Can Flink set timer on the non-keyed stream?
ProcessAllWindowFunctionis a good option. But it cannot scale up the parallelism. It has to be 1.
I am looking for such non-keyed process function that can set a timer.
Flink's timers are only available within keyed process functions.
The standard answer to this question is to go ahead and key the stream, adding a field holding a random number to use as the key (if there isn't already a suitable way to implement a key selector).
If you can't live with the expense of a network shuffle, for event-time timers you could implement a custom operator that implements your logic in its processWatermark method.
And if you are looking for processing-time timers, you could roll your own.
you could keyBy(_ => None) or keyBy() a constant and still use timers
Related
We have an application that consumes events from a kafka source. The logic from processing each element needs to take into account the events that were previously received (having the same partition key), without using time for windowing. The first implementation used a GlobalWindow, with an AggregateFunction for keeping the current state information and a trigger that would always fire in onElement call. I am guessing that the alternative of using a KeyedProcessFunction that and holds the state in a ValueState object would be more adequate, since we are not really taking timing into account, nor using any custom triggering. Is this assumption correct and are there any downsides to either one of these approaces?
In prefer using a KeyedProcessFunction in cases like this. It puts all of the related logic into one object -- rather than having to coordinate what's going on in a GlobalWindow, an AggregateFunction, and a Trigger (and perhaps also an Evictor). I find this results in implementations that are more maintainable and testable, plus you have more straightforward control over state management.
I don't see any advantages to a solution based on windows.
I understand in general that event time uses Watermarks to make progress in time. In the case of Flink Statefun which is more based on iteration it may be a problem. So my question is if I use the delayed message (https://nightlies.apache.org/flink/flink-statefun-docs-stable/docs/sdk/java/#sending-delayed-messages), then does it mean we can use only processing time notion in Stateful functions ?
I would like to change to Event time processing model but not sure how it will work with Stateful functions.
pipeline.time-characteristic: EventTime
pipeline.auto-watermark-interval: 200
Can someone explain if it is possible ?
Stateful Functions (statefun) doesn't support watermarks or event-time processing. But you could implement your own triggering logic based on the timestamps in arriving events.
We are aggregating some data for 1 minute which we then flush onto a file. The data itself is like a map where key is an object and value is also an object.
Since we need to flush the data together hence we are not doing any keyBy and hence are using windowAll.
The problem that we are facing is that we get better throughput if we use window function with ProcessAllWindowFunction and then aggregate in the process call vs when we use aggregate with window function. We are also seeing timeouts in state checkpointing when we use aggregate.
I tried to go through the code base and the only hypothesis I could think of is probably it is easier to checkpoint ListState that process will use vs the AggregateState that aggregate will use.
Is the hypothesis correct? Are we doing something wrong? If not, is there a way to improve the performance on aggregate?
Based on what you've said, I'm going to jump to some conclusions.
I assume you are using the RocksDB state backend, and are aggregating each incoming event into into some sort of collection. In that case, the RocksDB state backend is having to deserialize that collection, add the new event to it, and then re-serialize it -- for every event. This is very expensive.
When you use a ProcessAllWindowFunction, each incoming event is appended to a ListState object, which has a very efficient implementation -- the serialized bytes for the new event are simply appended (the list doesn't have to be deserialized and re-serialized).
Checkpoints are timing out because the throughput is so poor.
Switching to the FsStateBackend would help. Or use a ProcessAllWindowFunction. Or implement your own windowing with a KeyedProcessFunction, and then use ListState or MapState for the aggregation.
The example is very useful at first,it illustrates how keyedProcessFunction is working in Flink
there is something worth noticing, it suddenly came to me...
It is from Fraud Detector v2: State + Time part
It is reasonable to set a timer here, regarding the real application requirement part
override def onTimer(
timestamp: Long,
ctx: KeyedProcessFunction[Long, Transaction, Alert]#OnTimerContext,
out: Collector[Alert]): Unit = {
// remove flag after 1 minute
timerState.clear()
flagState.clear()
}
Here is the problem:
The TimeCharacteristic IS ProcessingTime which is determined by the system clock of the running machine, according to ProcessingTime property, the watermark will NOT be changed overtime, so that means onTimer will never be called, unless the TimeCharacteristic changes to eventTime
According the flink website:
An hourly processing time window will include all records that arrived at a specific operator between the times when the system clock indicated the full hour. For example, if an application begins running at 9:15am, the first hourly processing time window will include events processed between 9:15am and 10:00am, the next window will include events processed between 10:00am and 11:00am, and so on.
If the watermark doesn't change over time, will the window function be triggered? because the condition for a window to be triggered is when the watermark enters the end time of a window
I'm wondering the condition where the window is triggered or not doesn't depend on watermark in priocessingTime, even though the official website doesn't mention that at all, it will be based on the processing time to trigger the window
Hope someone can spend a little time on this,many thx!
Let me try to clarify a few things:
Flink provides two kinds of timers: event time timers, and processing time timers. An event time timer is triggered by the arrival of a watermark equal to or greater than the timer's timestamp, and a processing time timer is triggered by the system clock reaching the timer's timestamp.
Watermarks are only relevant when doing event time processing, and only purpose they serve is to trigger event time timers. They play no role at all in applications like the one in this DataStream API Code Walkthrough that you have referred to. If this application used event time timers, either directly, or indirectly (by using event time windows, or through one of the higher level APIs like SQL or CEP), then it would need watermarks. But since it only uses processing time timers, it has no use for watermarks.
BTW, this fraud detection example isn't using Flink's Window API, because Flink's windowing mechanism isn't a good fit for this application's requirements. Here we are trying to a match a pattern to a sequence of events within a specific timeframe -- so we want a different kind of "window" that begins at the moment of a special triggering event (a small transaction, in this case), rather than a TimeWindow (like those provided by Flink's Window API) that is aligned to the clock (i.e., 10:00am to 10:01am).
Description:
Currently I am working on using Flink with an IOT setup. Essentially, devices are sending data such as (device_id, device_type, event_timestamp, etc) and I don't have any control over when the messages get sent. I then key the steam by device_id and device_type to preform aggregations. I would like to use event-time given that is ensures the timers which are set trigger in a deterministic nature given a failure. However, given that this isn't always a high throughput stream a window could be opened for a 10 minute aggregation period, but not have its next point come until approximately 40 minutes later. Although the calculation would aggregation would eventually be completed it would output my desired result extremely late.
So my work around for this is to create an additional external source that does nothing other than pump fake messages. By having these fake messages being pumped out in alignment with my 10 minute aggregation period, even if a device hadn't sent any data, the event time windows would have something to force the windows closed. The critical part here is to make it possible that all parallel instances / operators have access to this fake message because I need to close all the windows with this single fake message. I was thinking that Broadcast state might be the most appropriate way to accomplish this goal given: "Broadcast state is replicated across all parallel instances of a function, and might typically be used where you have two streams, a regular data stream alongside a control stream that serves rules, patterns, or other configuration messages." Quote Source
Questions:
Is broadcast state the best method for ensuring all parallel instances (e.g. windows) receive my fake messages?
Once the operators have access to this fake message via the broadcast state can this fake message then be used to advance the event time watermark?
You can make this work with broadcast state, along the lines you propose, but I'm not convinced it's the best solution.
In an ideal world I'd suggest you arrange for the devices to send occasional keepalive messages, but assuming that's not possible, I think a custom Trigger would work well here. You can extend the EventTimeTrigger so that in addition to the event time timer it creates via
ctx.registerEventTimeTimer(window.maxTimestamp());
you also create a processing time timer, as a fallback, and you FIRE the window if the window still exists when that processing time timer fires.
I'm recommending this approach because it's simpler and more directly addresses the specific need. With the broadcast state approach you'll have to introduce a source for these messages, add a broadcast state descriptor and stream, add special fake watermarks for the non-broadcast stream (set to Watermark.MAX_WATERMARK), connect the broadcast and non-broadcast streams and implement a BroadcastProcessFunction (that probably doesn't really do anything), etc. It's a lot of moving parts spread across several different operators.