Problem with value assignment inside a for loop - arrays

There is silly bug in my code. I would appreciate to any help. I know this is language (C) specific (because I have some experience with Python & JS).
I'm trying to split source array into two parts.
When I try to assign value of current index of source array to another array, it works fine but only until the end of for loop. After loop completion these arrays turns out with completely different values.
Please check out my code below:
#include <stdio.h>
//#include <cs50.h>
int merge_sort(int unsorted_array[], int size_of_arr);
int main(void)
{
int unar[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; // unsorted array
int len_of_arr = sizeof(unar) / sizeof(int); // finding lenght of array
merge_sort(unar, len_of_arr);
}
int merge_sort(int unsorted_array[], int size_of_arr)
{
// dividing
int ls_len; // lenght of left side of an array
int rs_len; // lenght of right side of an array
if (size_of_arr % 2 == 0) // if lenght of an array is even then lenght of each half equals: lenght of arr / 2
{
ls_len = size_of_arr / 2;
rs_len = size_of_arr / 2;
}
else // else lenght of arr / 2 and right half++
{
ls_len = size_of_arr / 2;
rs_len = size_of_arr / 2 + 1;
}
int unsorted_ls[ls_len]; // unsorted_array_length // 2
int unsorted_rs[rs_len]; // if array_len is odd ? array_len / 2 + 1 : array_len / 2
printf("left half len: %i\nRight half len: %i\n", ls_len, rs_len);
for (int i = 0; i < size_of_arr; i++)
{
if (i < ls_len)
{
unsorted_ls[i] = unsorted_array[i];
printf("Current value of original array: %i\n", unsorted_array[i]);
printf("Currently assigned value of left half: %i\n\n", unsorted_ls[i]); // current
} else
{
unsorted_rs[i] = unsorted_array[i];
printf("Current value of original array: %i\n", unsorted_rs[i]);
printf("Currently assigned value of right half: %i\n\n", unsorted_array[i]);
}
}
printf("Left half outside of for loop: ");
for (int i = 0; i < ls_len; i++)
{
printf("%i", unsorted_ls[i]);
}
printf("\n");
printf("Right half outside of for loop: ");
for (int i = 0; i < rs_len; i++)
{
printf("%i", unsorted_rs[i]);
}
printf("\n");
// sorting // not implemented yet
// int sorted_left_side[] = merge_sort(unsorted_left_half);
// int sorted_right_side[] = merge_sort(unsorted_right_half);
// merging // not implemented yet
// // for (int i = 0; )
// return sorted_array;
return 0;
}

This assignment statement
unsorted_rs[i] = unsorted_array[i];
invokes undefined behavior because there is an attempt to access memory beyond the array unsorted_rs when the value of the index i is greater than or equal to ls_len.
You should write
unsorted_rs[i - ls_len] = unsorted_array[i];
Pay attention to that instead of this if-else statement
if (size_of_arr % 2 == 0) // if lenght of an array is even then lenght of each half equals: lenght of arr / 2
{
ls_len = size_of_arr / 2;
rs_len = size_of_arr / 2;
}
else // else lenght of arr / 2 and right half++
{
ls_len = size_of_arr / 2;
rs_len = size_of_arr / 2 + 1;
}
you could just write
ls_len = size_of_arr / 2;
rs_len = size_of_arr - ls_len;

Related

C - getting prime numbers using this algorithm

I am fighting some simple question.
I want to get prime numbers
I will use this algorithm
and... I finished code writing like this.
int k = 0, x = 1, n, prim, lim = 1;
int p[100000];
int xCount=0, limCount=0, kCount=0;
p[0] = 2;
scanf("%d", &n);
start = clock();
do
{
x += 2; xCount++;
if (sqrt(p[lim]) <= x)
{
lim++; limCount++;
}
k = 2; prim = true;
while (prim && k<lim)
{
if (x % p[k] == 0)
prim = false;
k++; kCount++;
}
if (prim == true)
{
p[lim] = x;
printf("prime number : %d\n", p[lim]);
}
} while (k<n);
I want to check how much repeat this code (x+=2; lim++; k++;)
so I used xCount, limCount, kCount variables.
when input(n) is 10, the results are x : 14, lim : 9, k : 43. wrong answer.
answer is (14,3,13).
Did I write code not well?
tell me correct point plz...
If you want to adapt an algorithm to your needs, it's always a good idea to implement it verbatim first, especially if you have pseudocode that is detailed enough to allow for such a verbatim translation into C-code (even more so with Fortran but I digress)
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
int main (void){
// type index 1..n
int index;
// var
// x: integer
int x;
//i, k, lim: integer
int i, k, lim;
// prim: boolean
bool prim;
// p: array[index] of integer {p[i] = i'th prime number}
/*
We cannot do that directly, we need to know the value of "index" first
*/
int res;
res = scanf("%d", &index);
if(res != 1 || index < 1){
fprintf(stderr,"Only integral values >= 1, please. Thank you.\n");
return EXIT_FAILURE;
}
/*
The array from the pseudocode is a one-based array, take care
*/
int p[index + 1];
// initialize the whole array with distinguishable values in case of debugging
for(i = 0;i<index;i++){
p[i] = -i;
}
/*
Your variables
*/
int lim_count = 0, k_count = 0;
// begin
// p[1] = 2
p[1] = 2;
// write(2)
puts("2");
// x = 1
x = 1;
// lim = 1
lim = 1;
// for i:=2 to n do
for(i = 2;i < index; i++){
// repeat (until prim)
do {
// x = x + 2
x += 2;
// if(sqr(p[lim]) <= x) then
if(p[lim] * p[lim] <= x){
// lim = lim +1
lim++;
lim_count++;
}
// k = 2
k = 2;
// prim = true
prim = true;
// while (prim and (k < lim)) do
while (prim && (k < lim)){
// prim = "x is not divisible by p[k]"
if((x % p[k]) == 0){
prim = false;
}
// k = k + 1
k++;
k_count++;
}
// (repeat) until prim
} while(!prim);
// p[i] := x
p[i] = x;
// write(x)
printf("%d\n",x);
}
// end
printf("x = %d, lim_count = %d, k_count = %d \n",x,lim_count,k_count);
for(i = 0;i<index;i++){
printf("%d, ",p[i]);
}
putchar('\n');
return EXIT_SUCCESS;
}
It will print an index - 1 number of primes starting at 2.
You can easily change it now--for example: print only the primes up to index instead of index - 1 primes.
In your case the numbers for all six primes up to 13 gives
x = 13, lim_count = 2, k_count = 3
which is distinctly different from the result you want.
Your translation looks very sloppy.
for i:= 2 to n do begin
must translate to:
for (i=2; i<=n; i++)
repeat
....
until prim
must translate to:
do {
...
} while (!prim);
The while prim... loop is inside the repeat...until prim loop.
I leave it to you to apply this to your code and to check that all constructs have been properly translated. it doesn't look too difficult to do that correctly.
Note: it looks like the algorithm uses 1-based arrays whereas C uses 0-based arrays.

Distribute elements between equivalent arrays to achieve balanced sums

I am given a set of elements from, say, 10 to 21 (always sequential),
I generate arrays of the same size, where size is determined runtime.
Example of 3 generated arrays (arrays # is dynamic as well as # of elements in all arrays, where some elements can be 0s - not used):
A1 = [10, 11, 12, 13]
A2 = [14, 15, 16, 17]
A3 = [18, 19, 20, 21]
these generated arrays will be given to different processes to to do some computations on the elements. My aim is to balance the load for every process that will get an array. What I mean is:
With given example, there are
A1 = 46
A2 = 62
A3 = 78
potential iterations over elements given for each thread.
I want to rearrange initial arrays to give equal amount of work for each process, so for example:
A1 = [21, 11, 12, 13] = 57
A2 = [14, 15, 16, 17] = 62
A3 = [18, 19, 20, 10] = 67
(Not an equal distribution, but more fair than initial). Distributions can be different, as long as they approach some optimal distribution and are better than the worst (initial) case of 1st and last arrays. As I see it, different distributions can be achieved using different indexing [where the split of arrays is made {can be uneven}]
This works fine for given example, but there may be weird cases..
So, I see this as a reflection problem (due to the lack of knowledge of proper definition), where arrays should be seen with a diagonal through them, like:
10|111213
1415|1617
181920|21
And then an obvious substitution can be done..
I tried to implement like:
if(rest == 0)
payload_size = (upper-lower)/(processes-1);
else
payload_size = (upper-lower)/(processes-1) + 1;
//printf("payload size: %d\n", payload_size);
long payload[payload_size];
int m = 0;
int k = payload_size/2;
int added = 0; //track what been added so far (to skip over already added elements)
int added2 = 0; // same as 'added'
int p = 0;
for (i = lower; i <= upper; i=i+payload_size){
for(j = i; j<(i+payload_size); j++){
if(j <= upper){
if((j-i) > k){
if(added2 > j){
added = j;
payload[(j-i)] = j;
printf("1 adding data: %d at location: %d\n", payload[(j-i)], (j-i));
}else{
printf("else..\n");
}
}else{
if(added < upper - (m+1)){
payload[(j-i)] = upper - (p*payload_size) - (m++);
added2 = payload[(j-i)];
printf("2 adding data: %d at location: %d\n", payload[(j-i)], (j-i));
}else{
payload[(j-i)] = j;
printf("2.5 adding data: %d at location: %d\n", payload[(j-i)], (j-i));
}
}
}else{ payload[(j-i)] = '\0'; }
}
p++;
k=k/2;
//printf("send to proc: %d\n", ((i)/payload_size)%(processes-1)+1);
}
..but failed horribly.
You definitely can see the problem in the implementation, because it is poorly scalable, not complete, messy, badly written and so on, and on, and on, ...
So, I need help either with the implementation or with an idea of a better approach to do what I want to achieve, given the description.
P.S. I need the solution to be as 'in-liney' as possible (avoid loop nesting) - that is why I am using bunch of flags and global indexes.
Surely this can be done with extra loops and unnecessary iterations. I invite people that can and appreciate t̲h̲e̲ ̲a̲r̲t̲ ̲o̲f̲ ̲i̲n̲d̲e̲x̲i̲n̲g̲ when it comes to arrays.
I am sure there is a solution somewhere out there, but I just cannot make an appropriate Google query to find it.
Hint? I thought of using index % size_of_my_data to achieve this task..
P.S. Application: described here
Here is an O(n) solution I wrote using deque (double-ended queue, a deque is not necessary and a simple array can be used, but a deque makes the code clean because of popRight and popLeft). The code is Python, not pseudocode, but it should be pretty to understand (because it's Python).:
def balancingSumProblem(seqStart = None, seqStop = None, numberOfArrays = None):
from random import randint
from collections import deque
seq = deque(xrange(seqStart or randint(1, 10),
seqStop and seqStop + 1 or randint(11,30)))
arrays = [[] for _ in xrange(numberOfArrays or randint(1,6))]
print "# of elements: {}".format(len(seq))
print "# of arrays: {}".format(len(arrays))
averageNumElements = float(len(seq)) / len(arrays)
print "average number of elements per array: {}".format(averageNumElements)
oddIteration = True
try:
while seq:
for array in arrays:
if len(array) < averageNumElements and oddIteration:
array.append(seq.pop()) # pop() is like popright()
elif len(array) < averageNumElements:
array.append(seq.popleft())
oddIteration = not oddIteration
except IndexError:
pass
print arrays
print [sum(array) for array in arrays]
balancingSumProblem(10,21,3) # Given Example
print "\n---------\n"
balancingSumProblem() # Randomized Test
Basically, from iteration to iteration, it alternates between grabbing large elements and distributing them evenly in the arrays and grabbing small elements and distributing them evenly in the arrays. It goes from out to in (though you could go from in to out) and tries to use what should be the average number of elements per array to balance it out further.
It's not 100 percent accurate with all tests but it does a good job with most randomized tests. You can try running the code here: http://repl.it/cJg
With a simple sequence to assign, you can just iteratively add the min and max elements to each list in turn. There are some termination details to fix up, but that's the general idea. Applied to your example the output would look like:
john-schultzs-macbook-pro:~ jschultz$ ./a.out
10 21 13 18 = 62
11 20 14 17 = 62
12 19 15 16 = 62
A simple reflection assignment like this will be optimal when num_procs evenly divides num_elems. It will be sub-optimal, but still decent, when it doesn't:
#include <stdio.h>
int compute_dist(int lower, int upper, int num_procs)
{
if (lower > upper || num_procs <= 0)
return -1;
int num_elems = upper - lower + 1;
int num_elems_per_proc_floor = num_elems / num_procs;
int num_elems_per_proc_ceil = num_elems_per_proc_floor + (num_elems % num_procs != 0);
int procs[num_procs][num_elems_per_proc_ceil];
int i, j, sum;
// assign pairs of (lower, upper) to each process until we can't anymore
for (i = 0; i + 2 <= num_elems_per_proc_floor; i += 2)
for (j = 0; j < num_procs; ++j)
{
procs[j][i] = lower++;
procs[j][i+1] = upper--;
}
// handle left overs similarly to the above
// NOTE: actually you could use just this loop alone if you set i = 0 here, but the above loop is more understandable
for (; i < num_elems_per_proc_ceil; ++i)
for (j = 0; j < num_procs; ++j)
if (lower <= upper)
procs[j][i] = ((0 == i % 2) ? lower++ : upper--);
else
procs[j][i] = 0;
// print assignment results
for (j = 0; j < num_procs; ++j)
{
for (i = 0, sum = 0; i < num_elems_per_proc_ceil; ++i)
{
printf("%d ", procs[j][i]);
sum += procs[j][i];
}
printf(" = %d\n", sum);
}
return 0;
}
int main()
{
compute_dist(10, 21, 3);
return 0;
}
I have used this implementation, which I mentioned in this report (Implementation works for cases I've used for testing (1-15K) (1-30K) and (1-100K) datasets. I am not saying that it will be valid for all the cases):
int aFunction(long lower, long upper, int payload_size, int processes)
{
long result, i, j;
MPI_Status status;
long payload[payload_size];
int m = 0;
int k = (payload_size/2)+(payload_size%2)+1;
int lastAdded1 = 0;
int lastAdded2 = 0;
int p = 0;
int substituted = 0;
int allowUpdate = 1;
int s;
int times = 1;
int times2 = 0;
for (i = lower; i <= upper; i=i+payload_size){
for(j = i; j<(i+payload_size); j++){
if(j <= upper){
if(k != 0){
if((j-i) >= k){
payload[(j-i)] = j- (m);
lastAdded2 = payload[(j-i)];
}else{
payload[(j-i)] = upper - (p*payload_size) - (m++) + (p*payload_size);
if(allowUpdate){
lastAdded1 = payload[(j-i)];
allowUpdate = 0;
}
}
}else{
int n;
int from = lastAdded1 > lastAdded2 ? lastAdded2 : lastAdded1;
from = from + 1;
int to = lastAdded1 > lastAdded2 ? lastAdded1 : lastAdded2;
int tempFrom = (to-from)/payload_size + ((to-from)%payload_size>0 ? 1 : 0);
for(s = 0; s < tempFrom; s++){
int restIndex = -1;
for(n = from; n < from+payload_size; n++){
restIndex = restIndex + 1;
payload[restIndex] = '\0';
if(n < to && n >= from){
payload[restIndex] = n;
}else{
payload[restIndex] = '\0';
}
}
from = from + payload_size;
}
return 0;
}
}else{ payload[(j-i)] = '\0'; }
}
p++;
k=(k/2)+(k%2)+1;
allowUpdate = 1;
}
return 0;
}

Printing to output: integer as sum of powers of 2

I had an exam, and I've been struggling ever since.
You have an array of integers(ex. 13, 6, 21, 4), and I need to make an output that looks like:
13 = 2^3 + 2^2 + 2^0
6 = 2^2 + 2^1
21 = 2^4 + 2^2 + 2^0
4 = 2^2
here's what i've got so far.
#include <stdio.h>
#define MAX 100
int main() {
int niz[MAX], nizb, n, i, ones, k;
while(1) {
printf("Array length: ");
scanf("%d", &n);
if (n<=0 || n>MAX) break;
printf("Array elements: ");
for(i=0;i<n;i++){
scanf("%d", &niz[i]);
if (niz[i] <=0) {
printf("Error! Wrong value. Enter new one: ");
scanf("%d", &niz[i]);
}
}
for(i=0;i<n;i++) {
nizb = niz[i];
ones = 0;
for(k=0; k < 16; k++) {
//What should i do here?
}
}
}
}
I'm stuck here. I dont know how many bits should i use, and how does C sees those bits of integer. I'm using var 'k' to add to a string that is in format '2^3 + 2^2 ...', where k is the value of 'for' iteration. I have made an assumption that length of the integer is 16, but im really not sure since we do this on a sheet of paper.
I want to say BIG THANKS TO EVERYONE!!!
You can calculate how many bits to use by using the sizeof operator and CHAR_BIT:
int bitsPerInt = sizeof(int) * CHAR_BIT;
CHAR_BIT is definied in limits.h.
After you have that limit, you can use the bitwise & operator to extract each bit:
for (k = bitsPerInt - 1; k >= 0; k--)
{
if (nizb & (1U << k))
// output
else
// don't
}
I'll leave the details up to you.
Aside: It looks like you're trying to use niz as an array, but you haven't declared it as one. Does this code even compile? Also, the return value of main should be int.
Not sure what this has to do with twos-complement (which is a particular way of representing negative numbers). What you are trying to do is express an integer as a sum of powers of 2, apparently. Here's the way I'd do it, which isn't necessarily better or worse than the other answers...
void powersum(int n)
{ int powers[sizeof(int) << 3];
int i;
char *sep = "";
printf("%d = ", n);
powers[0] = 0;
for (i = 0; n; n >>= 1, ++i)
powers[i] = n & 1;
while (--i >= 0)
{ if (powers[i])
{ printf("%s2^%d", sep, i);
sep = " + ";
}
}
printf("\n");
}
EDIT: Here's another version that doesn't use the stack-allocated array, but as a tradeoff has to go around the loop more (once for each bit, as opposed to only looping until the highest 1-bit is found):
void powersum2(int n)
{ int i = (sizeof(int) << 3) - 2;
int m = 1 << i;
char *sep = "";
printf("%d = ", n);
while (m)
{ if (n & m)
{ printf("%s2^%d", sep, i);
sep = " + ";
}
m >>= 1;
--i;
}
printf("\n");
}
This is complete conjecture, since I'm not really good with math, but I think I'd go about it like this:
int potency = 0, base = 1;
while(base < NumberInQuestion) {
base *= 2;
++potency;
}
After the loop finishes, you'll know the highest potency which still fits into 'Number'.
Number -= base/2; //Removes the base you just calculated from the number.
printf("2^%d", potency);
Rinse and repeat, until Number falls to 0, which should be at 2^0 at latest.
For your use-case, the code may look somewhat like this:
for(i=0; i < n; ++i) {
int Number = niz[i];
while(Number > 0) {
int potency = 0, base = 1;
do { //Executes at least once, making a number of '1' possible.
base *= 2;
++potency;
} while(base < Number);
Number -= base/2; //Reverts the last step you made, making the 'base' smaller than 'Number'.
printf("2^%d", potency);
}
}
There's a possible alternative, which can give you a more complete picture of things and will save you iterations. For this we use a two-step process.
for(i=0; i < n; ++i) {
int Number = niz[i];
int potency = 0, base = 1;
do { //Executes at least once, making a number of '1' possible.
base *= 2;
++potency;
} while(base < Number);
base /= 2; //Reverses the last iteration.
//At this point, we know the maximum potency, which still fits into the number.
//In regards of base 2, we know the Most Significant Bit.
while(base > 0) {
Number -= base; //Removes the MSD (Most significant digit)
printf("2^%d", potency); //Prints your '1'.
while(base > Number) { //Executes at least once.
base /= 2; //Goes back one potency. (Ends at '0' latest.)
--potency; //For each potency (except for first), it's a '0'.
}
}
}
quotient = niz[i];
int k=0,c[MAX];
while(quotient!=0){
binaryNumber[i++]= quotient % 2; //this will convert your numbers to binary form
quotient = quotient / 2; //and store in reverse in array
}
for(j = 0 ;j<i;j++)
{
if(binaryNumber[j]==1) */e.g binary of 4 is stored in array as 001 ie 1 atpos2*/
{ c[k]=j;
k++;}
}
while(k--)
printf("2^%d +",c[k]);
If you can tolerate a GCC-dependency, a hack on #twalberg's solution get's really nice and small ;)
void powersum(int n)
{
char *sep = "";
printf("%d = ", n);
while (n) {
int pos = 31 - __builtin_clz(n);
printf("%s2^%d", sep, pos);
sep = " + ";
n ^= 1 << pos;
}
printf("\n");
}

Optimization of Brute-Force algorithm or Alternative?

I have a simple (brute-force) recursive solver algorithm that takes lots of time for bigger values of OpxCnt variable. For small values of OpxCnt, no problem, works like a charm. The algorithm gets very slow as the OpxCnt variable gets bigger. This is to be expected but any optimization or a different algorithm ?
My final goal is that :: I want to read all the True values in the map array by
executing some number of read operations that have the minimum operation
cost. This is not the same as minimum number of read operations.
At function completion, There should be no True value unread.
map array is populated by some external function, any member may be 1 or 0.
For example ::
map[4] = 1;
map[8] = 1;
1 read operation having Adr=4,Cnt=5 has the lowest cost (35)
whereas
2 read operations having Adr=4,Cnt=1 & Adr=8,Cnt=1 costs (27+27=54)
#include <string.h>
typedef unsigned int Ui32;
#define cntof(x) (sizeof(x) / sizeof((x)[0]))
#define ZERO(x) do{memset(&(x), 0, sizeof(x));}while(0)
typedef struct _S_MB_oper{
Ui32 Adr;
Ui32 Cnt;
}S_MB_oper;
typedef struct _S_MB_code{
Ui32 OpxCnt;
S_MB_oper OpxLst[20];
Ui32 OpxPay;
}S_MB_code;
char map[65536] = {0};
static int opx_ListOkey(S_MB_code *px_kod, char *pi_map)
{
int cost = 0;
char map[65536];
memcpy(map, pi_map, sizeof(map));
for(Ui32 o = 0; o < px_kod->OpxCnt; o++)
{
for(Ui32 i = 0; i < px_kod->OpxLst[o].Cnt; i++)
{
Ui32 adr = px_kod->OpxLst[o].Adr + i;
// ...
if(adr < cntof(map)){map[adr] = 0x0;}
}
}
for(Ui32 i = 0; i < cntof(map); i++)
{
if(map[i] > 0x0){return -1;}
}
// calculate COST...
for(Ui32 o = 0; o < px_kod->OpxCnt; o++)
{
cost += 12;
cost += 13;
cost += (2 * px_kod->OpxLst[o].Cnt);
}
px_kod->OpxPay = (Ui32)cost; return cost;
}
static int opx_FindNext(char *map, int pi_idx)
{
int i;
if(pi_idx < 0){pi_idx = 0;}
for(i = pi_idx; i < 65536; i++)
{
if(map[i] > 0x0){return i;}
}
return -1;
}
static int opx_FindZero(char *map, int pi_idx)
{
int i;
if(pi_idx < 0){pi_idx = 0;}
for(i = pi_idx; i < 65536; i++)
{
if(map[i] < 0x1){return i;}
}
return -1;
}
static int opx_Resolver(S_MB_code *po_bst, S_MB_code *px_wrk, char *pi_map, Ui32 *px_idx, int _min, int _max)
{
int pay, kmax, kmin = 1;
if(*px_idx >= px_wrk->OpxCnt)
{
return opx_ListOkey(px_wrk, pi_map);
}
_min = opx_FindNext(pi_map, _min);
// ...
if(_min < 0){return -1;}
kmax = (_max - _min) + 1;
// must be less than 127 !
if(kmax > 127){kmax = 127;}
// is this recursion the last one ?
if(*px_idx >= (px_wrk->OpxCnt - 1))
{
kmin = kmax;
}
else
{
int zero = opx_FindZero(pi_map, _min);
// ...
if(zero > 0)
{
kmin = zero - _min;
// enforce kmax limit !?
if(kmin > kmax){kmin = kmax;}
}
}
for(int _cnt = kmin; _cnt <= kmax; _cnt++)
{
px_wrk->OpxLst[*px_idx].Adr = (Ui32)_min;
px_wrk->OpxLst[*px_idx].Cnt = (Ui32)_cnt;
(*px_idx)++;
pay = opx_Resolver(po_bst, px_wrk, pi_map, px_idx, (_min + _cnt), _max);
(*px_idx)--;
if(pay > 0)
{
if((Ui32)pay < po_bst->OpxPay)
{
memcpy(po_bst, px_wrk, sizeof(*po_bst));
}
}
}
return (int)po_bst->OpxPay;
}
int main()
{
int _max = -1, _cnt = 0;
S_MB_code best = {0};
S_MB_code work = {0};
// SOME TEST DATA...
map[ 4] = 1;
map[ 8] = 1;
/*
map[64] = 1;
map[72] = 1;
map[80] = 1;
map[88] = 1;
map[96] = 1;
*/
// SOME TEST DATA...
for(int i = 0; i < cntof(map); i++)
{
if(map[i] > 0)
{
_max = i; _cnt++;
}
}
// num of Opx can be as much as num of individual bit(s).
if(_cnt > cntof(work.OpxLst)){_cnt = cntof(work.OpxLst);}
best.OpxPay = 1000000000L; // invalid great number...
for(int opx_cnt = 1; opx_cnt <= _cnt; opx_cnt++)
{
int rv;
Ui32 x = 0;
ZERO(work); work.OpxCnt = (Ui32)opx_cnt;
rv = opx_Resolver(&best, &work, map, &x, -42, _max);
}
return 0;
}
You can use dynamic programming to calculate the lowest cost that covers the first i true values in map[]. Call this f(i). As I'll explain, you can calculate f(i) by looking at all f(j) for j < i, so this will take time quadratic in the number of true values -- much better than exponential. The final answer you're looking for will be f(n), where n is the number of true values in map[].
A first step is to preprocess map[] into a list of the positions of true values. (It's possible to do DP on the raw map[] array, but this will be slower if true values are sparse, and cannot be faster.)
int pos[65536]; // Every position *could* be true
int nTrue = 0;
void getPosList() {
for (int i = 0; i < 65536; ++i) {
if (map[i]) pos[nTrue++] = i;
}
}
When we're looking at the subproblem on just the first i true values, what we know is that the ith true value must be covered by a read that ends at i. This block could start at any position j <= i; we don't know, so we have to test all i of them and pick the best. The key property (Optimal Substructure) that enables DP here is that in any optimal solution to the i-sized subproblem, if the read that covers the ith true value starts at the jth true value, then the preceding j-1 true values must be covered by an optimal solution to the (j-1)-sized subproblem.
So: f(i) = min(f(j) + score(pos(j+1), pos(i)), with the minimum taken over all 1 <= j < i. pos(k) refers to the position of the kth true value in map[], and score(x, y) is the score of a read from position x to position y, inclusive.
int scores[65537]; // We effectively start indexing at 1
scores[0] = 0; // Covering the first 0 true values requires 0 cost
// Calculate the minimum score that could allow the first i > 0 true values
// to be read, and store it in scores[i].
// We can assume that all lower values have already been calculated.
void calcF(int i) {
int bestStart, bestScore = INT_MAX;
for (int j = 0; j < i; ++j) { // Always executes at least once
int attemptScore = scores[j] + score(pos[j + 1], pos[i]);
if (attemptScore < bestScore) {
bestStart = j + 1;
bestScore = attemptScore;
}
}
scores[i] = bestScore;
}
int score(int i, int j) {
return 25 + 2 * (j + 1 - i);
}
int main(int argc, char **argv) {
// Set up map[] however you want
getPosList();
for (int i = 1; i <= nTrue; ++i) {
calcF(i);
}
printf("Optimal solution has cost %d.\n", scores[nTrue]);
return 0;
}
Extracting a Solution from Scores
Using this scheme, you can calculate the score of an optimal solution: it's simply f(n), where n is the number of true values in map[]. In order to actually construct the solution, you need to read back through the table of f() scores to infer which choice was made:
void printSolution() {
int i = nTrue;
while (i) {
for (int j = 0; j < i; ++j) {
if (scores[i] == scores[j] + score(pos[j + 1], pos[i])) {
// We know that a read can be made from pos[j + 1] to pos[i] in
// an optimal solution, so let's make it.
printf("Read from %d to %d for cost %d.\n", pos[j + 1], pos[i], score(pos[j + 1], pos[i]));
i = j;
break;
}
}
}
}
There may be several possible choices, but all of them will produce optimal solutions.
Further Speedups
The solution above will work for an arbitrary scoring function. Because your scoring function has a simple structure, it may be that even faster algorithms can be developed.
For example, we can prove that there is a gap width above which it is always beneficial to break a single read into two reads. Suppose we have a read from position x-a to x, and another read from position y to y+b, with y > x. The combined costs of these two separate reads are 25 + 2 * (a + 1) + 25 + 2 * (b + 1) = 54 + 2 * (a + b). A single read stretching from x-a to y+b would cost 25 + 2 * (y + b - x + a + 1) = 27 + 2 * (a + b) + 2 * (y - x). Therefore the single read costs 27 - 2 * (y - x) less. If y - x > 13, this difference goes below zero: in other words, it can never be optimal to include a single read that spans a gap of 12 or more.
To make use of this property, inside calcF(), final reads could be tried in decreasing order of start-position (i.e. in increasing order of width), and the inner loop stopped as soon as any gap width exceeds 12. Because that read and all subsequent wider reads tried would contain this too-large gap and therefore be suboptimal, they need not be tried.

Find the 2nd largest element in an array with minimum number of comparisons

For an array of size N, what is the number of comparisons required?
The optimal algorithm uses n+log n-2 comparisons. Think of elements as competitors, and a tournament is going to rank them.
First, compare the elements, as in the tree
|
/ \
| |
/ \ / \
x x x x
this takes n-1 comparisons and each element is involved in comparison at most log n times. You will find the largest element as the winner.
The second largest element must have lost a match to the winner (he can't lose a match to a different element), so he's one of the log n elements the winner has played against. You can find which of them using log n - 1 comparisons.
The optimality is proved via adversary argument. See https://math.stackexchange.com/questions/1601 or http://compgeom.cs.uiuc.edu/~jeffe/teaching/497/02-selection.pdf or http://www.imada.sdu.dk/~jbj/DM19/lb06.pdf or https://www.utdallas.edu/~chandra/documents/6363/lbd.pdf
You can find the second largest value with at most 2·(N-1) comparisons and two variables that hold the largest and second largest value:
largest := numbers[0];
secondLargest := null
for i=1 to numbers.length-1 do
number := numbers[i];
if number > largest then
secondLargest := largest;
largest := number;
else
if number > secondLargest then
secondLargest := number;
end;
end;
end;
Use Bubble sort or Selection sort algorithm which sorts the array in descending order. Don't sort the array completely. Just two passes. First pass gives the largest element and second pass will give you the second largest element.
No. of comparisons for first pass: n-1
No. of comparisons for second pass: n-2
Total no. of comparison for finding second largest: 2n-3
May be you can generalize this algorithm. If you need the 3rd largest then you make 3 passes.
By above strategy you don't need any temporary variables as Bubble sort and Selection sort are in place sorting algorithms.
Here is some code that might not be optimal but at least actually finds the 2nd largest element:
if( val[ 0 ] > val[ 1 ] )
{
largest = val[ 0 ]
secondLargest = val[ 1 ];
}
else
{
largest = val[ 1 ]
secondLargest = val[ 0 ];
}
for( i = 2; i < N; ++i )
{
if( val[ i ] > secondLargest )
{
if( val[ i ] > largest )
{
secondLargest = largest;
largest = val[ i ];
}
else
{
secondLargest = val[ i ];
}
}
}
It needs at least N-1 comparisons if the largest 2 elements are at the beginning of the array and at most 2N-3 in the worst case (one of the first 2 elements is the smallest in the array).
case 1-->9 8 7 6 5 4 3 2 1
case 2--> 50 10 8 25 ........
case 3--> 50 50 10 8 25.........
case 4--> 50 50 10 8 50 25.......
public void second element()
{
int a[10],i,max1,max2;
max1=a[0],max2=a[1];
for(i=1;i<a.length();i++)
{
if(a[i]>max1)
{
max2=max1;
max1=a[i];
}
else if(a[i]>max2 &&a[i]!=max1)
max2=a[i];
else if(max1==max2)
max2=a[i];
}
}
Sorry, JS code...
Tested with the two inputs:
a = [55,11,66,77,72];
a = [ 0, 12, 13, 4, 5, 32, 8 ];
var first = Number.MIN_VALUE;
var second = Number.MIN_VALUE;
for (var i = -1, len = a.length; ++i < len;) {
var dist = a[i];
// get the largest 2
if (dist > first) {
second = first;
first = dist;
} else if (dist > second) { // && dist < first) { // this is actually not needed, I believe
second = dist;
}
}
console.log('largest, second largest',first,second);
largest, second largest 32 13
This should have a maximum of a.length*2 comparisons and only goes through the list once.
I know this is an old question, but here is my attempt at solving it, making use of the Tournament Algorithm. It is similar to the solution used by #sdcvvc , but I am using two-dimensional array to store elements.
To make things work, there are two assumptions:
1) number of elements in the array is the power of 2
2) there are no duplicates in the array
The whole process consists of two steps:
1. building a 2D array by comparing two by two elements. First row in the 2D array is gonna be the entire input array. Next row contains results of the comparisons of the previous row. We continue comparisons on the newly built array and keep building the 2D array until an array of only one element (the largest one) is reached.
2. we have a 2D-array where last row contains only one element: the largest one. We continue going from the bottom to the top, in each array finding the element that was "beaten" by the largest and comparing it to the current "second largest" value. To find the element beaten by the largest, and to avoid O(n) comparisons, we must store the index of the largest element in the previous row. That way we can easily check the adjacent elements. At any level (above root level),the adjacent elements are obtained as:
leftAdjacent = rootIndex*2
rightAdjacent = rootIndex*2+1,
where rootIndex is index of the largest(root) element at the previous level.
I know the question asks for C++, but here is my attempt at solving it in Java. (I've used lists instead of arrays, to avoid messy changing of the array size and/or unnecessary array size calculations)
public static Integer findSecondLargest(List<Integer> list) {
if (list == null) {
return null;
}
if (list.size() == 1) {
return list.get(0);
}
List<List<Integer>> structure = buildUpStructure(list);
System.out.println(structure);
return secondLargest(structure);
}
public static List<List<Integer>> buildUpStructure(List<Integer> list) {
List<List<Integer>> newList = new ArrayList<List<Integer>>();
List<Integer> tmpList = new ArrayList<Integer>(list);
newList.add(tmpList);
int n = list.size();
while (n>1) {
tmpList = new ArrayList<Integer>();
for (int i = 0; i<n; i=i+2) {
Integer i1 = list.get(i);
Integer i2 = list.get(i+1);
tmpList.add(Math.max(i1, i2));
}
n/= 2;
newList.add(tmpList);
list = tmpList;
}
return newList;
}
public static Integer secondLargest(List<List<Integer>> structure) {
int n = structure.size();
int rootIndex = 0;
Integer largest = structure.get(n-1).get(rootIndex);
List<Integer> tmpList = structure.get(n-2);
Integer secondLargest = Integer.MIN_VALUE;
Integer leftAdjacent = -1;
Integer rightAdjacent = -1;
for (int i = n-2; i>=0; i--) {
rootIndex*=2;
tmpList = structure.get(i);
leftAdjacent = tmpList.get(rootIndex);
rightAdjacent = tmpList.get(rootIndex+1);
if (leftAdjacent.equals(largest)) {
if (rightAdjacent > secondLargest) {
secondLargest = rightAdjacent;
}
}
if (rightAdjacent.equals(largest)) {
if (leftAdjacent > secondLargest) {
secondLargest = leftAdjacent;
}
rootIndex=rootIndex+1;
}
}
return secondLargest;
}
Suppose provided array is inPutArray = [1,2,5,8,7,3] expected O/P -> 7 (second largest)
take temp array
temp = [0,0], int dummmy=0;
for (no in inPutArray) {
if(temp[1]<no)
temp[1] = no
if(temp[0]<temp[1]){
dummmy = temp[0]
temp[0] = temp[1]
temp[1] = temp
}
}
print("Second largest no is %d",temp[1])
PHP version of the Gumbo algorithm: http://sandbox.onlinephpfunctions.com/code/51e1b05dac2e648fd13e0b60f44a2abe1e4a8689
$numbers = [10, 9, 2, 3, 4, 5, 6, 7];
$largest = $numbers[0];
$secondLargest = null;
for ($i=1; $i < count($numbers); $i++) {
$number = $numbers[$i];
if ($number > $largest) {
$secondLargest = $largest;
$largest = $number;
} else if ($number > $secondLargest) {
$secondLargest = $number;
}
}
echo "largest=$largest, secondLargest=$secondLargest";
Assuming space is irrelevant, this is the smallest I could get it. It requires 2*n comparisons in worst case, and n comparisons in best case:
arr = [ 0, 12, 13, 4, 5, 32, 8 ]
max = [ -1, -1 ]
for i in range(len(arr)):
if( arr[i] > max[0] ):
max.insert(0,arr[i])
elif( arr[i] > max[1] ):
max.insert(1,arr[i])
print max[1]
try this.
max1 = a[0].
max2.
for i = 0, until length:
if a[i] > max:
max2 = max1.
max1 = a[i].
#end IF
#end FOR
return min2.
it should work like a charm. low in complexity.
here is a java code.
int secondlLargestValue(int[] secondMax){
int max1 = secondMax[0]; // assign the first element of the array, no matter what, sorted or not.
int max2 = 0; // anything really work, but zero is just fundamental.
for(int n = 0; n < secondMax.length; n++){ // start at zero, end when larger than length, grow by 1.
if(secondMax[n] > max1){ // nth element of the array is larger than max1, if so.
max2 = max1; // largest in now second largest,
max1 = secondMax[n]; // and this nth element is now max.
}//end IF
}//end FOR
return max2;
}//end secondLargestValue()
Use counting sort and then find the second largest element, starting from index 0 towards the end. There should be at least 1 comparison, at most n-1 (when there's only one element!).
#include<stdio.h>
main()
{
int a[5] = {55,11,66,77,72};
int max,min,i;
int smax,smin;
max = min = a[0];
smax = smin = a[0];
for(i=0;i<=4;i++)
{
if(a[i]>max)
{
smax = max;
max = a[i];
}
if(max>a[i]&&smax<a[i])
{
smax = a[i];
}
}
printf("the first max element z %d\n",max);
printf("the second max element z %d\n",smax);
}
The accepted solution by sdcvvc in C++11.
#include <algorithm>
#include <iostream>
#include <vector>
#include <cassert>
#include <climits>
using std::vector;
using std::cout;
using std::endl;
using std::random_shuffle;
using std::min;
using std::max;
vector<int> create_tournament(const vector<int>& input) {
// make sure we have at least two elements, so the problem is interesting
if (input.size() <= 1) {
return input;
}
vector<int> result(2 * input.size() - 1, -1);
int i = 0;
for (const auto& el : input) {
result[input.size() - 1 + i] = el;
++i;
}
for (uint j = input.size() / 2; j > 0; j >>= 1) {
for (uint k = 0; k < 2 * j; k += 2) {
result[j - 1 + k / 2] = min(result[2 * j - 1 + k], result[2 * j + k]);
}
}
return result;
}
int second_smaller(const vector<int>& tournament) {
const auto& minimum = tournament[0];
int second = INT_MAX;
for (uint j = 0; j < tournament.size() / 2; ) {
if (tournament[2 * j + 1] == minimum) {
second = min(second, tournament[2 * j + 2]);
j = 2 * j + 1;
}
else {
second = min(second, tournament[2 * j + 1]);
j = 2 * j + 2;
}
}
return second;
}
void print_vector(const vector<int>& v) {
for (const auto& el : v) {
cout << el << " ";
}
cout << endl;
}
int main() {
vector<int> a;
for (int i = 1; i <= 2048; ++i)
a.push_back(i);
for (int i = 0; i < 1000; i++) {
random_shuffle(a.begin(), a.end());
const auto& v = create_tournament(a);
assert (second_smaller(v) == 2);
}
return 0;
}
I have gone through all the posts above but I am convinced that the implementation of the Tournament algorithm is the best approach. Let us consider the following algorithm posted by #Gumbo
largest := numbers[0];
secondLargest := null
for i=1 to numbers.length-1 do
number := numbers[i];
if number > largest then
secondLargest := largest;
largest := number;
else
if number > secondLargest then
secondLargest := number;
end;
end;
end;
It is very good in case we are going to find the second largest number in an array. It has (2n-1) number of comparisons. But what if you want to calculate the third largest number or some kth largest number. The above algorithm doesn't work. You got to another procedure.
So, I believe tournament algorithm approach is the best and here is the link for that.
The following solution would take 2(N-1) comparisons:
arr #array with 'n' elements
first=arr[0]
second=-999999 #large negative no
i=1
while i is less than length(arr):
if arr[i] greater than first:
second=first
first=arr[i]
else:
if arr[i] is greater than second and arr[i] less than first:
second=arr[i]
i=i+1
print second
It can be done in n + ceil(log n) - 2 comparison.
Solution:
it takes n-1 comparisons to get minimum.
But to get minimum we will build a tournament in which each element will be grouped in pairs. like a tennis tournament and winner of any round will go forward.
Height of this tree will be log n since we half at each round.
Idea to get second minimum is that it will be beaten by minimum candidate in one of previous round. So, we need to find minimum in potential candidates (beaten by minimum).
Potential candidates will be log n = height of tree
So, no. of comparison to find minimum using tournament tree is n-1
and for second minimum is log n -1
sums up = n + ceil(log n) - 2
Here is C++ code
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <vector>
using namespace std;
typedef pair<int,int> ii;
bool isPowerOfTwo (int x)
{
/* First x in the below expression is for the case when x is 0 */
return x && (!(x&(x-1)));
}
// modified
int log_2(unsigned int n) {
int bits = 0;
if (!isPowerOfTwo(n))
bits++;
if (n > 32767) {
n >>= 16;
bits += 16;
}
if (n > 127) {
n >>= 8;
bits += 8;
}
if (n > 7) {
n >>= 4;
bits += 4;
}
if (n > 1) {
n >>= 2;
bits += 2;
}
if (n > 0) {
bits++;
}
return bits;
}
int second_minima(int a[], unsigned int n) {
// build a tree of size of log2n in the form of 2d array
// 1st row represents all elements which fights for min
// candidate pairwise. winner of each pair moves to 2nd
// row and so on
int log_2n = log_2(n);
long comparison_count = 0;
// pair of ints : first element stores value and second
// stores index of its first row
ii **p = new ii*[log_2n];
int i, j, k;
for (i = 0, j = n; i < log_2n; i++) {
p[i] = new ii[j];
j = j&1 ? j/2+1 : j/2;
}
for (i = 0; i < n; i++)
p[0][i] = make_pair(a[i], i);
// find minima using pair wise fighting
for (i = 1, j = n; i < log_2n; i++) {
// for each pair
for (k = 0; k+1 < j; k += 2) {
// find its winner
if (++comparison_count && p[i-1][k].first < p[i-1][k+1].first) {
p[i][k/2].first = p[i-1][k].first;
p[i][k/2].second = p[i-1][k].second;
}
else {
p[i][k/2].first = p[i-1][k+1].first;
p[i][k/2].second = p[i-1][k+1].second;
}
}
// if no. of elements in row is odd the last element
// directly moves to next round (row)
if (j&1) {
p[i][j/2].first = p[i-1][j-1].first;
p[i][j/2].second = p[i-1][j-1].second;
}
j = j&1 ? j/2+1 : j/2;
}
int minima, second_minima;
int index;
minima = p[log_2n-1][0].first;
// initialize second minima by its final (last 2nd row)
// potential candidate with which its final took place
second_minima = minima == p[log_2n-2][0].first ? p[log_2n-2][1].first : p[log_2n-2][0].first;
// minima original index
index = p[log_2n-1][0].second;
for (i = 0, j = n; i <= log_2n - 3; i++) {
// if its last candidate in any round then there is
// no potential candidate
if (j&1 && index == j-1) {
index /= 2;
j = j/2+1;
continue;
}
// if minima index is odd, then it fighted with its index - 1
// else its index + 1
// this is a potential candidate for second minima, so check it
if (index&1) {
if (++comparison_count && second_minima > p[i][index-1].first)
second_minima = p[i][index-1].first;
}
else {
if (++comparison_count && second_minima > p[i][index+1].first)
second_minima = p[i][index+1].first;
}
index/=2;
j = j&1 ? j/2+1 : j/2;
}
printf("-------------------------------------------------------------------------------\n");
printf("Minimum : %d\n", minima);
printf("Second Minimum : %d\n", second_minima);
printf("comparison count : %ld\n", comparison_count);
printf("Least No. Of Comparisons (");
printf("n+ceil(log2_n)-2) : %d\n", (int)(n+ceil(log(n)/log(2))-2));
return 0;
}
int main()
{
unsigned int n;
scanf("%u", &n);
int a[n];
int i;
for (i = 0; i < n; i++)
scanf("%d", &a[i]);
second_minima(a,n);
return 0;
}
function findSecondLargeNumber(arr){
var fLargeNum = 0;
var sLargeNum = 0;
for(var i=0; i<arr.length; i++){
if(fLargeNum < arr[i]){
sLargeNum = fLargeNum;
fLargeNum = arr[i];
}else if(sLargeNum < arr[i]){
sLargeNum = arr[i];
}
}
return sLargeNum;
}
var myArray = [799, -85, 8, -1, 6, 4, 3, -2, -15, 0, 207, 75, 785, 122, 17];
Ref: http://www.ajaybadgujar.com/finding-second-largest-number-from-array-in-javascript/
A good way with O(1) time complexity would be to use a max-heap. Call the heapify twice and you have the answer.
int[] int_array = {4, 6, 2, 9, 1, 7, 4, 2, 9, 0, 3, 6, 1, 6, 8};
int largst=int_array[0];
int second=int_array[0];
for (int i=0; i<int_array.length; i++){
if(int_array[i]>largst) {
second=largst;
largst=int_array[i];
}
else if(int_array[i]>second && int_array[i]<largst) {
second=int_array[i];
}
}
I suppose, follow the "optimal algorithm uses n+log n-2 comparisons" from above, the code that I came up with that doesn't use binary tree to store the value would be the following:
During each recursive call, the array size is cut in half.
So the number of comparison is:
1st iteration: n/2 comparisons
2nd iteration: n/4 comparisons
3rd iteration: n/8 comparisons
...
Up to log n iterations?
Hence, total => n - 1 comparisons?
function findSecondLargestInArray(array) {
let winner = [];
if (array.length === 2) {
if (array[0] < array[1]) {
return array[0];
} else {
return array[1];
}
}
for (let i = 1; i <= Math.floor(array.length / 2); i++) {
if (array[2 * i - 1] > array[2 * i - 2]) {
winner.push(array[2 * i - 1]);
} else {
winner.push(array[2 * i - 2]);
}
}
return findSecondLargestInArray(winner);
}
Assuming array contain 2^n number of numbers.
If there are 6 numbers, then 3 numbers will move to the next level, which is not right.
Need like 8 numbers => 4 number => 2 number => 1 number => 2^n number of number
package com.array.orderstatistics;
import java.util.Arrays;
import java.util.Collections;
public class SecondLargestElement {
/**
* Total Time Complexity will be n log n + O(1)
* #param str
*/
public static void main(String str[]) {
Integer[] integerArr = new Integer[] { 5, 1, 2, 6, 4 };
// Step1 : Time Complexity will be n log(n)
Arrays.sort(integerArr, Collections.reverseOrder());
// Step2 : Array.get Second largestElement
int secondLargestElement = integerArr[1];
System.out.println(secondLargestElement);
}
}
Sort the array into ascending order then assign a variable to the (n-1)th term.

Resources