how can I use sqlite3 as disk-backed O(n) hashtable? - database

Problem:
I have 863,049,256 keys whose format is 34 character alphanumeric:
Z6DauUBtzw8p77MLxy7VWYCKN92JfKiCK
AJe8BJYnJHp9DDUrvGgFwmn5oBjhUSgowr
114VNKGsr9M4ogvwjz6ESNUqYdroGyht7r
etc..
I'd like to quickly check if a given key exists inside this dataset- preferably in O(1) time.
Attempted Solution:
I can't use the programming language's set / hashset / unordered_set / hashtable
because its too much data to load into memory. So I've opted for a disk-based solution.
Using sqlite3, I load all the data into a table. It looks something like this:
// load the database
SQL: create table if not exists hashtable (val varchar(34));
SQL: begin;
// add each value from a file
SQL: insert into hashtable (val) values (var);
SQL: ...
SQL: commit;
Then I check for the existence of an element using:
SELECT COUNT(1) FROM hashtable WHERE val = 'val'
This is extremely slow. Performance seems equivalent to me just grepping the original file. SQL must be performing a scan? I'm wondering if there is a more effecient way of doing this with sqlite, or if I've chosen the wrong tool for the job.
Additional information:
What I'm doing now, is I have a bloom filter in memory, and if it finds a collision, I do a slower SQL lookup to confirm the hit. My "big data" use-case seems pretty common, so maybe there is a better database strategy or a different solution entirely.

Related

Improving Merge Performance with Change Data Capture and Hash

Today I'm trying to tune the performance of an audit database. I have a legal reason for tracking changes to rows, and I've implemented a set of tables using the System Versioned tables method in SQL Server 2016.
My overall process lands "RAW" data into an initial table from a source system. From here, I then have a MERGE process that takes data from the RAW table and compares every column in the RAW table to what exists in the audit-able system versioned staging table and decides what has changed. System row versioning then tells me what has changed and what hasn't.
The trouble with this approach is that my tables are very wide. Some of them have 400 columns or more. Even tables that have 450,000 records take SQL server about 17 minutes to perform a MERGE operation. It's really slowing down the performance of our solution and it seems it would help things greatly if we could speed it up. We presently have hundreds of tables we need to do this for.
At the moment both the RAW and STAGE tables are indexed on an ID column.
I've read in several places that we might consider using a CHECKSUM or HASHBYTES function to record a value in the RAW extract. (What would you call this? GUID? UUID? Hash?). We'd then compare the calculated value to what exists in the STAGE table. But here's the rub: There are often quite a few NULL values across many columns. It's been suggested that we cast all the column types to be the same (nvarchar(max))?, and NULL values seem to cause the entire computation of the checksum to fall flat. So I'm also coding lots of ISNULL(,'UNKNOWN') statements into my code too.
So - Are there better methods for improving the performance of the merge here? I thought that I could use a row updated timestamp column as a single value to compare instead of the checksum, but I am not certain that that would pass legal muster/scrutiny. Legal is concerned that rows may be edited outside of an interface and the column wouldn't always be updated. I've seen approaches with developers using a concatenate function (shown below) to combine many column values together. This seems code intensive and expensive to compute / cast columns too.
So my questions are:
Given the situational reality, can I improve MERGE performance in any way here?
Should I use a checksum, or hashbytes, and why?
Which hashbytes method makes the most sense here? (I'm only comparing one RAW row to another STAGE row based on an ID match right)?
Did I miss something with functions that might make this comparison faster or easier in the reading
I have done? It seems odd there aren't better functions besides CONCAT available to do this in SQL Server.
I wrote the below code to show some of the ideas I am considering. Is there something better than what I wrote below?
DROP TABLE IF EXISTS MyTable;
CREATE TABLE MyTable
(C1 VARCHAR(10),
C2 VARCHAR(10),
C3 VARCHAR(10)
);
INSERT INTO MyTable
(C1,C2,C3)
VALUES
(NULL,NULL,NULL),
(NULL,NULL,3),
(NULL,2,3),
(1,2,3);
SELECT
HASHBYTES('SHA2_256',
CONCAT(C1,'-',
C2,'-',
C3)) AS HashbytesValueCastWithNoNullCheck,
HASHBYTES('SHA2_256',
CONCAT(CAST(C1 as varchar(max)),'-',
CAST(C2 as varchar(max)),'-',
CAST(C3 as varchar(max)))) AS HashbytesValueCastWithNoNullCheck,
HASHBYTES('SHA2_256',
CONCAT(ISNULL(CAST(C1 as varchar(max)),'UNKNOWN'),'-',
ISNULL(CAST(C2 as varchar(max)),'UNKNOWN'),'-',
ISNULL(CAST(C3 as varchar(max)),'UNKNOWN'))) AS HashbytesValueWithCastWithNullCheck,
CONCAT(ISNULL(CAST(C1 as varchar(max)),'UNKNOWN'),'-',
ISNULL(CAST(C2 as varchar(max)),'UNKNOWN'),'-',
ISNULL(CAST(C3 as varchar(max)),'UNKNOWN')) AS StringValue,
CONCAT(C1,'-',C2,'-',C3) AS ConcatString,
C1,
C2,
C3
FROM
MyTable;
'''
Given the situational reality, can I improve MERGE performance in any way here?
You should test, but storing a hash for every row, computing the hash for the new rows, and comparing based on the (key,hash) should be cheaper than comparing every column.
Should I use a checksum, or hashbytes, and why?
HASHBYTES has a much lower probability of missing a change. Roughly, with CHECKSUM you'll probably eventually miss a change or two, with HASHBYTES you probably won't ever miss a change. See remarks here: BINARY_CHECKSUM.
Did I miss something with functions that might make this comparison faster or easier in the reading I have done?
No. There's no special way to compare multiple columns.
Is there something better than what I wrote below?
You definitely should replace nulls, else a row (1,null,'A') and (1,'A',null) would get the same hash. And you should replace nulls, and delimit, with something that won't appear as a value in any column. And if you have Unicode text, converting to varchar may erase some changes, so it's safer to use nvarchar. eg:
HASHBYTES('SHA2_256',
CONCAT(ISNULL(CAST(C1 as nvarchar(max)),N'~'),N'|',
ISNULL(CAST(C2 as nvarchar(max)),N'~'),N'|',
ISNULL(CAST(C3 as nvarchar(max)),N'~'))) AS HashbytesValueWithCastWithNullCheck
JSON in SQL Server is very fast. So you might try a pattern like:
select t.Id, z.RowJSON, hashbytes('SHA2_256', RowJSON) RowHash
from SomeTable t
cross apply (select t.* for json path) z(RowJSON)

Partial Searching Two Text Fields on SQL Azure - Best Practice

I am trying to ascertain the best way of implementing a partial search on two columns within a table. The aim is to have this search perform as quickly as possible.
Our issue is that our database is hosted on SQL Azure; which does not support FullTextIndexing. This means the only native commands available to us in SQL are CHARINDEX() and LIKE '% %'.
The structure of the query if we were to do it in pure T-SQL would be:
DECLARE #SearchTerm VarChar(255) = 'Luke'
SELECT AU.UserID,
AU.FirstName,
AU.Surname
FROM dbo.Users AU
WHERE AU.FirstName LIKE '%'+#SearchTerm+'%'
OR AU.Surname LIKE '%'+#SearchTerm+'%'
Also available to us is the ability to use Lucene; we already have it set up on a Worker Role on Windows Azure however we would have to maintain the integrity of the data both inside the database and within Lucene.
What I want to find out is:
Is there a better way of performing a LIKE search in T-SQL than what I am using above
If I added a Calculated Column to the table containing both the first and last names would this improve the performance of the query?
Alternatively; if we move to Lucene; would the read performance be that much greater than the above query? (In regards to this; there is under 10,000 rows currently in the dbo.Users table)
Throwing the doors open; is there some method we haven't considered that would make this a whole load easier?
Adding a calculated column containing both first and last names will force the results to contain both the first and the last name, but your SQL above is for matching either the first OR the last name.
If you want to match first AND last name, a calculated column may be faster as there are tricks the database programmer can apply for you (example: Boyer-Moore fast string searching, which gets faster as the pattern size increases).
My experience with Lucene is that it is significantly faster than any database search -- I've seen nothing faster on everyday hardware. But as you say, you will have to keep the Lucene index in sync with the database.

How to do very fast inserts to SQL Server 2008

I have a project that involves recording data from a device directly into a sql table.
I do very little processing in code before writing to sql server (2008 express by the way)
typically i use the sqlhelper class's ExecuteNonQuery method and pass in a stored proc name and list of parameters that the SP expects.
This is very convenient, but i need a much faster way of doing this.
Thanks.
ExecuteNonQuery with an INSERT statement, or even a stored procedure, will get you into thousands of inserts per second range on Express. 4000-5000/sec are easily achievable, I know this for a fact.
What usually slows down individual updates is the wait time for log flush and you need to account for that. The easiest solution is to simply batch commit. Eg. commit every 1000 inserts, or every second. This will fill up the log pages and will amortize the cost of log flush wait over all the inserts in a transaction.
With batch commits you'll probably bottleneck on disk log write performance, which there is nothing you can do about it short of changing the hardware (going raid 0 stripe on log).
If you hit earlier bottlenecks (unlikely) then you can look into batching statements, ie. send one single T-SQL batch with multiple inserts on it. But this seldom pays off.
Of course, you'll need to reduce the size of your writes to a minimum, meaning reduce the width of your table to the minimally needed columns, eliminate non-clustered indexes, eliminate unneeded constraints. If possible, use a Heap instead of a clustered index, since Heap inserts are significantly faster than clustered index ones.
There is little need to use the fast insert interface (ie. SqlBulkCopy). Using ordinary INSERTS and ExecuteNoQuery on batch commits you'll exhaust the drive sequential write throughput much faster than the need to deploy bulk insert. Bulk insert is needed on fast SAN connected machines, and you mention Express so it's probably not the case. There is a perception of the contrary out there, but is simply because people don't realize that bulk insert gives them batch commit, and its the batch commit that speeds thinks up, not the bulk insert.
As with any performance test, make sure you eliminate randomness, and preallocate the database and the log, you don't want to hit db or log growth event during test measurements or during production, that is sooo amateurish.
bulk insert would be the fastest since it is minimally logged
.NET also has the SqlBulkCopy Class
Here is a good way to insert a lot of records using table variables...
...but best to limit it to 1000 records at a time because table variables are "in Memory"
In this example I will insert 2 records into a table with 3 fields -
CustID, Firstname, Lastname
--first create an In-Memory table variable with same structure
--you could also use a temporary table, but it would be slower
declare #MyTblVar table (CustID int, FName nvarchar(50), LName nvarchar(50))
insert into #MyTblVar values (100,'Joe','Bloggs')
insert into #MyTblVar values (101,'Mary','Smith')
Insert into MyCustomerTable
Select * from #MyTblVar
This is typically done by way of a BULK INSERT. Basically, you prepare a file and then issue the BULK INSERT statement and SQL Server copies all the data from the file to the table with the fast method possible.
It does have some restrictions (for example, there's no way to do "update or insert" type of behaviour if you have possibly-existing rows to update), but if you can get around those, then you're unlikely to find anything much faster.
If you mean from .NET then use SqlBulkCopy
Things that can slow inserts include indexes and reads or updates (locks) on the same table. You can speed up situations like yours by avoiding both and inserting individual transactions to a separate holding table with no indexes or other activity. Then batch the holding table to the main table a little less frequently.
It can only really go as fast as your SP will run. Ensure that the table(s) are properly indexed and if you have a clustered index, ensure that it has a narrow, unique, increasing key. Ensure that the remaining indexes and constraints (if any) do not have a lot of overhead.
You shouldn't see much overhead in the ADO.NET layer (I wouldn't necessarily use any other .NET library above SQLCommand). You may be able to use ADO.NET Async methods in order to queue several calls to the stored proc without blocking a single thread in your application (this potentially could free up more throughput than anything else - just like having multiple machines inserting into the database).
Other than that, you really need to tell us more about your requirements.

LINQ Inserts without IDENTITY column

I'm using LINQ, but my database tables do not have an IDENTITY column (although they are using a surrogate Primary Key ID column)
Can this work?
To get the identity values for a table, there is a stored procedure called GetIDValueForOrangeTable(), which looks at a SystemValues table and increments the ID therein.
Is there any way I can get LINQ to get the ID value from this SystemValues table on an insert, rather than the built in IDENTITY?
As an aside, I don't think this is a very good idea, especially not for a web application. I imagine there will be a lot of concurrency conflicts because of this SystemValues lookup. Am I justified in my concern?
Cheers
Duncan
Sure you can make this work with LINQ, and safely, too:
wrap the access to the underlying SystemValues table in the "GetIDValue.....()" function in a TRANSACTION (and not with the READUNCOMMITTED isolation level!), then one and only one user can access that table at any given time and you should be able to safely distribute ID's
call that stored proc from LINQ just before saving your entity and store the ID if you're dealing with a new entity (if the ID hasn't been set yet)
store your entity in the database
That should work - not sure if it's any faster and any more efficient than letting the database handle the work - but it should work - and safely.
Marc
UPDATE:
Something like this (adapt to your needs) will work safely:
CREATE PROCEDURE dbo.GetNextTableID(#TableID INT OUTPUT)
AS BEGIN
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRANSACTION
UPDATE SystemTables
SET MaxTableID = MaxTableID + 1
WHERE ........
SELECT
#TableID = MaxTableID
FROM
dbo.SystemTables
COMMIT TRANSACTION
END
As for performance - as long as you have a reasonable number (less than 50 maybe) of concurrent users, and as long as this SystemTables tables isn't used for much else, then it should perform OK.
You are very justified in your concern. If two users try to insert at the sametime, both might be given the same number unless you do as described by marc_s and put the thing in a transaction. However, if the transaction doesn't wrap around your whole insert as well as the table that contains the id values, you may still have gaps if the outer insert fails (It got a value but then for some other reason didn't insert a record). Since most people do this to avoid gaps (something that is in most cases an unnecessary requirement) it makes life more complicated and still may not achieve the result. Using an identity field is almost always a better choice.

TSQL "LIKE" or Regular Expressions?

I have a bunch (750K) of records in one table that I have to see they're in another table. The second table has millions of records, and the data is something like this:
Source table
9999-A1B-1234X, with the middle part potentially being longer than three digits
Target table
DescriptionPhrase9999-A1B-1234X(9 pages) - yes, the parens and the words are in the field.
Currently I'm running a .net app that loads the source records, then runs through and searches on a like (using a tsql function) to determine if there are any records. If yes, the source table is updated with a positive. If not, the record is left alone.
the app processes about 1000 records an hour. When I did this as a cursor sproc on sql server, I pretty much got the same speed.
Any ideas if regular expressions or any other methodology would make it go faster?
What about doing it all in the DB, rather than pulling records into your .Net app:
UPDATE source_table s SET some_field = true WHERE EXISTS
(
SELECT target_join_field FROM target_table t
WHERE t.target_join_field LIKE '%' + s.source_join_field + '%'
)
This will reduce the total number of queries from 750k update queries down to 1 update.
First I would redesign if at all possible. Better to add a column that contains the correct value and be able to join on it. If you still need the long one. you can use a trigger to extract the data into the column at the time it is inserted.
If you have data you can match on you need neither like '%somestuff%' which can't use indexes or a cursor both of which are performance killers. This should bea set-based task if you have designed properly. If the design is bad and can't be changed to a good design, I see no good way to get good performance using t-SQl and I would attempt the regular expression route. Not knowing how many different prharses and the structure of each, I cannot say if the regular expression route would be easy or even possible. But short of a redesign (which I strongly suggest you do), I don't see another possibility.
BTW if you are working with tables that large, I would resolve to never write another cursor. They are extremely bad for performance especially when you start taking about that size of record. Learn to think in sets not record by record processing.
One thing to be aware of with using a single update (mbeckish's answer) is that the transaction log (enabling a rollback if the query becomes cancelled) will be huge. This will drastically slow down your query. As such it is probably better to proces them in blocks of 1,000 rows or such like.
Also, the condition (b.field like '%' + a.field + '%') will need to check every single record in b (millions) for every record in a (750,000). That equates to more than 750 billion string comparisons. Not great.
The gut feel "index stuff" won't help here either. An index keeps things in order, so the first character(s) dictate the position in the index, not the ones you're interested in.
First Idea
For this reason I would actually consider creating another table, and parsing the long/messy value into something nicer. An example would be just to strip off any text from the last '(' onwards. (This assumes all the values follow that pattern) This would simplify the query condition to (b.field like '%' + a.field)
Still, an index wouldn't help here either though as the important characters are at the end. So, bizarrely, it could well be worth while storing the characters of both tables in reverse order. The index on you temporary table would then come in to use.
It may seem very wastefull to spent that much time, but in this case a small benefit would yield a greate reward. (A few hours work to halve the comparisons from 750billion to 375billion, for example. And if you can get the index in to play you could reduce this a thousand fold thanks to index being tree searches, not just ordered tables...)
Second Idea
Assuming you do copy the target table into a temp table, you may benefit extra from processing them in blocks of 1000 by also deleting the matching records from the target table. (This would only be worthwhile where you delete a meaningful amount from the target table. Such that after all 750,000 records have been checked, the target table is now [for example] half the size that it started at.)
EDIT:
Modified Second Idea
Put the whole target table in to a temp table.
Pre-process the values as much as possible to make the string comparison faster, or even bring indexes in to play.
Loop through each record from the source table one at a time. Use the following logic in your loop...
DELETE target WHERE field LIKE '%' + #source_field + '%'
IF (##row_count = 0)
[no matches]
ELSE
[matches]
The continuous deleting makes the query faster on each loop, and you're only using one query on the data (instead of one to find matches, and a second to delete the matches)
Try this --
update SourceTable
set ContainsBit = 1
from SourceTable t1
join (select TargetField from dbo.TargetTable t2) t2
on charindex(t1.SourceField, t2.TargetField) > 0
First thing is to make sure you have an index for that column on the searched table. Second is to do the LIKE without a % sign on the left side. Check the execution plan to see if you are not doing a table scan on every row.
As le dorfier correctly pointed out, there is little hope if you are using a UDF.
There are lots of ways to skin the cat - I would think that first it would be important to know if this is a one-time operation, or a regular task that needs to be completed regularly.
Not knowing all the details of you problem, if it was me, at this was a one-time (or infrequent operation, which it sounds like it is), I'd probably extract out just the pertinent fields from the two tables including the primary key from the source table and export them down to a local machine as text files. The files sizes will likely be significantly smaller than the full tables in your database.
I'd run it locally on a fast machine using a routine written in something like 'C'/C++ or another "lightweight" language that has raw processing power, and write out a table of primary keys that "match", which I would then load back into the sql server and use it as a basis of an update query (i.e. update source table where id in select id from temp table).
You might spend a few hours writing the routine, but it would run in a fraction of the time you are seeing in sql.
By the sounds of you sql, you may be trying to do 750,000 table scans against a multi-million records table.
Tell us more about the problem.
Holy smoke, what great responses!
system is on disconnected network, so I can't copy paste, but here's the retype
Current UDF:
Create function CountInTrim
(#caseno varchar255)
returns int
as
Begin
declare #reccount int
select #reccount = count(recId) from targettable where title like '%' + #caseNo +'%'
return #reccount
end
Basically, if there's a record count, then there's a match, and the .net app updates the record. The cursor based sproc had the same logic.
Also, this is a one time process, determining which entries in a legacy record/case management system migrated successfully into the new system, so I can't redesign anything. Of course, developers of either system are no longer available, and while I have some sql experience, I am by no means an expert.
I parsed the case numbers from the crazy way the old system had to make the source table, and that's the only thing in common with the new system, the case number format. I COULD attempt to parse out the case number in the new system, then run matches against the two sets, but with a possible set of data like:
DescriptionPhrase1999-A1C-12345(5 pages)
Phrase/Two2000-A1C2F-5432S(27 Pages)
DescPhraseThree2002-B2B-2345R(8 pages)
Parsing that became a bit more complex so I thought I'd keep it simpler.
I'm going to try the single update statement, then fall back to regex in the clr if needed.
I'll update the results. And, since I've already processed more than half the records, that should help.
Try either Dan R's update query from above:
update SourceTable
set ContainsBit = 1
from SourceTable t1
join (select TargetField
from dbo.TargetTable t2) t2
on charindex(t1.SourceField, t2.TargetField) > 0
Alternatively, if the timeliness of this is important and this is sql 2005 or later, then this would be a classic use for a calculated column using SQL CLR code with Regular Expressions - no need for a standalone app.

Resources