FInd Two's Complement for Unsigned Integer - c

I have a simple function that will find the two's Complement for an unsigned integer and then test it to make sure that it is correct
unsigned twoscomplement(unsigned v) {
};
int main()
{
unsigned a = 255;
unsigned c = twoscomplement(a);
unsigned s = a+c;
printf("%u+%u=%u\n", a, c, s);
return 0;
}
When I asked about how I would go around solving this I got the answer unsigned c = (~a)+1; From what I understood (~a) flips the bits and then +1 is for the overflow? Any help on this matter would be appreciated

Whenever we work with one’s complement or two’s complement, we need to state what the word size is. If there are w bits in the word, then the one’s complement of a number x is obtained by subtracting x from the binary numeral made of w 1s. If w is 16, we use 11111111111111112, which is 65535. Then the one’s complement of x is 11111111111111112−x. Viewing x as a binary numeral (with at most w bits), whatever bits are on in x will be off in 11111111111111112−x, and whatever bits are off in x will be on in 11111111111111112−x. Hence, all the bits are complemented.
C has an operator for the one’s complement; ~x flips all the bits, so it produces the one’s complement of x.
The two’s complement of x is 2w−x, by definition (except that the two’s complement of 0 is 0). 2w equals one plus that binary numeral made of w 1s. For example, 216 = 65535 + 1. Therefore, the two’s complement is one more than the one’s complement. Therefore the two’s complement of x is ~x + 1.
C also has an operator for the two’s complement, for unsigned integers. Unsigned arithmetic is defined to “wrap” modulo 2w; whenever a regular arithmetic result is outside that range, it is brought back into that range by adding or subtracting 2w as needed. The regular arithmetic negation of x would be negative (if x is not zero), so the computed result of -x is −x + 2w = 2w−x, which is the two’s complement of x.

Related

Objective C Int to 2's Complement Conversion

I'm trying to convert my 16 bit integer to two's complement if it's negative.
At the moment, I'm using the One's complement operator. I figure I can use that, and then add 1 to the binary value to convert it to two's complement. However, I'm unable to do x = ~a + 1 because that just yields the integer value + 1.
If my process is correct, how can I add 1 to the binary integer? If not, what is the most appropriate way to convert a 16 bit integer to 2's complement in Objective-C?
A two's complement is a kind of representation of signed numbers, not a value or an operation. On nearly all modern computers two's complements are the standard representation of signed integers. (And it is one of three allowed representations of integers in the standard.)
Therefore if you have any signed integral number, it is represented in two's complement. I think you want to have "the" two's complement of a positive number. This is simply the negative value, if your machine uses two's complements for signed numbers.
int positiveValue = 5;
int twosComplement = -positiveValue;

Difference between unsigned int and int

I read about twos complement on wikipedia and on stack overflow, this is what I understood but I'm not sure if it's correct
signed int
the left most bit is interpreted as -231 and this how we can have negative numbers
unsigned int
the left most bit is interpreted as +231 and this is how we achieve large positive numbers
update
What will the compiler see when we store 3 vs -3?
I thought 3 is always 00000000000000000000000000000011
and -3 is always 11111111111111111111111111111101
example for 3 vs -3 in C:
unsigned int x = -3;
int y = 3;
printf("%d %d\n", x, y); // -3 3
printf("%u %u\n", x, y); // 4294967293 3
printf("%x %x\n", x, y); // fffffffd 3
Two's complement is a way to represent negative integers in binary.
First of all, here's a standard 32-bit integer ranges:
Signed = -(2 ^ 31) to ((2 ^ 31) - 1)
Unsigned = 0 to ((2 ^ 32) - 1)
In two's complement, a negative is represented by inverting the bits of its positive equivalent and adding 1:
10 which is 00001010 becomes -10 which is 11110110 (if the numbers were 8-bit integers).
Also, the binary representation is only important if you plan on using bitwise operators.
If your doing basic arithmetic, then this is unimportant.
The only time this may give unexpected results outside of the aforementioned times is getting the absolute value of the signed version of -(2 << 31) which will always give a negative.
Your problem does not have to do with the representation, but the type.
A negative number in an unsigned integer is represented the same, the difference is that it becomes a super high number since it must be positive and the sign bit works as normal.
You should also realize that ((2^32) - 5) is the exact same thing as -5 if the value is unsigned, etc.
Therefore, the following holds true:
unsigned int x = (2 << 31) - 5;
unsigned int y = -5;
if (x == y) {
printf("Negative values wrap around in unsigned integers on underflow.");
}
else {
printf( "Unsigned integer underflow is undefined!" );
}
The numbers don't change, just the interpretation of the numbers. For most two's complement processors, add and subtract do the same math, but set a carry / borrow status assuming the numbers are unsigned, and an overflow status assuming the number are signed. For multiply and divide, the result may be different between signed and unsigned numbers (if one or both numbers are negative), so there are separate signed and unsigned versions of multiply and divide.
For 32-bit integers, for both signed and unsigned numbers, n-th bit is always interpreted as +2n.
For signed numbers with the 31th bit set, the result is adjusted by -232.
Example:
1111 1111 1111 1111 1111 1111 1111 11112 as unsigned int is interpreted as 231+230+...+21+20. The interpretation of this as a signed int would be the same MINUS 232, i.e. 231+230+...+21+20-232 = -1.
(Well, it can be said that for signed numbers with the 31th bit set, this bit is interpreted as -231 instead of +231, like you said in the question. I find this way a little less clear.)
Your representation of 3 and -3 is correct: 3 = 0x00000003, -3 + 232 = 0xFFFFFFFD.
Yes, you are correct, allow me to explain a bit further for clarification purposes.
The difference between int and unsigned int is how the bits are interpreted. The machine processes unsigned and signed bits the same way, but there are extra bits added for signing. Two's complement notation is very readable when dealing with related subjects.
Example:
The number 5's, 0101, inverse is 1011.
In C++, it's depends when you should use each data type. You should use unsigned values when functions or operators return those values. ALUs handle signed and unsigned variables very similarly.
The exact rules for writing in Two's complement is as follows:
If the number is positive, count up to 2^(32-1) -1
If it is 0, use all zeroes
For negatives, flip and switch all the 1's and 0's.
Example 2(The beauty of Two's complement):
-2 + 2 = 0 is displayed as 0010 + 1110; and that is 10000. With overflow at the end, we have our result as 0000;

Using bit mask to convert a signed integer into two's complement

I am given this code to convert a signed integer into two's complement but I don't understand how it really works, especially if the input is negative.
void convertB2T( int32_t num) {
uint8_t bInt[32];
int32_t mask = 0x01;
for (int position = 0; position < NUM_BITS; position++) {
bInt[position] = ( num & Mask) ? 1 : 0;
Mask = Mask << 1;
}
}
So my questions are:
num is an integer, Mask is a hex, so how does num & Mask work? Does C just convert num to binary representation and do the bitwise and? Also the output of Mask is an integer correct? So if this output is non-zero, it is treated as TRUE and if zero, FALSE, right?
How does this work if num is negative? I tried running the code and actually did not get a correct answer (all higher level bits are 1's).
This program basically extracts each bit of the number and puts it in a vector. So every bit becomes a vector element. It has nothing to do with two's complement conversion (although the resulting bit-vector will be in two's complement, as the internal representation of numbers is in two's complement).
The computer has no idea what hex means. Every value is stored in binary, because binary is the only thing computer understands. So, ,the "integer" and the hex values are converted to binary (the hex there is also an integer). On these binary representations that the computer uses, the binary operators are applied.
In order to understand what is happening with the result when num is negative, you need to understand that the result is basically the two's complement representation of num and you need to know how the two's complement representation works. Wikipedia is a good starting point.
To answer your questions
1.Yes num is integer represented in decimal format and mask is also integer represented in hex format.
Yes C compiler treats num and mask with their binary equivalents.
Say
num = 24; // binary value on 32 bit machine is 000000000000000000011000
mask = 0x01; // binary value on 32 bit machine is 000000000000000000000001
Yes compiler now performs & bitwise and the equivalent binary values.
Yes if output is nonzero, treated as true
If a number is negative, its represented in 2's complement form.
Basically your code is just storing binary equivalent of number into array. You are not representing in twos complement.
If MSB is 1 indicates number is negative. if a number is negative
num = -24; // represent binary value of 24
000000000000000000011000 -> apply 1's complement + 1 to this binary value
111111111111111111100111 -> 1's complement
+000000000000000000000001 -> add 1
------------------------
111111111111111111101000 -> -24 representation
------------------------

C programming bitfield in structure

Why is answer of it
-1, 2, -3 ? (especially -3 ??? how come)
struct b1 {
int a:1;
int b:3;
int c:4;
} ;
int main()
{
struct b1 c = {1,2,13};
printf("%d, %d, %d",c.a,c.b,c.c);
return 0;
}
Compiled on VC++ 32 bit editor. Many Thanks.
signed integers are represented in twos complement. The range of a 1-bit twos complement number is -1 to 0. Because the first bit of a twos complement number indicates it is negative, which is what you have done there.
See here:
sign extend 1-bit 2's complement number?
That is the same for the third number, you have overflowed the range of -8 to 7 which is the range of a 4 bit signed integer.
What you meant to do there is make all of those int -> unsigned int
See here for twos complement explanation:
http://www.ele.uri.edu/courses/ele447/proj_pages/divid/twos.html
Because a and c are signed integers with their sign bit set, hence they are negative:
a: 1d = 1b (1 bit)
b: 2d = 010b (3 bits)
c: 13d = 1101b (4 bits)
Signed integer values are stored in two's complement, with the highest bit representing the sign (1 means "negative"). Hence, when you read the bitfield values as signed int's, you get back negative values for a and c (sign extended and converted back from their two's complement representation), but a positive 2 for b.
To get the absolute value of a negative two's complement number, you subtract one and invert the result:
1101b
-0001b
======
1100b
1100b inverted becomes 0011b which is equal to 3d. Since the sign bit is negative (which you had to examine before doing the previous calculation anyway), the result is -3d.

Tilde C unsigned vs signed integer

For example:
unsigned int i = ~0;
Result: Max number I can assign to i
and
signed int y = ~0;
Result: -1
Why do I get -1? Shouldn't I get the maximum number that I can assign to y?
Both 4294967295 (a.k.a. UINT_MAX) and -1 have the same binary representation of 0xFFFFFFFF or 32 bits all set to 1. This is because signed numbers are represented using two's complement. A negative number has its MSB (most significant bit) set to 1 and its value determined by flipping the rest of the bits, adding 1 and multiplying by -1. So if you have the MSB set to 1 and the rest of the bits also set to 1, you flip them (get 32 zeros), add 1 (get 1) and multiply by -1 to finally get -1.
This makes it easier for the CPU to do the math as it needs no special exceptions for negative numbers. For example, try adding 0xFFFFFFFF (-1) and 1. Since there is only room for 32 bits, this will overflow and the result will be 0 as expected.
See more at:
http://en.wikipedia.org/wiki/Two%27s_complement
unsigned int i = ~0;
Result: Max number I can assign to i
Usually, but not necessarily. The expression ~0 evaluates to an int with all (non-padding) bits set. The C standard allows three representations for signed integers,
two's complement, in which case ~0 = -1 and assigning that to an unsigned int results in (-1) + (UINT_MAX + 1) = UINT_MAX.
ones' complement, in which case ~0 is either a negative zero or a trap representation; if it's a negative zero, the assignment to an unsigned int results in 0.
sign-and-magnitude, in which case ~0 is INT_MIN == -INT_MAX, and assigning it to an unsigned int results in (UINT_MAX + 1) - INT_MAX, which is 1 in the unlikely case that unsigned int has a width (number of value bits for unsigned integer types, number of value bits + 1 [for the sign bit] for signed integer types) smaller than that of int and 2^(WIDTH - 1) + 1 in the common case that the width of unsigned int is the same as the width of int.
The initialisation
unsigned int i = ~0u;
will always result in i holding the value UINT_MAX.
signed int y = ~0;
Result: -1
As stated above, only if the representation of signed integers uses two's complement (which nowadays is by far the most common representation).
~0 is just an int with all bits set to 1. When interpreted as unsigned this will be equivalent to UINT_MAX. When interpreted as signed this will be -1.
Assuming 32 bit ints:
0 = 0x00000000 = 0 (signed) = 0 (unsigned)
~0 = 0xffffffff = -1 (signed) = UINT_MAX (unsigned)
Paul's answer is absolutely right. Instead of using ~0, you can use:
#include <limits.h>
signed int y = INT_MAX;
unsigned int x = UINT_MAX;
And now if you check values:
printf("x = %u\ny = %d\n", UINT_MAX, INT_MAX);
you can see max values on your system.
No, because ~ is the bitwise NOT operator, not the maximum value for type operator. ~0 corresponds to an int with all bits set to 1, which, interpreted as an unsigned gives you the max number representable by an unsigned, and interpreted as a signed int, gives you -1.
You must be on a two's complement machine.
Look up http://en.wikipedia.org/wiki/Two%27s_complement, and learn a little about Boolean algebra, and logic design. Also learning how to count in binary and addition and subtraction in binary will explain this further.
The C language used this form of numbers so to find the largest number you need to use 0x7FFFFFFF. (where you use 2 FF's for each byte used and the leftmost byte is a 7.) To understand this you need to look up hexadecimal numbers and how they work.
Now to explain the unsigned equivalent. In signed numbers the bottom half of numbers are negative (0 is assumed positive so negative numbers actually count 1 higher than positive numbers). Unsigned numbers are all positive. So in theory your highest number for a 32 bit int is 2^32 except that 0 is still counted as positive so it's actually 2^32-1, now for signed numbers half those numbers are negative. which means we divide the previous number 2^32 by 2, since 32 is an exponent we get 2^31 numbers on each side 0 being positive means the range of an signed 32 bit int is (-2^31, 2^31-1).
Now just comparing ranges:
unsigned 32 bit int: (0, 2^32-1)
signed 32 bit int: (-2^31, 2^32-1)
unsigned 16 bit int: (0, 2^16-1)
signed 16 bit int: (-2^15, 2^15-1)
you should be able to see the pattern here.
to explain the ~0 thing takes a bit more, this has to do with subtraction in binary. it's just adding 1 and flipping all the bits then adding the two numbers together. C does this for you behind the scenes and so do many processors (including the x86 and x64 lines of processors.)
Because of this it's best to store negative numbers as though they are counting down, and in two's complement the added 1 is also hidden. Because 0 is assumed positive thus negative numbers can't have a value for 0, so they automatically have -1 (positive 1 after the bit flip) added to them. when decoding negative numbers we have to account for this.

Resources