsigned integer type:
Add one if and only if x is less than the maximum value representable in its type:
x += x < Maximum(x);
See the following item for the definition of Maximum. This method
stands a good chance of being optimized by a compiler to efficient
instructions such as a compare, some form of conditional set or move,
and an add.
Compare to the largest value of the type:
if (x < ((uintmax_t) 2u << sizeof x * CHAR_BIT - 1) - 1) ++x
(This calculates 2N, where N is the number of bits in x, by shifting 2 by N−1 bits. We do this instead of shifting 1 N bits because a shift by the number of bits in a type is not defined by the C standard. The CHAR_BIT macro may be unfamiliar to some; it is the number of bits in a byte, so sizeof x * CHAR_BIT is the number of bits in the type of x.)
This can be wrapped in a macro as desired for aesthetics and clarity:
#define Maximum(x) (((uintmax_t) 2u << sizeof (x) * CHAR_BIT - 1) - 1)
if (x < Maximum(x)) ++x;
Increment x and correct if it wraps to zero, using an if:
if (!++x) --x; // !++x is true if ++x wraps to zero.
Increment x and correct if it wraps to zero, using an expression:
++x; x -= !x;
This is is nominally branchless (sometimes beneficial for performance), but a compiler may implement it the same as above, using a branch if needed but possibly with unconditional instructions if the target architecture has suitable instructions.
A branchless option, using the above macro, is:
x += 1 - x/Maximum(x);
If x is the maximum of its type, this evaluates to x += 1-1. Otherwise, it is x += 1-0. However, division is somewhat slow on many architectures. A compiler may optimize this to instructions without division, depending on the compiler and the target architecture.
Before stdint.h the variable sizes can vary from compiler to compiler and the actual variable types in C are still int, long, etc and are still defined by the compiler author as to their size. Not some standard nor target specific assumptions. The author(s) then need to create stdint.h to map the two worlds, that is the purpose of stdint.h to map the uint_this that to int, long, short.
If you are porting code from another compiler and it uses char, short, int, long then you have to go through each type and do the port yourself, there is no way around it. And either you end up with the right size for the variable, the declaration changes but the code as written works....
if(~counter) counter++;
or...supply the mask or typecast directly
if((~counter)&0xFF) counter++;
if((uint_8)(~counter)) counter++;
At the end of the day if you want this code to work you have to port it to the new platform. Your choice as to how. Yes, you have to spend the time hit each case and do it right, otherwise you are going to keep coming back to this code which is even more expensive.
If you isolate the variable types on the code before porting and what size the variable types are, then isolate the variables that do this (should be easy to grep) and change their declarations using stdint.h definitions which hopefully won't change in the future, and you would be surprised but the wrong headers are used sometimes so even put checks in so you can sleep better at night
if(sizeof(uint_8)!=1) return(FAIL);
And while that style of coding works (if(~counter) counter++;), for portability desires now and in the future it is best to use a mask to specifically limit the size (and not rely on the declaration), do this when the code is written in the first place or just finish the port and then you won't have to re-port it again some other day. Or to make the code more readable then do the if x<0xFF then or x!=0xFF or something like that then the compiler can optimize it into the same code it would for any of these solutions, just makes it more readable and less risky...
Depends on how important the product is or how many times you want send out patches/updates or roll a truck or walk to the lab to fix the thing as to whether you try to find a quick solution or just touch the affected lines of code. if it is only a hundred or few that is not that big of a port.
6.5.3.3 Unary arithmetic operators
...
4 The result of the ~ operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expression ~E is equivalent
to the maximum value representable in that type minus E.
C 2011 Online Draft
The issue is that the operand of ~ is being promoted to int before the operator is applied.
Unfortunately, I don't think there's an easy way out of this. Writing
if ( counter + 1 ) counter++;
won't help because promotions apply there as well. The only thing I can suggest is creating some symbolic constants for the maximum value you want that object to represent and testing against that:
#define MAX_COUNTER 255
...
if ( counter < MAX_COUNTER-1 ) counter++;

Porting C endianness & pointers black magic to Swift

I'm trying to translate this snippet :
ntohs(*(UInt16*)VALUE) / 4.0
and some other ones, looking alike, from C to Swift.
Problem is, I have very few knowledge of Swift and I just can't understand what this snippet does... Here's all I know :
ntohs swap endianness to host endianness
VALUE is a char[32]
I just discovered that Swift : (UInt(data.0) << 6) + (UInt(data.1) >> 2) does the same thing. Could one please explain ?
I'm willing to return a Swift Uint (UInt64)
Thanks !
VALUE is a pointer to 32 bytes (char[32]).
The pointer is cast to UInt16 pointer. That means the first two bytes of VALUE are being interpreted as UInt16 (2 bytes).
* will dereference the pointer. We get the two bytes of VALUE as a 16-bit number. However it has net endianness (net byte order), so we cannot make integer operations on it.
We now swap the endianness to host, we get a normal integer.
We divide the integer by 4.0.
To do the same in Swift, let's just compose the byte values to an integer.
let host = (UInt(data.0) << 8) | UInt(data.1)
Note that to divide by 4.0 you will have to convert the integer to Float.
The C you quote is technically incorrect, although it will be compiled as intended by most production C compilers.¹ A better way to achieve the same effect, which should also be easier to translate to Swift, is
unsigned int val = ((((unsigned int)VALUE[0]) << 8) | // ² ³
(((unsigned int)VALUE[1]) << 0)); // ⁴
double scaledval = ((double)val) / 4.0; // ⁵
The first statement reads the first two bytes of VALUE, interprets them as a 16-bit unsigned number in network byte order, and converts them to host byte order (whether or not those byte orders are different). The second statement converts the number to double and scales it.
¹ Specifically, *(UInt16*)VALUE provokes undefined behavior because it violates the type-based aliasing rules, which are asymmetric: a pointer with character type may be used to access an object with any type, but a pointer with any other type may not be used to access an object with (array-of-)character type.
² In C, a cast to unsigned int here is necessary in order to make the subsequent shifting and or-ing happen in an unsigned type. If you cast to uint16_t, which might seem more appropriate, the "usual arithmetic conversions" would then convert it to int, which is signed, before doing the left shift. This would provoke undefined behavior on a system where int was only 16 bits wide (you're not allowed to shift into the sign bit). Swift almost certainly has completely different rules for arithmetic on types with small ranges; you'll probably need to cast to something before the shift, but I cannot tell you what.
³ I have over-parenthesized this expression so that the order of operations will be clear even if you aren't terribly familiar with C.
⁴ Left shifting by zero bits has no effect; it is only included for parallel structure.
⁵ An explicit conversion to double before the division operation is not necessary in C, but it is in Swift, so I have written it that way here.
It looks like the code is taking the single byte value[0]. This is then dereferenced, this should retrieve a number from a low memory address, 1 to 127 (possibly 255).
What ever number is there is then divided by 4.
I genuinely can't believe my interpretation is correct and can't check that cos I have no laptop. I really think there maybe a typo in your code as it is not a good thing to do. Portable, reusable
I must stress that the string is not converted to a number. Which is then used

C bitwise operator

I'm working with CodeVisionAVR Evaluation V2.05.0 which use C Compiler Reference.I met a problem when I tried this code:
unsigned int n;
long int data;
data|=(1<<n);
the problem is when n is Greater than 15 the value of data does not change. Although when I try:
data|=(1<<16);
the result is correct.
any help pleas.
In your code, the type of 1 is (as always) int. So, if sizeof (int) is smaller than sizeof (long), it stands to reason that you can't shift an int over all the bits in a long.
The solution is of course to use an (unsigned) long constant:
data |= 1UL << n;
I made it unsigned since unsigned integers are better suited for bitwise operators. The type of the literal 1UL is unsigned long. I find using suffixes nicer than casting, since it's way shorter and part of the literal itself, rather than having a literal of the wrong type and casting it.
Many people seem to expect that in an expression such as:
unsigned long long veryBig = 1 << 35; /* BAD CODE */
the right-hand side should somehow magically adapt to the "needs" of the left-hand side, and thus become of type unsigned long long (which I just assume has at least 35 bits, this is of course not portable but it's concise). That does not happen, C doesn't work like that. The expression is evaluated, then it's converted (if necessary) to the type on the left for the assignment to work.
If sizeof(int)==2 then 1<<n is of type int. And 1<<16 == 0. Thus data is not changed.
Probably because int is 16 bits. When you use integer literals the compiler can work out that the result is larger than fits in an int, and will optimize the whole shift-operation away, but when you use a variable, the compiler can't do that because it doesn't know the value of n.
i want to thank everyone, by your answer I really understood the problem
which is 1 in (1<<n) is integer with size 2 bytes.
i fixed the problem by let 1 be unsigned long (1UL<<n).
this is first question for me and you are awesome guys.
thank you and I'm sorry for my bad english.

Programmatically determining max value of a signed integer type

This related question is about determining the max value of a signed type at compile-time:
C question: off_t (and other signed integer types) minimum and maximum values
However, I've since realized that determining the max value of a signed type (e.g. time_t or off_t) at runtime seems to be a very difficult task.
The closest thing to a solution I can think of is:
uintmax_t x = (uintmax_t)1<<CHAR_BIT*sizeof(type)-2;
while ((type)x<=0) x>>=1;
This avoids any looping as long as type has no padding bits, but if type does have padding bits, the cast invokes implementation-defined behavior, which could be a signal or a nonsensical implementation-defined conversion (e.g. stripping the sign bit).
I'm beginning to think the problem is unsolvable, which is a bit unsettling and would be a defect in the C standard, in my opinion. Any ideas for proving me wrong?
Let's first see how C defines "integer types". Taken from ISO/IEC 9899, §6.2.6.2:
6.2.6.2 Integer types
1 For unsigned integer types other than unsigned char, the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2N−1, so that objects of that type shall be capable of
representing values from 0 to 2N − 1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.44)
2 For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as the same bit in the object representation of the corresponding unsigned type (if there are M value bits in the signed type and N in the unsigned type, then M ≤ N). If the sign bit
is zero, it shall not affect the resulting value. If the sign bit is one, the value shall be
modified in one of the following ways:
— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value −(2N) (two’s complement);
— the sign bit has the value −(2N − 1) (ones’ complement).
Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’
complement), is a trap representation or a normal value. In the case of sign and
magnitude and ones’ complement, if this representation is a normal value it is called a
negative zero.
Hence we can conclude the following:
~(int)0 may be a trap representation, i.e. setting all bits to is a bad idea
There might be padding bits in an int that have no effect on its value
The order of the bits actually representing powers of two is undefined; so is the position of the sign bit, if it exists.
The good news is that:
there's only a single sign bit
there's only a single bit that represents the value 1
With that in mind, there's a simple technique to find the maximum value of an int. Find the sign bit, then set it to 0 and set all other bits to 1.
How do we find the sign bit? Consider int n = 1;, which is strictly positive and guaranteed to have only the one-bit and maybe some padding bits set to 1. Then for all other bits i, if i==0 holds true, set it to 1 and see if the resulting value is negative. If it's not, revert it back to 0. Otherwise, we've found the sign bit.
Now that we know the position of the sign bit, we take our int n, set the sign bit to zero and all other bits to 1, and tadaa, we have the maximum possible int value.
Determining the int minimum is slightly more complicated and left as an exercise to the reader.
Note that the C standard humorously doesn't require two different ints to behave the same. If I'm not mistaken, there may be two distinct int objects that have e.g. their respective sign bits at different positions.
EDIT: while discussing this approach with R.. (see comments below), I have become convinced that it is flawed in several ways and, more generally, that there is no solution at all. I can't see a way to fix this posting (except deleting it), so I let it unchanged for the comments below to make sense.
Mathematically, if you have a finite set (X, of size n (n a positive integer) and a comparison operator (x,y,z in X; x<=y and y<=z implies x<=z), it's a very simple problem to find the maximum value. (Also, it exists.)
The easiest way to solve this problem, but the most computationally expensive, is to generate an array with all possible values from, then find the max.
Part 1. For any type with a finite member set, there's a finite number of bits (m) which can be used to uniquely represent any given member of that type. We just make an array which contains all possible bit patterns, where any given bit pattern is represented by a given value in the specific type.
Part 2. Next we'd need to convert each binary number into the given type. This task is where my programming inexperience makes me unable to speak to how this may be accomplished. I've read some about casting, maybe that would do the trick? Or some other conversion method?
Part 3. Assuming that the previous step was finished, we now have a finite set of values in the desired type and a comparison operator on that set. Find the max.
But what if...
...we don't know the exact number of members of the given type? Than we over-estimate. If we can't produce a reasonable over-estimate, than there should be physical bounds on the number. Once we have an over-estimate, we check all of those possible bit patters to confirm which bit patters represent members of the type. After discarding those which aren't used, we now have a set of all possible bit patterns which represent some member of the given type. This most recently generated set is what we'd use now at part 1.
...we don't have a comparison operator in that type? Than the specific problem is not only impossible, but logically irrelevant. That is, if our program doesn't have access to give a meaningful result to if we compare two values from our given type, than our given type has no ordering in the context of our program. Without an ordering, there's no such thing as a maximum value.
...we can't convert a given binary number into a given type? Then the method breaks. But similar to the previous exception, if you can't convert types, than our tool-set seems logically very limited.
Technically, you may not need to convert between binary representations and a given type. The entire point of the conversion is to insure the generated list is exhaustive.
...we want to optimize the problem? Than we need some information about how the given type maps from binary numbers. For example, unsigned int, signed int (2's compliment), and signed int (1's compliment) each map from bits into numbers in a very documented and simple way. Thus, if we wanted the highest possible value for unsigned int and we knew we were working with m bits, than we could simply fill each bit with a 1, convert the bit pattern to decimal, then output the number.
This relates to optimization because the most expensive part of this solution is the listing of all possible answers. If we have some previous knowledge of how the given type maps from bit patterns, we can generate a subset of all possibilities by making instead all potential candidates.
Good luck.
Update: Thankfully, my previous answer below was wrong, and there seems to be a solution to this question.
intmax_t x;
for (x=INTMAX_MAX; (T)x!=x; x/=2);
This program either yields x containing the max possible value of type T, or generates an implementation-defined signal.
Working around the signal case may be possible but difficult and computationally infeasible (as in having to install a signal handler for every possible signal number), so I don't think this answer is fully satisfactory. POSIX signal semantics may give enough additional properties to make it feasible; I'm not sure.
The interesting part, especially if you're comfortable assuming you're not on an implementation that will generate a signal, is what happens when (T)x results in an implementation-defined conversion. The trick of the above loop is that it does not rely at all on the implementation's choice of value for the conversion. All it relies upon is that (T)x==x is possible if and only if x fits in type T, since otherwise the value of x is outside the range of possible values of any expression of type T.
Old idea, wrong because it does not account for the above (T)x==x property:
I think I have a sketch of a proof that what I'm looking for is impossible:
Let X be a conforming C implementation and assume INT_MAX>32767.
Define a new C implementation Y identical to X, but where the values of INT_MAX and INT_MIN are each divided by 2.
Prove that Y is a conforming C implementation.
The essential idea of this outline is that, due to the fact that everything related to out-of-bound values with signed types is implementation-defined or undefined behavior, an arbitrary number of the high value bits of a signed integer type can be considered as padding bits without actually making any changes to the implementation except the limit macros in limits.h.
Any thoughts on if this sounds correct or bogus? If it's correct, I'd be happy to award the bounty to whoever can do the best job of making it more rigorous.
I might just be writing stupid things here, since I'm relatively new to C, but wouldn't this work for getting the max of a signed?
unsigned x = ~0;
signed y=x/2;
This might be a dumb way to do it, but as far as I've seen unsigned max values are signed max*2+1. Won't it work backwards?
Sorry for the time wasted if this proves to be completely inadequate and incorrect.
Shouldn't something like the following pseudo code do the job?
signed_type_of_max_size test_values =
[(1<<7)-1, (1<<15)-1, (1<<31)-1, (1<<63)-1];
for test_value in test_values:
signed_foo_t a = test_value;
signed_foo_t b = a + 1;
if (b < a):
print "Max positive value of signed_foo_t is ", a
Or much simpler, why shouldn't the following work?
signed_foo_t signed_foo_max = (1<<(sizeof(signed_foo_t)*8-1))-1;
For my own code, I would definitely go for a build-time check defining a preprocessor macro, though.
Assuming modifying padding bits won't create trap representations, you could use an unsigned char * to loop over and flip individual bits until you hit the sign bit. If your initial value was ~(type)0, this should get you the maximum:
type value = ~(type)0;
assert(value < 0);
unsigned char *bytes = (void *)&value;
size_t i = 0;
for(; i < sizeof value * CHAR_BIT; ++i)
{
bytes[i / CHAR_BIT] ^= 1 << (i % CHAR_BIT);
if(value > 0) break;
bytes[i / CHAR_BIT] ^= 1 << (i % CHAR_BIT);
}
assert(value != ~(type)0);
// value == TYPE_MAX
Since you allow this to be at runtime you could write a function that de facto does an iterative left shift of (type)3. If you stop once the value is fallen below 0, this will never give you a trap representation. And the number of iterations - 1 will tell you the position of the sign bit.
Remains the problem of the left shift. Since just using the operator << would lead to an overflow, this would be undefined behavior, so we can't use the operator directly.
The simplest solution to that is not to use a shifted 3 as above but to iterate over the bit positions and to add always the least significant bit also.
type x;
unsigned char*B = &x;
size_t signbit = 7;
for(;;++signbit) {
size_t bpos = signbit / CHAR_BIT;
size_t apos = signbit % CHAR_BIT;
x = 1;
B[bpos] |= (1 << apos);
if (x < 0) break;
}
(The start value 7 is the minimum width that a signed type must have, I think).
Why would this present a problem? The size of the type is fixed at compile time, so the problem of determining the runtime size of the type reduces to the problem of determining the compile-time size of the type. For any given target platform, a declaration such as off_t offset will be compiled to use some fixed size, and that size will then always be used when running the resulting executable on the target platform.
ETA: You can get the size of the type type via sizeof(type). You could then compare against common integer sizes and use the corresponding MAX/MIN preprocessor define. You might find it simpler to just use:
uintmax_t bitWidth = sizeof(type) * CHAR_BIT;
intmax_t big2 = 2; /* so we do math using this integer size */
intmax_t sizeMax = big2^bitWidth - 1;
intmax_t sizeMin = -(big2^bitWidth - 1);
Just because a value is representable by the underlying "physical" type does not mean that value is valid for a value of the "logical" type. I imagine the reason max and min constants are not provided is that these are "semi-opaque" types whose use is restricted to particular domains. Where less opacity is desirable, you will often find ways of getting the information you want, such as the constants you can use to figure out how big an off_t is that are mentioned by the SUSv2 in its description of <unistd.h>.
For an opaque signed type for which you don't have a name of the associated unsigned type, this is unsolvable in a portable way, because any attempt to detect whether there is a padding bit will yield implementation-defined behavior or undefined behavior. The best thing you can deduce by testing (without additional knowledge) is that there are at least K padding bits.
BTW, this doesn't really answer the question, but can still be useful in practice: If one assumes that the signed integer type T has no padding bits, one can use the following macro:
#define MAXVAL(T) (((((T) 1 << (sizeof(T) * CHAR_BIT - 2)) - 1) * 2) + 1)
This is probably the best that one can do. It is simple and does not need to assume anything else about the C implementation.
Maybe I'm not getting the question right, but since C gives you 3 possible representations for signed integers (http://port70.net/~nsz/c/c11/n1570.html#6.2.6.2):
sign and magnitude
ones' complement
two's complement
and the max in any of these should be 2^(N-1)-1, you should be able to get it by taking the max of the corresponding unsigned, >>1-shifting it and casting the result to the proper type (which it should fit).
I don't know how to get the corresponding minimum if trap representations get in the way, but if they don't the min should be either (Tp)((Tp)-1|(Tp)TP_MAX(Tp)) (all bits set) (Tp)~TP_MAX(Tp) and which it is should be simple to find out.
Example:
#include <limits.h>
#define UNSIGNED(Tp,Val) \
_Generic((Tp)0, \
_Bool: (_Bool)(Val), \
char: (unsigned char)(Val), \
signed char: (unsigned char)(Val), \
unsigned char: (unsigned char)(Val), \
short: (unsigned short)(Val), \
unsigned short: (unsigned short)(Val), \
int: (unsigned int)(Val), \
unsigned int: (unsigned int)(Val), \
long: (unsigned long)(Val), \
unsigned long: (unsigned long)(Val), \
long long: (unsigned long long)(Val), \
unsigned long long: (unsigned long long)(Val) \
)
#define MIN2__(X,Y) ((X)<(Y)?(X):(Y))
#define UMAX__(Tp) ((Tp)(~((Tp)0)))
#define SMAX__(Tp) ((Tp)( UNSIGNED(Tp,~UNSIGNED(Tp,0))>>1 ))
#define SMIN__(Tp) ((Tp)MIN2__( \
(Tp)(((Tp)-1)|SMAX__(Tp)), \
(Tp)(~SMAX__(Tp)) ))
#define TP_MAX(Tp) ((((Tp)-1)>0)?UMAX__(Tp):SMAX__(Tp))
#define TP_MIN(Tp) ((((Tp)-1)>0)?((Tp)0): SMIN__(Tp))
int main()
{
#define STC_ASSERT(X) _Static_assert(X,"")
STC_ASSERT(TP_MAX(int)==INT_MAX);
STC_ASSERT(TP_MAX(unsigned int)==UINT_MAX);
STC_ASSERT(TP_MAX(long)==LONG_MAX);
STC_ASSERT(TP_MAX(unsigned long)==ULONG_MAX);
STC_ASSERT(TP_MAX(long long)==LLONG_MAX);
STC_ASSERT(TP_MAX(unsigned long long)==ULLONG_MAX);
/*STC_ASSERT(TP_MIN(unsigned short)==USHRT_MIN);*/
STC_ASSERT(TP_MIN(int)==INT_MIN);
/*STC_ASSERT(TP_MIN(unsigned int)==UINT_MIN);*/
STC_ASSERT(TP_MIN(long)==LONG_MIN);
/*STC_ASSERT(TP_MIN(unsigned long)==ULONG_MIN);*/
STC_ASSERT(TP_MIN(long long)==LLONG_MIN);
/*STC_ASSERT(TP_MIN(unsigned long long)==ULLONG_MIN);*/
STC_ASSERT(TP_MAX(char)==CHAR_MAX);
STC_ASSERT(TP_MAX(signed char)==SCHAR_MAX);
STC_ASSERT(TP_MAX(short)==SHRT_MAX);
STC_ASSERT(TP_MAX(unsigned short)==USHRT_MAX);
STC_ASSERT(TP_MIN(char)==CHAR_MIN);
STC_ASSERT(TP_MIN(signed char)==SCHAR_MIN);
STC_ASSERT(TP_MIN(short)==SHRT_MIN);
}
For all real machines, (two's complement and no padding):
type tmp = ((type)1)<< (CHAR_BIT*sizeof(type)-2);
max = tmp + (tmp-1);
With C++, you can calculate it at compile time.
template <class T>
struct signed_max
{
static const T max_tmp = T(T(1) << sizeof(T)*CO_CHAR_BIT-2u);
static const T value = max_tmp + T(max_tmp -1u);
};

Resources