I am new to PowerApps. I have a Share Point List with a set of coordinates for various locations. What I need to figure out is when a user with PowerApps App on their phone are within a certain distance of those coordinates, using the Haversine formula. While the Haversine formula works in a test/simple way using hard-coded target location, I need the target locations from the Share Point List. Here is my code, which is inside a Timer End:
ForAll(
irfan_yard_locations,
With(
{
r: 6371000, p: (Pi() / 180), latA: location_lat, lonA: location_long, latB: Location.Latitude, lonB: Location.Longitude
},
Round((2 * r) * Asin(Sqrt(0.5 - Cos((latA - latB) * p)/2 + Cos(latB * p) * Cos(latA * p) * (1 - Cos((lonA - lonB) * p)) / 2)), 2 ));
) ;
irfan_yard_locations is the SP List which has location_lat and location_long coordinates. I am thinking something like in this example site: http://powerappsguide.com/blog/post/formula-how-to-use-the-if-and-switch-functions so that if the return from the with (), which would be a number, is less than 5 (it's in meters) then Navigate to another screen or do something. Just don't know the syntax. Or is there better approach?
Thanks!
Never mind. By putting in an If clause around the With function, I am able to catch if the current location is within 6 meters of one of the coordinate sets.
ForAll(
irfan_yard_locations,
If ( With(
{
r: 6371000, p: (Pi() / 180), latA: location_lat, lonA: location_long, latB: Location.Latitude, lonB: Location.Longitude
},
Round((2 * r) * Asin(Sqrt(0.5 - Cos((latA - latB) * p)/2 + Cos(latB * p) * Cos(latA * p) * (1 - Cos((lonA - lonB) * p)) / 2)), 2 )) < 6, Navigate(Screen2));
) ;
Related
I had made a very minimal ray tracer in Julia, and was in the process of implementing a faster version that uses CUDA. The full code is too extensive to share, but here is the part that I think is most relevant to the question:
world = World(RGB(1, 1, 1), 5e-6, shapes, lights, 0.2, 4)
camera = Camera((0, -5000, -5000), 1000, (0, 0, 0), 1920, 1080)
canvas = CUDA.fill(world.background, camera.height, camera.width)
function fillpixel!(arr::CuArray)
height = size(arr)[1]
for j in 1:length(arr)
ind = (j % height, ceil(j / height))
ray = [([ind[2], ind[1]] - [camera.width / 2, camera.height / 2])..., camera.depth]
(ray[2], ray[3]) = (cos(camera.rotation[1] + atan(ray[3], ray[2])), sin(camera.rotation[1] + atan(ray[3], ray[2]))) .* sqrt(ray[2]^2 + ray[3]^2)
(ray[1], ray[3]) = (cos(camera.rotation[2] + atan(ray[3], ray[1])), sin(camera.rotation[2] + atan(ray[3], ray[1]))) .* sqrt(ray[1]^2 + ray[3]^2)
(ray[1], ray[2]) = (cos(camera.rotation[3] + atan(ray[2], ray[1])), sin(camera.rotation[3] + atan(ray[2], ray[1]))) .* sqrt(ray[2]^2 + ray[1]^2)
v = (Inf, nothing, nothing)
for object in world.objects
t = traceray(ray, camera.position, object, mindistance=camera.depth)
t !== nothing && t[1] < v[1] && (v = (t[1], t[2], object))
end
v[1] != Inf && (arr[j] = computecolor(v[3].material, ray, v[1], v[2], world, camera.position .+ v[1] * ray, v[3]))
return nothing
end
end
#cuda fillpixel!(canvas)
but when I run the program, it gives me the following error:
CUDA.jl: ERROR: LoadError: MethodError: no method matching typeof(fillpixel!)(::CuDeviceMatrix{RGB{Float32}, 1})
and I am unable to find out what causes this error and what exactly I'm doing wrong.
Thanks.
Two comments: fillpixel!(arr::CuArray) limits your function to only the type CuArray. CUDA.jl translates the host side representation CuArray to the device side representation `CuDeviceArray. So if you loosen your type restrictions you won't run into this issue.
Secondly you don't want to iterate over the array inside the kernel you launched. You either want to use a function like map or map! to implement the data-parallelism or use the CUDA index primitives.
i have the following baseline:
and as it can be seen, it has an almost sinusoidal shape. i am trying to use polyfit on it. Actually what I have are two arrays of data,one called x and the other y. So what i am using is:
porder = 2
coefs = np.polyfit(x, y, porder)
baseline = np.poly1d(coefs)
cleanspec = y - baseline(x)
My goal is to obtain a clean spectrum in the end, who has a straight baseline with no ondulation.
However, the fitting is not working. Any suggestions on using another more efficient method?
I have tried changing porder to 3, but i have this warning, and it doesn't change anything:
Polyfit may be poorly conditioned
My data for x:
[1.10192816e+11 1.10192893e+11 1.10192969e+11 1.10193045e+11
1.10193122e+11 1.10193198e+11 1.10193274e+11 1.10193350e+11
1.10193427e+11 1.10193503e+11 1.10193579e+11 1.10193656e+11
1.10193732e+11 1.10193808e+11 1.10193885e+11 1.10193961e+11
1.10194037e+11 1.10194113e+11 1.10194190e+11 1.10194266e+11
1.10194342e+11 1.10194419e+11 1.10194495e+11 1.10194571e+11
1.10194647e+11 1.10194724e+11 1.10194800e+11 1.10194876e+11
1.10194953e+11 1.10195029e+11 1.10195105e+11 1.10195182e+11
1.10195258e+11 1.10195334e+11 1.10195410e+11 1.10195487e+11
1.10195563e+11 1.10195639e+11 1.10195716e+11 1.10195792e+11
1.10195868e+11 1.10195944e+11 1.10196021e+11 1.10196097e+11
1.10196173e+11 1.10196250e+11 1.10196326e+11 1.10196402e+11
1.10196479e+11 1.10196555e+11 1.10196631e+11 1.10196707e+11
1.10196784e+11 1.10196860e+11 1.10196936e+11 1.10197013e+11
1.10197089e+11 1.10197165e+11 1.10197241e+11 1.10197318e+11
1.10197394e+11 1.10197470e+11 1.10197547e+11 1.10197623e+11
1.10197699e+11 1.10197776e+11 1.10197852e+11 1.10197928e+11
1.10198004e+11 1.10198081e+11 1.10198157e+11 1.10198233e+11
1.10198310e+11 1.10198386e+11 1.10198462e+11 1.10198538e+11
1.10198615e+11 1.10198691e+11 1.10198767e+11 1.10198844e+11
1.10198920e+11 1.10198996e+11 1.10199073e+11 1.10199149e+11
1.10199225e+11 1.10199301e+11 1.10199378e+11 1.10199454e+11
1.10199530e+11 1.10199607e+11 1.10199683e+11 1.10199759e+11
1.10199835e+11 1.10199912e+11 1.10199988e+11 1.10200064e+11
1.10200141e+11 1.10202582e+11 1.10202658e+11 1.10202735e+11
1.10202811e+11 1.10202887e+11 1.10202963e+11 1.10203040e+11
1.10203116e+11 1.10203192e+11 1.10203269e+11 1.10203345e+11
1.10203421e+11 1.10203498e+11 1.10203574e+11 1.10203650e+11
1.10203726e+11 1.10203803e+11 1.10203879e+11 1.10203955e+11
1.10204032e+11 1.10204108e+11 1.10204184e+11 1.10204260e+11
1.10204337e+11 1.10204413e+11 1.10204489e+11 1.10204566e+11
1.10204642e+11 1.10204718e+11 1.10204795e+11 1.10204871e+11
1.10204947e+11 1.10205023e+11 1.10205100e+11 1.10205176e+11
1.10205252e+11 1.10205329e+11 1.10205405e+11 1.10205481e+11
1.10205557e+11 1.10205634e+11 1.10205710e+11 1.10205786e+11
1.10205863e+11 1.10205939e+11 1.10206015e+11 1.10206092e+11
1.10206168e+11 1.10206244e+11 1.10206320e+11 1.10206397e+11
1.10206473e+11 1.10206549e+11 1.10206626e+11 1.10206702e+11
1.10206778e+11 1.10206854e+11 1.10206931e+11 1.10207007e+11
1.10207083e+11 1.10207160e+11 1.10207236e+11 1.10207312e+11
1.10207389e+11 1.10207465e+11 1.10207541e+11 1.10207617e+11
1.10207694e+11 1.10207770e+11 1.10207846e+11 1.10207923e+11
1.10207999e+11 1.10208075e+11 1.10208151e+11 1.10208228e+11
1.10208304e+11 1.10208380e+11 1.10208457e+11 1.10208533e+11
1.10208609e+11 1.10208686e+11 1.10208762e+11 1.10208838e+11
1.10208914e+11 1.10208991e+11 1.10209067e+11 1.10209143e+11
1.10209220e+11 1.10209296e+11 1.10209372e+11 1.10209448e+11
1.10209525e+11 1.10209601e+11 1.10209677e+11 1.10209754e+11
1.10209830e+11]
and for y:
[ 0.00143858 0.05495827 0.07481739 0.03287334 -0.06275658 0.03744501
-0.04392341 0.02849104 0.03173781 0.09748282 0.02854265 0.06573162
0.08215295 0.0240697 0.00931477 0.17572605 0.06783381 0.04853354
-0.00226023 0.03722596 0.09687121 0.10767829 0.04922701 0.08036865
0.02371989 0.13885361 0.13903188 0.09910567 0.08793601 0.06048823
0.03932097 0.04061129 0.03706228 0.13764936 0.14150589 0.12226208
0.09041878 0.13638676 0.11107155 0.12261369 0.11765545 0.07425344
0.06643712 0.1449991 0.14256909 0.0924173 0.09291525 0.12216271
0.11272059 0.07618891 0.16787807 0.07832849 0.10786856 0.12381844
0.14182937 0.08078092 0.11932429 0.06383649 0.02923562 0.0864741
0.07806758 0.04514088 0.12929371 0.11769577 0.03619867 0.02811366
0.06401639 0.06883735 0.01162673 0.0956252 0.11206549 0.0485106
0.07269545 0.01662149 0.01287365 0.13401546 0.06300487 0.01994627
0.00721926 0.04863274 -0.01578364 0.0235379 0.03102316 0.00392559
0.05662182 0.04643381 -0.00665026 0.05532307 -0.01533339 0.04838893
0.02097954 0.02551123 0.03727188 -0.04001189 -0.04294883 0.02837669
-0.06062512 -0.0743994 -0.04665618 -0.03553261 -0.07057554 -0.07028277
-0.07502298 -0.07247965 -0.03540266 -0.03226398 -0.08014487 -0.11907543
-0.18521053 -0.1117617 -0.14377897 -0.07113503 -0.02480966 -0.07459746
-0.07994097 -0.02648713 -0.10288478 -0.13328137 -0.08121377 -0.13742166
-0.024583 -0.11391389 -0.02717251 -0.08876166 -0.04369363 -0.0790144
-0.09589054 -0.12058701 0.00041344 -0.06646403 -0.06368366 -0.10335613
-0.04508286 -0.18360729 -0.0551775 -0.06476622 -0.0834523 -0.01276785
-0.04145486 -0.14549992 -0.11186823 -0.07663398 -0.11920359 -0.0539315
-0.10507118 -0.09112374 -0.09751319 -0.06848278 -0.09031172 -0.07218853
-0.03129234 -0.04543539 -0.00942861 -0.06711099 -0.00712202 -0.11696418
-0.06344093 0.03624227 -0.04798777 0.01174394 -0.08326314 -0.06761215
-0.12063419 -0.05236908 -0.03914692 -0.05370061 -0.01620056 0.06731788
-0.06600111 -0.04601257 -0.02144361 0.00256863 -0.00093034 0.00629604
-0.0252835 -0.00907992 0.03583489 -0.03761906 0.10325763 0.08016437
-0.04900467 0.0110328 0.05019604 -0.04428984 -0.03208058 0.05095359
-0.01807463 0.0691733 0.07472691 0.00659871 0.00947692 0.0014422
0.05227057]
Having this huge offset in x is probably not helping. It definitively works when removing it for the fitting process. Looks like this:
import matplotlib.pyplot as plt
import numpy as np
scaledx = xdata * 1e-8 - 1100
coefs = np.polyfit( scaledx, ydata, 7)
base = np.poly1d( coefs )
xt = np.linspace( 1.9,2.1,150)
yt = base( xt )
fig = plt.figure()
ax = fig.add_subplot( 2, 1, 1 )
bx = fig.add_subplot( 2, 1, 2 )
ax.scatter( scaledx , ydata )
ax.plot( xt , yt )
bx.plot( scaledx , ydata - base( scaledx ) )
plt.show()
with xdata and ydata being numpy arrays of the OP data lists.
Provides:
Addon
Concerning the poorly conditioned one should remember how simple linear optimization works. In case of a polynomial one builds the matrix:
A = [
[1, x1, x1**2, ...],
[1, x2, x2**2, ...],
...
[1, xn, xn**2, ...]
]
and one needs B^(-1) the inverse of B with B = AT.A and AT being the transposed of A. Now looking at the x values in the order of 1e11, B will have order 1 on one side of the diagonal and for a second order polynomial order 1e44 on the other. In case of a third order polynomial this is getting worse, accordingly. Making the inverse, hence, is becoming unstable, numerically. Luckily, and as used above, this can be solved easily by simple re-scaling of the problem at hand.
I'm using faceting heatmap on a spatial field which then returns a 2d array like this
"counts_ints2D",
[
null,
null,
null,
null,
[
0,
8,
4,
0,
0,
0,
0,
0,
0,
...
I want to locate those cluster on the map but the problem is that I don't know how to convert that 2d array in geo coordinates.
There's absolutely no documentation out there showing what to do with those integer.
Can somebody give some guidance ?
Going with the data you gave for Glasgow, and using the formula given in the comments, lets explore the coordinates in a python repl:
# setup
>>> minX = -180
>>> maxX = 180
>>> minY = -53.4375
>>> maxY = 74.53125
>>> columns = 256
>>> rows = 91
# calculate widths
>>> bucket_width = (maxX - minX) / columns
>>> bucket_width
1.40625
>>> bucket_height = (maxY - minY) / rows
>>> bucket_height
1.40625
# calculate area for bucket in heatmap facet for x = 124, y = 13
# point in lower left coordinate
>>> lower_left = {
... 'lat': maxY - (13 + 1) * bucket_height,
... 'lon': minX + 124 * bucket_width,
... }
>>> lower_left
{'lat': 54.84375, 'lon': -5.625}
# point in upper right
>>> upper_right = {
... 'lat': maxY - (13 + 1) * bucket_height + bucket_height,
... 'lon': minX + 124 * bucket_width + bucket_width,
... }
>>> upper_right
{'lat': 56.25, 'lon': -4.21875}
Let's graph these points on a map, courtesy of open street map. We generate a small CSV snippet we can import on umap (select the up arrow, choose 'csv' as the type and enter content into the text box). To our coordinates to show:
>>> bbox = [
... "lat,lon,description",
... str(lower_left['lat']) + "," + str(lower_left['lon']) + ",ll",
... str(upper_right['lat']) + "," + str(lower_left['lon']) + ",ul",
... str(upper_right['lat']) + "," + str(upper_right['lon']) + ",uu",
... str(lower_left['lat']) + "," + str(upper_right['lon']) + ",lu",
... ]
>>> print("\n".join(bbox))
lat,lon,description
54.84375,-5.625,ll
56.25,-5.625,ul
56.25,-4.21875,uu
54.84375,-4.21875,lu
After pasting these points into the import box creating the layer, we get this map:
Map based on Open Street Map data through uMap. This area encloses Glasgow as you expected.
Here's some code that takes 180th meridian (date line) wrapping into account:
$columns = $heatmap['columns'];
$rows = $heatmap['rows'];
$minX = $heatmap['minX'];
$maxX = $heatmap['maxX'];
$minY = $heatmap['minY'];
$maxY = $heatmap['maxY'];
$counts = $heatmap['counts_ints2D'];
// If our min longitude is greater than max longitude, we're crossing
// the 180th meridian (date line).
$crosses_meridian = $minX > $maxX;
// Bucket width needs to be calculated differently when crossing the
// meridian since it wraps.
$bucket_width = $crosses_meridian
? $bucket_width = (360 - abs($maxX - $minX)) / $columns
: $bucket_width = ($maxX - $minX) / $columns;
$bucket_height = ($maxY - $minY) / $rows;
$points = [];
foreach ($counts as $rowIndex => $row) {
if (!$row) continue;
foreach ($row as $columnIndex => $column) {
if (!$column) continue;
$point = []
$point['count'] = $column;
// Put the count in the middle of the bucket (adding a half height and width).
$point['lat'] = $maxY - (($rowIndex + 1) * $bucket_height) + ($bucket_height / 2);
$point['lng'] = $minX + ($columnIndex * $bucket_width) + ($bucket_width / 2);
// We crossed the meridian, so wrap back around to negative.
if ($point['lng'] > 180) {
$point['lng'] = -1 * (180 - ($point['lng'] % 180));
}
$points[] = $point;
}
}
Here's my code. I keep getting that error, no matter if I use inside_sig_r or inside_sig_r2. If I take out the last line I don't get this error. Thanks for any help.
import numpy as np
from scipy import integrate, interpolate
from math import sqrt,pi,cos,sin,exp
rho = 2.78e11 * .3
delta = 1.68
def M(r):
return ((4*pi)/3)*(r**3)*rho
def R(M):
return (( 3 * M) / (4 * pi * rho)) ** (.3333)
def W(x):
return 3.*(sin(x) - x*cos(x))/(x**3.)
data = np.loadtxt("//Users//Slemons//Downloads//pk2.dat", float)
k_data = (10**data[:,0])
Pk_data = (10**data[:,1])
Pk = interpolate.interp1d(k_data,Pk_data,kind='cubic')
Masses = np.arange(1e10,1e16,1e10)
r_from_M = np.array(map(R,Masses),float)
print r_from_M[0]
def inside_sig_r(k,r):
return ((W(k*r)**2.) * Pk(k) * (k**2.)) / (2. * (pi ** 2.))
def inside_sig_r2(z,r):
k = (1.+z)/(1.-z)
return inside_sig_r(k,r) *2./(1.-z)**2.
sigma_r = lambda k : sqrt(integrate.quad(inside_sig_r,.4,np.inf,args=(k)))
sigr = np.array(map(sigma_r,Masses),float)
It is not really a standalone code, since I can't see your data in '//Users//Slemons//Downloads//pk2.dat'. However, the error is quite specific - the data produced by inside_sig_r(2) are above or below the range you supplied (0.4, np.inf). You should either change the range or make sure that the functions return values inside this range.
can anybody tell me why this method, which is called very often, is leaking memory?
If I take a look at the iOS Allocation Tool / VM Tool there are no leaks .... but if I look at a report_memory function which I found at here at stackoverflow, I can see the that the resident size is growing by 1 MB per 2 seconds. If I don't call this method the resident size is only growing by 1 MB per 40 seconds. At some time I receive a "Did receive memory warning" Log, but I cant figure out why this is happening. Resident Size, Dirty Size, Allocations ... everything looks alright.
path2 is a class Variable.
-(void) drawPath:(float) winkel path:(UIBezierPath *) mpath toPoint:(CGPoint) pt{
path2 = [UIBezierPath bezierPathWithCGPath:mpath.CGPath];
box = CGPathGetPathBoundingBox(path2.CGPath);
CGAffineTransform translate = CGAffineTransformMakeTranslation(-1 * (box.origin.x + (box.size.width / 2)), -1 * (box.origin.y + (box.size.height / 2)));
[path2 applyTransform:translate];
CGAffineTransform rotate = CGAffineTransformMakeRotation(DEGREES_TO_RADIANS(winkel));
[path2 applyTransform:rotate];
translate = CGAffineTransformMakeTranslation((box.origin.x + (box.size.width / 2)), (box.origin.y + (box.size.height / 2)));
[path2 applyTransform:translate];
translate = CGAffineTransformMakeTranslation(pt.x-(box.size.width / 2), pt.y-(box.size.height / 2));
[path2 applyTransform:translate];
[path2 fill];
}
I think the problem is CGAffineTransformMakeTranslation/applyTransform ... but I cant figure out why this method is leaking.
Every Core Foundation object of returned by a function that has Make in the name, must be explicitly released using CFRelease.