Insert function for every binary tree - c

If i have for example 2 binary trees:
typedef struct node {
int key;
struct node *left, *right;
} node;
node* root1
node* root2
I've tried this function to insert nodes:
void insert(node* root, int key) {
node *p, *q;
p = (node*) calloc(1,sizeof(node);
p->key = key;
if (root == NULL) {
root = p;
return;
}
q = root;
for (;;) {
if (key < q->key) {
if (q->left == 0) {
q->left = p;
return;
} else q = q->left;
} else if (key > q->key) {
if (q->right == 0) {
q->right = p;
return;
} else q = q->right;
} else {
free(p);
return;
}
}
}
but after call insert(root1,10) the tree root1 remains untouched. I suppose it happens because root variable inside function is changed locally.
How i should implement the function that will receive as argument the tree in which i want to insert nodes?

You could always return a pointer to the root, like this
node* insert(node* root, int key) {
node *p, *q;
p = (node*) calloc(1,sizeof(node));
p->key = key;
if (root == NULL) {
root = p;
return root;
}
q = root;
for (;;) {
if (key < q->key) {
if (q->left == 0) {
q->left = p;
return root;
} else q = q->left;
} else if (key > q->key) {
if (q->right == 0) {
q->right = p;
return root;
} else q = q->right;
} else {
free(p);
return root;
}
}
}
And you create your tree like -
node* root1 = NULL;
root1 = insert(root1,3)

Related

How can I delete a node from Binary search tree in C with 2 children

I am trying to create a function that deletes a node from a binary search tree my problem is whenever I delete a root node that has two children it will work but if I insert a node again there is an error in allocating memory(malloc) for the newly added node. I have tried using a debugger it will stuck in malloc and it doesn't tell me why.
Here is my function in deleting a node from the bst
bool delete_node(node * n, int data)
{
if(n == NULL)
return false;
if (n->data == data)
{
if(n->left == NULL && n->right == NULL)
{
free(n);
n->empty = true;
return true;
}
else if(n->left != NULL && n->right == NULL)
{
node * temp = n;
n = n->left;
free(temp);
temp->empty = true;
return true;
}
else if(n->left == NULL && n->right != NULL)
{
node * temp = n;
n = n->right;
free(temp);
temp->empty = true;
return true;
}
else
{
nodelist * inorder_seq = create_nodelist();
get_inorder_seq(inorder_seq, n);
node * ps = get_predecessor(inorder_seq, n);
if(ps == NULL)
ps = get_successor(inorder_seq, n);
int temp_data = n->data;
n->data = ps->data;
free(inorder_seq->list);
free(inorder_seq);
if(temp_data > n->data)
return delete_node(n->left, ps->data);
else
return delete_node(n->right, ps->data);
}
}
else if(n->data < data)
return delete_node(n->right, data);
else if(n->data > data)
return delete_node(n->left, data);
}
Here is my function in inserting a new node
void insert_node(node * root, int data)
{
node * newnode = create_node(data);
recur_insert_node(root, newnode);
}
Here is the function for the recursion of inserting a new node
void recur_insert_node(node * n, node * newnode)
{
if(n->data > newnode->data)
{
if(n->left == NULL || n->left->empty)
{
n->left = newnode;
n->left->empty = false;
}
else
{
recur_insert_node(n->left, newnode);
}
}
else if(n->data < newnode->data || n->right->empty)
{
if(n->right == NULL)
{
n->right = newnode;
n->right->empty = false;
}
else
{
recur_insert_node(n->right, newnode);
}
}
}
here is my node struct
typedef struct _node
{
int data;
struct _node * left;
struct _node * right;
bool empty;
}node;

Stuck at deleting node from Binary Search Tree

I have been trying to follow the textbook "Introduction to Algorithms" but I'm stuck at the following step when deleting a node from a BST - when the node to be deleted has both children
My code is below:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bst.h"
void error()
{
fprintf(stderr, "%s\n", "Error assigning memory to node");
exit(1);
}
void insert(node **root, int key)
{
node *t1, *t2;
if (*root == NULL) {
printf("Root is null\n");
*root = (node *)malloc(sizeof(node));
if (*root==NULL) {
fprintf(stderr, "%s\n", "Cannot allocate memory for node in Insert");
exit(1);
}
(*root)->key = key;
(*root)->left = (*root)->right = NULL;
}
else {
printf("Root contains data. Inserting new node.\n");
t1 = *root;
while (t1 != NULL) {
t2 = t1;
if (key < t1->key)
t1 = t1->left;
else
t1 = t1->right;
}
if(key < t2->key) {
t2->left = (node *) malloc(sizeof(node));
t2 = t2->left;
if (t2==NULL)
error();
t2 -> key = key;
}
else {
t2->right = (node *) malloc(sizeof(node));
t2 = t2->right;
if (t2==NULL)
error();
t2->key = key;
}
}
}
void inorder(node * root)
{
if (root!=NULL) {
inorder(root->left);
printf("%d ->", root->key);
inorder(root->right);
}
}
node * search(node *root, int key)
{
node * t = root;
while (t!=NULL)
{
if (key == t->key)
return t;
else if (key < t->key)
t = t->left;
else
t = t->right;
}
return NULL;
}
node * getparent(node * root, int key)
{
node * t = root, *parent = NULL;
while (t!=NULL)
{
if (key == t->key)
return parent;
else if (key < t->key)
t = t->left;
else
t = t->right;
parent = t;
}
return NULL;
}
node * delete(node *root, int key)
{
node * todelete = search(root,key), *parent = getparent(root, key), *y;
if (todelete==NULL) {
fprintf(stderr, "%s\n", "Key not found");
exit(2);
}
if (todelete->left == NULL && todelete->right==NULL) { //Deleting node with no children
if (todelete == parent->left)
parent->left = NULL;
else
parent->right = NULL;
free(todelete);
return root;
}
else if (todelete->left && !todelete->right) {
if (todelete == parent->left)
parent->left = todelete->left;
else
parent->right = todelete->right;
free(todelete);
return root;
}
else if (todelete->right & !todelete->left) {
if (todelete == parent->left)
parent->left = todelete->left;
else
parent->right = todelete->right;
free(todelete);
return root;
}
else
{
node * yparent = NULL;
y= todelete->right;
while (y->left!=NULL)
{
y = y->left;
yparent = y;
}
if(yparent != todelete) {
//stuck here
}
}
}
bst.h:
struct treenode
{
int key;
struct treenode *left;
struct treenode *right;
};
typedef struct treenode node;
node * getparent(node * root, int key);
void insert(node **root, int key);
node * search(node *root, int key);
node * delete(node *root, int key);
void inorder(node * root);
Any guidance would be much appreciated. I should be trying to set the y = y->right and then set todelete->right = y correct?
I'm stuck at the following step when deleting a node from a BST - when the node to be deleted has both children
It follows from the properties of a BST that if a node N has two children then every node in the subtree rooted at the left child is less than every node in the subtree rooted at the right child and vise versa. In particular, the largest node in the left subtree, Lmax, is less than all the nodes in the right subtree, and the least node in the right subtree, Rmin, is larger than all the nodes of the left subtree. These are the nodes immediately preceding and following N in an in-order traversal. Both of those descendants are easy to find, and neither has more than one child (else they could neither be max nor min in any subtree).
It follows, then, that if you want to delete node N then you may choose either Lmax or Rmin, delete it from the tree (which is easy because it has at most one child), and replace N with it. Alternatively, delete Lmax or Rmin, and replace the key of node N with the key of that deleted node.
Changed the code to the following and it works (for the delete functions):
static void transplant(node * root, node * u, node * v)
{
node *uparent = getparent(root, u->key);
node * vparent = getparent(root, v->key);
if (uparent == NULL)
root = v;
else if (u == uparent->left)
uparent->left = v;
else uparent->right = v;
if (v!=NULL)
vparent = uparent;
}
node * delete(node *root, int key)
{
node * todelete = search(root,key), *parent = getparent(root, key), *y;
if (todelete==NULL) {
fprintf(stderr, "%s\n", "Key not found");
exit(2);
}
if (todelete->left == NULL && todelete->right==NULL) { //Deleting node with no children
if (todelete == parent->left)
parent->left = NULL;
else
parent->right = NULL;
free(todelete);
return root;
}
else if (todelete->left && !todelete->right) {
if (todelete == parent->left)
parent->left = todelete->left;
else
parent->right = todelete->left;
free(todelete);
return root;
}
else if (todelete->right && !todelete->left) {
if (todelete == parent->left)
parent->left = todelete->right;
else
parent->right = todelete->right;
free(todelete);
return root;
}
else {
y = todelete->right;
while(y->left!=NULL)
{
y = y->left;
}
node *yparent = getparent(root, y->key);
if (yparent != todelete)
{
transplant(root, y, y->right);
y->right = todelete->right;
node * yrightparent = getparent(root, y->right->key);
yrightparent = y;
}
transplant(root, todelete, y);
y->left = todelete->left;
node *yleftparent = getparent(root, y->left->key);
yleftparent = y;
free(todelete);
return root;
}

Why does afl fuzzer get segmentation fault?

I did a program in c to do some avl sorting. the program runs well when i test it with no crash. however i ran the program for possible bugs with afl fuzzer and i dont seem to know why i keep getting segmentation fault. below is the tree.c. I dont get bugs when i fuzz without my main.c connecting to the tree.c. Only comes when i send inputs to the tree sorter. Some certain inputs brings about this bug. i made changes to memory allocation but still cant figure out why. i used valgrind, cppcheck and dont get any errors on them. Please why does this error happen and how can i fix it?
an example input from the fuzzer that brings code to segmentation fault
i 3o
i 7ÿo
i
i 3ÿo
i3
3
i 3ÿ3
i83 3
i23ÿo
tree.c
#include "tree.h"
Tree* tree_create(){
Tree *tree = malloc(sizeof(Tree));
tree->root = NULL;
return tree;
}
void tree_node_delete(Node* node) {
if (node == NULL) {
free(node);
return;
}
if (node->left) {
tree_node_delete(node->left);
}
if (node->right) {
tree_node_delete(node->right);
}
free(node->name);
free(node);
}
void tree_delete(Tree* tree) {
tree_node_delete(tree->root);
free(tree);
}
void node_insert(Node* node, int age, char* name, int gen) {
if (age <= node->age){
if (node->left == NULL){
Node* newLeft = calloc(1, sizeof(Node));
newLeft->age = age;
newLeft->name = name;
newLeft->parent = node;
newLeft->right = NULL;
newLeft->left = NULL;
newLeft->isRight = false;
node->left = newLeft;
} else {
node_insert(node->left, age, name, node->left->generation);
}
} else {
if (node->right == NULL){
Node* newRight = calloc(1, sizeof(Node));
newRight->age = age;
newRight->name = name;
newRight->parent = node;
newRight->right = NULL;
newRight->left = NULL;
newRight->isRight = true;
node->right = newRight;
} else {
node_insert(node->right, age, name, node->right->generation);
}
}
}
void tree_insert(Tree* tree, int age, char* name) {
if (tree->root == NULL) {
Node *node = calloc(1, sizeof(Node));
node->name = name;
node->age = age;
node->isRoot = true;
node->right = NULL;
node->left = NULL;
tree->root = node;
} else {
node_insert(tree->root, age, name, 1);
}
}
void tree_erase(Tree* tree, int age, char* name) {
Node* data = tree_find(tree, age, name);
if (data == NULL) {
printf("\nThis node doesn't exist in the current tree\n");
} else {
data->name = NULL;
data->age = NULL;
if (data->grandparent) {
if(data == data->grandparent->grandchildRR) {
data->grandparent->grandchildRR = NULL;
} else if(data == data->grandparent->grandchildRL) {
data->grandparent->grandchildRL = NULL;
} else if(data == data->grandparent->grandchildLR) {
data->grandparent->grandchildLR = NULL;
} else if(data == data->grandparent->grandchildLL) {
data->grandparent->grandchildLL = NULL;
}
}
tree_cleanup(tree, &tree->root, tree->root);
}
}
// Will clean the tree to release previously used nodes
void tree_cleanup(Tree* tree, Node** nodeAdress, Node* node) {
if (node->left) {
tree_cleanup(tree, &node->left, node->left);
}
if (node->right) {
tree_cleanup(tree, &node->right, node->right);
}
if(node->age == NULL && node->name == NULL) {
*nodeAdress = NULL;
free(*nodeAdress);
}
if(node->left == NULL && node->grandchildLL) {
node->left = node->grandchildLL;
node->left->parent = node;
node->left->grandparent = node->parent;
if(node->left->left) {
node->grandchildLL = node->left->left;
} else {
node->grandchildLL = NULL;
}
} else if(node->right == NULL && node->grandchildRL) {
node->right = node->grandchildRL;
node->right->parent = node;
node->right->grandparent = node->parent;
node->right->isRight = true;
if(node->right->left) {
node->grandchildRL = node->right->left;
} else {
node->grandchildLR = NULL;
}
} else if(node->left == NULL && node->grandchildLR) {
node->left = node->grandchildLR;
node->left->parent = node;
node->left->grandparent = node->parent;
node->left->isRight = false;
if (node->left->right) {
node->grandchildLR = node->left->right;
} else {
node->grandchildLR = NULL;
}
} else if(node->right == NULL && node->grandchildRR) {
node->right = node->grandchildRR;
node->right->parent = node;
node->right->grandparent = node->parent;
if (node->right->right) {
node->grandchildRR = node->right->right;
} else {
node->grandchildRR = NULL;
}
}
}
//Calculate the weight and the balance factor of the node.
void tree_balance_factor(Tree* tree, Node* node) {
if (node == NULL) {
return;
}
if (node->left) {
tree_balance_factor(tree, node->left);
}
if (node->right) {
tree_balance_factor(tree, node->right);
}
if (node->parent) {
if (node->isRight == true) {
if (node->weightRight > node->weightLeft) {
node->parent->weightRight = node->weightRight+1;
} else {
node->parent->weightRight = node->weightLeft+1;
}
} else if (node->isRight == false) {
if (node->weightRight > node->weightLeft) {
node->parent->weightLeft = node->weightRight+1;
} else {
node->parent->weightLeft = node->weightLeft+1;
}
}
}
node->balancefactor = node->weightRight - node->weightLeft;
if (node->balancefactor == 2) {
if(node->right->balancefactor == 1) {
leftRotation(tree, node);
} else {
rightPermutation(tree, node);
leftRotation(tree, node);
}
} else if (node->balancefactor == -2) {
if(node->left->balancefactor == -1) {
rightRotation(tree, node);
} else {
leftPermutation(tree, node);
rightRotation(tree, node);
}
}
}
// Reset the weightings and set up the grandchilds and grandparents relations back
void tree_balance_factor_reset(Tree* tree, Node* node) {
if (node == NULL) {
return;
}
if (node->left) {
tree_balance_factor_reset(tree, node->left);
}
if (node->right) {
tree_balance_factor_reset(tree, node->right);
}
node->weightLeft = 0;
node->weightRight = 0;
if(node->right) {
if(node->right->right) {
node->grandchildRR = node->right->right;
node->right->parent = node;
node->right->right->grandparent = node;
} else {
node->grandchildRR = NULL;
}
if(node->right->left) {
node->grandchildRL = node->right->left;
node->right->parent = node;
node->right->left->grandparent = node;
} else {
node->grandchildRL = NULL;
}
}
if(node->left) {
if(node->left->left) {
node->grandchildLL = node->left->left;
node->left->parent = node;
node->left->left->grandparent = node;
} else {
node->grandchildLL = NULL;
}
if (node->left->right) {
node ->grandchildLR = node->left->right;
node->left->parent = node;
node->left->right->grandparent = node;
} else {
node->grandchildLR = NULL;
}
}
}
void setGen (Node* node) {
if(node->parent) {
node->generation = node->parent->generation +1;
}
if (node->left) {
setGen(node->left);
}
if (node->right) {
setGen(node->right);
}
}
void leftRotation(Tree* tree, Node* node ) {
Node* newNode = node->right;
if(node->isRoot == true) {
tree->root = newNode;
newNode->isRoot = true;
node->isRoot = false;
newNode->parent = NULL;
} else if (node->isRoot = false){
newNode->parent = node->parent;
if(node->isRight) {
newNode->parent->right = newNode;
} else {
newNode->parent->left = newNode;
}
}
newNode->left = node;
node->parent = newNode;
node->right = NULL;
}
void rightRotation(Tree* tree, Node* node) {
Node* newNode = node->left;
if(node->isRoot == true) {
tree->root = newNode;
newNode->isRoot = true;
node->isRoot = false;
newNode->parent = NULL;
} else {
newNode->parent = node->parent;
if(node->isRight) {
newNode->parent->right = newNode;
} else {
newNode->parent->left = newNode;
}
}
newNode->right = node;
node->parent = newNode;
node->left = NULL;
}
void rightPermutation(Tree* tree, Node* node) {
Node* newNode = node->right;
node->right = newNode->left;
node->right->right = newNode;
newNode->left = NULL;
newNode->parent = node->right;
node->right->parent = node;
}
void leftPermutation(Tree* tree, Node* node) {
Node* newNode = node->left;
node->left = newNode->right;
node->left->left = newNode;
newNode->right = NULL;
newNode->parent = node->left;
node->left->parent = node;
}
void tree_print_node(Node* node){
if (node == NULL) {
printf("null");
return;
}
printf("[");
printf("{\"%d\":\"%s\"},", node->age, node->name);
tree_print_node(node->left);
printf(",");
tree_print_node(node->right);
printf("]");
}
void tree_print(Tree* tree, int printNewline){
if (tree == NULL) {
printf("null");
return;
}
tree_print_node(tree->root);
if (printNewline){
printf("\n");
}
}
Node* node_find(Node* node, int age, char* name) {
int i = strcmp(node->name, name);
if (node->age == age && i == 0) {
return node;
}
if (age <= node->age) {
if (node->left) {
return node_find(node->left, age, name);
} else {
return NULL;
}
} else {
if (node->right) {
return node_find(node->right, age, name);
} else {
return NULL;
}
}
}
Node* tree_find(Tree* tree, int age, char* name) {
if(tree->root != NULL) {
return node_find(tree->root, age, name);
} else {
printf("\nNo node inserted in the tree yet\n");
return NULL;
}
}
main.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "main.h"
#include "tree.h"
int main() {
char* commandBuffer = (char*)malloc(sizeof(char) * 20);
Tree *tree = tree_create();
for(;;) {
if (tree == NULL){
tree = tree_create();
}
tree_balance_factor_reset(tree, tree->root);
tree_balance_factor(tree, tree->root);
tree_balance_factor_reset(tree, tree->root);
printf("\n- Enter <i age name> to insert a node in the tree \n- Enter <e age name> to erase a node \n- Enter <c age name> to check the tree \n- Enter <p> to "
"print the tree \n- Enter <x> the delete the tree \n- Enter <q> to exit the program\n\n" );
fgets(commandBuffer, 20, stdin);
int b = strlen(commandBuffer);
if(b>=19) {
int clearVar;
while (((clearVar = getchar()) != '\n' && clearVar != EOF)) {
}
};
// Quit on EOF or 'q'
if (feof(stdin) || *commandBuffer == 'q' ){
break;
}
tree = handleString(commandBuffer, tree);
};
free(tree);
free(commandBuffer);
return 0;
}
Tree* handleString(char command[], Tree *tree){
if (command == NULL){
fprintf(stderr, "Invalid command; null pointer\n");
return tree;
}
switch(command[0]){
case 'i':
insert(command, tree);
break;
case 'e':
erase(command, tree);
break;
case 'c':
check(command, tree);
break;
case 'p':
tree_print(tree, 1);
break;
case 'x':
tree_delete(tree);
return NULL;
default:
fprintf(stderr, "Invalid command string: %s\n", command);
break;
}
return tree;
}
Tree* insert(char* command, Tree* tree) {
int age;
char* name = malloc(sizeof(char) * 20);
if (2 != sscanf(command, "i %d %19s", &age, name)){
fprintf(stderr, "Failed to parse insert command: not enough parameters filled\n");
// return NULL;
}
if (tree == NULL){
tree = tree_create();
}
tree_insert(tree, age, name);
return tree;
}
int erase(char* command, Tree* tree) {
int age;
char* name = malloc(sizeof(char) * 20);
if (2 != sscanf(command, "e %d %19s", &age, name)){
fprintf(stderr, "Failed to parse erase command: not enough parameters filled\n");
// return 0;
}
tree_erase(tree, age, name);
return 0;
}
void check(char* command, Tree* tree) {
int age;
char* name = malloc(sizeof(char) * 20);
if (2 != sscanf(command, "c %d %19s", &age, name)){
fprintf(stderr, "Failed to parse check command\n");
}
Node* result = tree_find(tree, age, name);
if (result){
printf("\nThe node is present\n");
} else {
printf("\nThe node could not be found\n");
}
}
tree.h
#ifndef C_IMPLEMENTATION_TREE_H
#define C_IMPLEMENTATION_TREE_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
typedef struct Node {
/**
* Left child of this node
*/
struct Node* left;
/**
* Right child of this node
*/
struct Node* right;
/**
* The age of the data in this node
*/
int generation;
int balancefactor;
int weightLeft;
int weightRight;
struct Node* parent;
struct Node* grandparent;
struct Node* grandchildLL;
struct Node* grandchildLR;
struct Node* grandchildRL;
struct Node* grandchildRR;
bool isRight;
bool parentIsRight;
bool isRoot;
int age;
/**
* The name of the data in this node
*/
char* name;
} Node;
typedef struct Tree {
Node *root;
} Tree;
/**
* Create a new tree
* #param age The age value for the first data point
* #param name The name value for the first data point
* #return The root Node of the tree
*/
Tree* tree_create();
/**
* Delete an entire tree. This will delete the passed Node and all children below it
* #param node The root Node of the tree to delete.
*/
void tree_delete(Tree* tree);
/**
* Insert a new data point into the tree
*
* #param tree The root node of the tree
* #param age The age part of the data point
* #param name The name part of the data point
*/
void tree_insert(Tree* tree, int age, char* name);
/**
* Remove a data point from a tree
* #param tree The root node of the tree
* #param age The age part of the data point to delete
* #param name The name part of the data point to delete
*/
void tree_erase(Tree* tree, int age, char* name);
/**
* Prints a tree in the following format:
* [<data>, <left>, <right>]
* where the elements above have the following format:
* <data> {<age:int>: "<name:string>"}
* <left>, <right>: The same format as the root node. When a child node is NULL, the string NULL is to be printed.
*/
void tree_cleanup(Tree* tree, Node** nodeAdress, Node* node);
/**
* Will free and release null nodes.
*/
void setGen(Node* node);
void tree_balance_factor(Tree* tree,Node* node);
void tree_balance_factor_reset(Tree* tree, Node* node);
void leftRotation(Tree* tree, Node* node);
void rightRotation(Tree* tree,Node* node);
void rightPermutation(Tree* tree, Node* node);
void leftPermutation(Tree* tree, Node* node);
void tree_print(Tree *tree, int printNewline);
Node* tree_find(Tree* node, int age, char* name);
#endif //C_IMPLEMENTATION_TREE_H
I managed to reproduce SIGSEGV in gdb. It is hapened in function rightPermutation, which does not check if pointer to left is NULL or not:
void rightPermutation(Tree* tree, Node* node) {
Node* newNode = node->right;
node->right = newNode->left;
In case the node->left is NULL, you will get SIGSEGV on next line:
node->right->right = newNode;
Further, you can see details of the message and data of the Node structure.
Program received signal SIGSEGV, Segmentation fault.
0x000055555555570c in rightPermutation (tree=0x555555758280, node=0x555555758d20) at tree.c:322
322 node->right->right = newNode;
(gdb) p node
$1 = (Node *) 0x555555758d20
(gdb) p *node
$2 = {left = 0x555555758ed0, right = 0x0, generation = 0, balancefactor = 2, weightLeft = 1, weightRight = 3, parent = 0x0, grandparent = 0x555555758b70,
grandchildLL = 0x0, grandchildLR = 0x0, grandchildRL = 0x0, grandchildRR = 0x555555758c00, isRight = false, parentIsRight = false, isRoot = true, age = 0,
name = 0x555555758d00 ""}

C - Binary Search Tree, delete node

I have a question about my Code. "delete_single_node" does not work as it should. My procedure (to delete a node) is to find the node in the "head" tree, save the child nodes temporary, delete the node and all child nodes (in "head" tree) and merge the "head" tree with the temporary saved child nodes to a new correct binary tree.
I would like to stay with this procedure but I can't find my mistake.
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
struct tnode {
int content;
struct tnode *left;
struct tnode *right;
};
struct tnode* head;
void *malloc(size_t size);
struct tnode *talloc(void)
{
return(struct tnode*)malloc(sizeof(struct tnode));
}
/* delete a node with all child nodes*/
int deletenode(struct tnode *p)
{
if (p == NULL) return 0;
else
{
deletenode(p->left);
deletenode(p->right);
p->left = NULL;
p->right = NULL;
free(p);
return 0;
}
}
/* insert new node*/
struct tnode *addelement(struct tnode *p, int i) {
int cond;
if (p == NULL) {
p = talloc();
p->content = i;
p->left = p->right = NULL;
}
else if (p->content == i) {
return p;
}
else if (i < p->content)
p->left = addelement(p->left, i);
else
p->right = addelement(p->right, i);
return p;
}
/*merges two binary trees into one*/
struct tnode *addtree(struct tnode *top, struct tnode *p) {
if (p == NULL)
return top;
else
return addtree(addtree(addelement(top, p->content), p->right), p->left);
}
/*prints out tree*/
void showtree(struct tnode* nd)
{
if (nd == NULL)
return;
printf("ZZ %d", nd->content);
if (nd->left != NULL)
{
printf("left:%d", nd->left->content);
}
if (nd->right != NULL)
{
printf("right:%d\n", nd->right->content);
}
printf("\n");
showtree(nd->left);
showtree(nd->right);
}
/*removes connection to a node*/
void removeconnection(struct tnode *head, struct tnode *p) {
if (p->content > head->content) {
if (head->right == p)
{
head->right = NULL;
}
else
{
removeconnection(head->right, p);
}
}
if (p->content < head->content) {
if (head->left == p)
{
head->left = NULL;
}
else
{
removeconnection(head->left, p);
}
}
}
/*delete single node*/
struct tnode *delete_single_node(struct tnode *p, int content) {
struct tnode* temp2 = NULL;
struct tnode temp1;
struct tnode* temp4 = NULL;
struct tnode temp3;
if (p == NULL)
return NULL;
if (content > p->content)
{
p->right = delete_single_node(p->right, content);
}
else if (content < p->content)
{
p->left = delete_single_node(p->left, content);
}
else if (content == p->content)
{
if (p->left == NULL && p->right != NULL)
{
temp1.content = p->right->content;
temp1.right = p->right->right;
temp1.left = p->right->left;
temp2 = &temp1;
removeconnection(head, p);
deletenode(p);
head = addtree(head, temp2);
showtree(head);
}
else if (p->right == NULL && p->left != NULL)
{
temp1.content = p->left->content;
temp1.right = p->left->right;
temp1.left = p->left->left;
temp2 = &temp1;
removeconnection(head, p);
deletenode(p);
head = addtree(head, temp2);
showtree(head);
}
else if (p->right == NULL && p->left == NULL)
{
removeconnection(head, p);
deletenode(p);
showtree(head);
}
else
{
temp1.content = p->left->content;
temp1.right = p->left->right;
temp1.left = p->left->left;
temp2 = &temp1;
temp3.content = p->right->content;
temp3.right = p->right->right;
temp3.left = p->right->left;
temp4 = &temp3;
removeconnection(head, p);
deletenode(p);
head = addtree(head, temp2);
head = addtree(head, temp4);
showtree(head);
}
}
}
int main()
{
struct tnode* start = NULL;
int temp_int;
start = addelement(start, 5);
start = addelement(start, 6);
start = addelement(start, 2);
start = addelement(start, 9);
start = addelement(start, 3);
start = addelement(start, 2);
start = addelement(start, 1);
start = addelement(start, 7);
start = addelement(start, 8);
showtree(start);
printf("Which node to delete?\n");
scanf_s("%d", &temp_int);
head = start;
delete_single_node(start, temp_int);
return 0;
}

Nonrecursive/Iterative Binary Search Tree in C (Homework)

How can I create/delete a node in a Binary Search Tree using Iterative Algorithm in C?
Iterative insertion:
struct tree_node *Insert_Element (struct tree_node *root, void *key, void *data) {
struct tree_node *new_node, *node;
node = root;
do {
switch (compare(key, node->key)) {
case -1: {
if (node->left == NULL) {
if ((new_node = create_node(key, data)) == NULL) {
return NULL;
}
node->left = new_node;
return new_node;
}
node = node->left;
} break;
case 1: {
if (node->right == NULL) {
if ((new_node = create_node(key, data)) == NULL) {
return NULL;
}
node->right = new_node;
return new_node;
}
node = node->right;
} break;
default: {
return node;
}
}
} while (node != NULL);
return NULL;
}
Iterative insertion & deletion in BST
struct bst {
int data;
struct bst *left;
struct bst *right;
};
typedef struct bst bst_t;
bst_t *get_new_node(int val)
{
bst_t *node = (bst_t *) malloc(sizeof(bst_t));
node->data = val;
node->left = NULL;
node->right= NULL;
return node;
}
bst_t *insert(bst_t *root, int val)
{
if(!root) return get_new_node(val);
bst_t *prev = NULL, *ptr = root;
char type = ' ';
while(ptr) {
prev = ptr;
if(val < ptr->data) {
ptr = ptr->left;
type = 'l';
} else {
ptr = ptr->right;
type = 'r';
}
}
if(type == 'l')
prev->left = get_new_node(val);
else
prev->right = get_new_node(val);
return root;
}
int find_minimum_value(bst_t *ptr)
{
int min = ptr ? ptr->data : 0;
while(ptr) {
if(ptr->data < min) min = ptr->data;
if(ptr->left) {
ptr = ptr->left;
} else if(ptr->right) {
ptr = ptr->right;
} else ptr = NULL;
}
return min;
}
bst_t *delete(bst_t *root, int val)
{
bst_t *prev = NULL, *ptr = root;
char type = ' ';
while(ptr) {
if(ptr->data == val) {
if(!ptr->left && !ptr->right) { // node to be removed has no children's
if(ptr != root && prev) { // delete leaf node
if(type == 'l')
prev->left = NULL;
else
prev->right = NULL;
} else root = NULL; // deleted node is root
} else if (ptr->left && ptr->right) { // node to be removed has two children's
ptr->data = find_minimum_value(ptr->right); // find minimum value from right subtree
val = ptr->data;
prev = ptr;
ptr = ptr->right; // continue from right subtree delete min node
type = 'r';
continue;
} else { // node to be removed has one children
if(ptr == root) { // root with one child
root = root->left ? root->left : root->right;
} else { // subtree with one child
if(type == 'l')
prev->left = ptr->left ? ptr->left : ptr->right;
else
prev->right = ptr->left ? ptr->left : ptr->right;
}
}
free(ptr);
}
prev = ptr;
if(val < ptr->data) {
ptr = ptr->left;
type = 'l';
} else {
ptr = ptr->right;
type = 'r';
}
}
return root;
}
Nice post. Just a suggestion. I believe, finding a minimum value in a BST doesn't have to traverse the right subtree. Minimum value must be either on the left subtree or node itself(in case if left subtree is null). Function find_minimum_value can be optimized if right subtree traversal is removed.
int find_minimum_value(bst_t *ptr)
{
while(ptr->left) {
ptr = ptr->left;
}
return ptr->data;
}
In C, you can cast the pointers in the tree to intptr_t type and perform bitwise operations to them.
As you traverse down the tree, you can store the 'parent' pointer of a node by xoring it with the pointer you traversed with. You can then traverse back up the tree by xoring the the address of the node you are coming from with the modified pointer.
A worked example of this traditional technique is at http://sites.google.com/site/debforit/efficient-binary-tree-traversal-with-two-pointers
Given the ability to traverse the tree without recursion, you can then create iterative versions of any of the algorithms based on traversing the tree.

Resources