I have set up mirth on ubuntu server using Postgres database(on the same server). The problem is mirth messages takes up all the storage after some hours and mirth crashes. I want mirth to be continuously running on my server.
I've enabled message pruning but that only deletes the message data but does not free storage. Although 'Remove all messages' option in mirth launcher UI frees the storage. I've also tried to free the storage by truncating the tables, that works, but causes the error and no messages can be received further, and also WAL segments gets allocated.
After you prune the messages and then vacuum the tables, space should be freed up for internal reuse, but will probably not be handed back to the OS (for use in different files, or to show up in df). You can use pg_freespacemap or maybe pgstattuple to check if space is available for internal reuse, or pg_stat_activity or pg_stat_progress_vacuum to see if vacuuming is currently underway. Vacuuming should happen automatically after a large fraction of a table is deleted, unless you have gone out of your way to prevent it from happening.
Related
I have a web service sitting on IIS that has been quite happy for months but now I'm getting timeouts and I don't know how to diagnose what the problem is.
The client sends up basic information in a 'heartbeat' message to IIS which then updates this in a SQL database (on a different server). There are 250 clients in the wild, all sending up their heartbeat every 5 minutes ... so there's only 250 rows in the table, with appropriate indexing on the column being used for the update.
Ordinarily it only takes 50-100ms to do the update, but since last week you can see that the response time in the IIS log has increased and I'm also getting timeouts too.
Nothing has changed with the setup so I don't know what I'm looking for to determine the reason. The error I get back is:
System.ServiceModel.FaultException: An error occurred while updating
the entries. See the inner exception for details.An error occurred
while updating the entries. See the inner exception for
details.Execution Timeout Expired. The timeout period elapsed prior to
completion of the operation or the server is not responding. The
statement has been terminated.The wait operation timed out
Any advice on where to start looking? I did enable the failed request log trace in IIS but I don't know what it all means if I'm perfectly honest. The difference between a successful requiest and a failed one is that the request log stops after the 'AspNetStart' entry.
Thanks!
Mark
There are lots of reasons a service can gradually or suddenly become slow. Poor code structure can lead to things like memory leaks on the server, small enough they don't really show up or cause problems during testing, but when run over weeks/months start to stack up. Unauthorized requests could be targeting your server if this is a public-facing service, or has a link to public-facing services.
Things to look at:
Does this happen at certain times of the day or throughout the day?
Is this a load issue that starts occurring when multiple users are sending updates concurrently? 250 users isn't a lot. Has the # of users grown over the last few months or has it been relatively stable since the start?
What is the memory and CPU usage looking like on the Web server(s) and DB server?
This is the first clue to check to see if either server is under considerable load. From there you can investigate why it might be under load or if it possibly needs a bit more grunt to deal with the load. Look at the running processes. If these servers are managed by an IT department or such some culprits can include things like Virus Scanners hogging resources. (I.e. policy changes in the last few months have lead to additional load on the servers)
What recovery model is your database set up for?
What is the size of your Tx Log (.mdx file)
Do you have a regular scheduled database backup and index maintenance?
This is one that new projects tend to forget. An empty database is small and has no Tx Log history being recorded, but as it runs over time that Tx Log grows silently in the background, especially with Full recovery. Larger Tx Logs can lead to slower performance over time especially if the log file needs to be enlarged. A good thing to check is whether the log file is set to grow by a # of bytes or percentage. Percentage is I believe the default but this can cause exponential "grow" time/space issues so it's better to set it to a fixed size per grow. You'll want regular backups being done that allow the Tx Log to reset. Ideally don't shrink the file if the Log size between backups stays consistent.
How many records across all tables are being inserted or updated in a given day?
This is important to build a picture of how much the database will be tracking through the day between backups. You may have 250 clients, but every heartbeat is potentially updating a row and inserting others.
What are you using for PKs for inserted records? (Ints vs. UUIDs) If using UUIDs are you using NEWSEQUENTIALID() or NEWID()/Guid.New()?
GUIDs can be a time bomb for indexing if done poorly. A GUID combined with NEWID() or Guid.New() will lead to considerable index fragmentation when inserting rows. Provided the GUIDs are not visible to clients you should use NEWSEQUENTIALID(). If IDs are set via code then there are implementations you can find to generate sequential GUIDs. (It's a matter of re-arranging the parts that make up the GUID) Regular index maintenance is a requirement for using UUID columns in indexed fields.
Are you using Dependency Injection in your web service?
What is the lifetime scope of the DbContexts performing the updates?
This is a potential time bomb for web servers if the lifetime scope for a DbContext is set up incorrectly. You want a DbContext to be alive for no longer than it is needed. At a maximum the lifetime scope should be set to PerRequest. A DbContext set up for Singleton for instance would be tracking entities across requests. The more entities a DbContext is tracking, the slower read and update operations become. This would be a possible culprit if the web server memory usage is climbing.
Are you running an SQL Profiler?
In a test environment with nothing else touching the database, running scenarios through the application with an SQL Profiler can reveal potential issues such as unexpected queries being kicked off due to things like lazy loading. For one operation you might expect one or a small number of queries to be run, only to find dozens or even hundreds. Multiply this across concurrent requests and you have a recipe for the database server to say "Just sit down and wait, dammit!" :) Any queries you don't expect based on the code that is running should be investigated for either eager loading relationships or implementing projection. (Recommended for best performance)
Do the web servers get restarted periodically?
For some tricky to debug issues and memory leaks, sometimes the easiest "fix" is to schedule regular restarts of the web server. It's a hack, but compared to the considerable cost of trying to track down memory leaks or fix up inefficient code that slows down over time, it is a cheap and effective fix. (At least while you do research options to address the issues and optimize the code)
That should give you a start into things to check with the service & database.
I'm deploying the Apache Solr web app in two redundant Tomcat 6 servers,
to provide redundancy and improved availability. At this point, scalability is not a issue.
I have a load balancer that can dynamically route traffic to one server or the other or both.
I know that Solr supports master/slave configuration, but that requires manual recovery if the slave receives updates during the master outage (which it will in my use case).
I'm considering a simpler approach using the ability to reload a core:
- only one of the two servers is receiving traffic at any time (the "active" instance), but both are running,
- both instances share the same index data and
- before re-routing traffic due to an outage, the now active instance is told to reload the index core(s)
Limited testing of failovers with both index reads and writes has been successful. What implications/issues am I missing?
Your thoughts and opinions welcomed.
The simple approach to redundancy your considering seems reasonable but you will not be able to use it for disaster recovery unless you can share the data/index to/from a different physical location using your NAS/SAN.
Here are some suggestions:-
Make backups for disaster recovery and test those backups work as an index could conceivably have been corrupted as there are no checksums happening internally in SOLR/Lucene. An index could get wiped or some records could get deleted and merged away without you knowing it and backups can be useful for recovering those records/docs at a later time if you need to perform an investigation.
Before you re-route traffic to the second instance I would run some queries to load caches and also to test and confirm the current index works before it goes online.
Isolate the updates to one location and process and thread to ensure transactional integrity in the event of a cutover as it could be difficult to manage consistency as SOLR does not use a vector clock to synchronize updates like some databases. I personally would keep a copy of all updates in order separately from SOLR in some other store just in case a small time window needs to be repeated.
In general, my experience with SOLR has been excellent as long as you are not using cutting edge features and plugins. I have one instance that currently has 40 million docs and an uptime of well over a year with no issues. That doesn't mean you wont have issues but gives you an idea of how stable it could be.
I hardly know anything about Solr, so I don't know the answers to some of the questions that need to be considered with this sort of setup, but I can provide some things for consideration. You will have to consider what sorts of failures you want to protect against and why and make your decision based on that. There is, after all, no perfect system.
Both instances are using the same files. If the files become corrupt or unavailable for some reason (hardware fault, software bug), the second instance is going to fail the same as the first.
On a similar note, are the files stored and accessed in such a way that they are always valid when the inactive instance reads them? Will the inactive instance try to read the files when the active instance is writing them? What would happen if it does? If the active instance is interrupted while writing the index files (power failure, network outage, disk full), what will happen when the inactive instance tries to load them? The same questions apply in reverse if the 'inactive' instance is going to be writing to the files (which isn't particularly unlikely if it wasn't designed with this use in mind; it might for example update some sort of idle statistic).
Also, reloading the indices sounds like it could be a rather time-consuming operation, and service will not be available while it is happening.
If the active instance needs to complete an orderly shutdown before the inactive instance loads the indices (perhaps due to file validity problems mentioned above), this could also be time-consuming and cause unavailability. If the active instance can't complete an orderly shutdown, you're gonna have a bad time.
I'm using the Django ORM to access a PostgreSQL database, and on rare occassions Django will throw a DatabaseError like django.db.utils.DatabaseError: invalid page header in block 299560 of relation base/83966/84778.
I've researched this, and it seems due to the database getting corrupted somehow. This is immensely frustrating, because I've always shutdown the database cleanly when rebooting, and every check I can run on my disk drive says there's nothing wrong with the disk itself. Therefore, I can only conclude that PostgreSQL is not actually ACID compliant and is corrupting my data in rare instances.
The only fix I've been able to find, is to drop and recreate my database. Obviously, this isn't really a fix, since I'm losing all my data. Is there any other way to resolve this, or should I switch to a more reliable database like MySQL?
I'm running Postgresql-8.4.8 on Ubuntu 10.04.
Most of the time you see this you either have bad memory or a bad drive. The difference between PostgreSQL and MySQL is that PostgreSQL sees it and complains as it should, while MySQL often just keeps on going with no stopping. I think the db that stops when the machine corrupts the data store is the more reliable db, because it lets you know right up front there are issues with your system.
BTW, PostgreSQL can survive an emergency shutdown (pull the plug out the back of the machine) just fine as long as the hard drives aren't lying about fsync.
Try memtest86 to see if your memory's ok, and do something like
sudo dd if=/dev/sdc1 of=/dev/null
to see if you get any errors. Anything in your dmesg or message logs about drive read write errors?
I have an application that uses a SQL FILESTREAM to store images. I insert a LOT of images (several millions images per days).
After a while, the machine stops responding and seem to be out of memory... Looking at the memory usage of the PC, we don't see any process taking a lot of memory (neither SQL or our application). We tried to kill our process and it didn't restore our machine... We then kill the SQL services and it didn't not restore to system. As a last resort, we even killed all processes (except the system ones) and the memory still remained high (we are looking in the task manager's performance tab). Only a reboot does the job at that point. We have tried on Win7, WinXP, Win2K3 server with always the same results.
Unfortunately, this isn't a one-shot deal, it happens every time.
Has anybody seen that kind of behaviour before? Are we doing something wrong using the SQL FILESTREAMS?
You say you insert a lot of images per day. What else do you do with the images? Do you update them, many reads?
Is your file system optimized for FILESTREAMs?
How do you read out the images?
If you do a lot of updates, remember that SQL Server will not modify the filestream object but create a new one and mark the old for deletion by the garbage collector. At some time the GC will trigger and start cleaning up the old mess. The problem with FILESTREAM is that it doesn't log a lot to the transaction log and thus the GC can be seriously delayed. If this is the problem it might be solved by forcing GC more often to maintain responsiveness. This can be done using the CHECKPOINT statement.
UPDATE: You shouldn't use FILESTREAM for small files (less than 1 MB). Millions of small files will cause problems for the filesystem and the Master File Table. Use varbinary in stead. See also Designing and implementing FILESTREAM storage
UPDATE 2: If you still insist on using the FILESTREAM for storage (you shouldn't for large amounts of small files), you must at least configure the file system accordingly.
Optimize the file system for large amount of small files (use these as tips and make sure you understand what they do before you apply)
Change the Master File Table
reservation to maximum in registry (FSUTIL.exe behavior set mftzone 4)
Disable 8.3 file names (fsutil.exe behavior set disable8dot3 1)
Disable last access update(fsutil.exe behavior set disablelastaccess 1)
Reboot and create a new partition
Format the storage volumes using a
block size that will fit most of the
files (2k or 4k depending on you
image files).
I have a client application that connects to the MySQL database 4 server using stock libraries on SuSE SLES 9. However, at times when processing a particular reset set from the server, iterating throw the results does not allow me to process all the results that is in the database.
This issue happens sometimes, mostly when servers have had several days of uptime. I would suspect that a reboot solves the problem.
Is there anyway that not releasing the MySQL result set over time gives rise to this memory leak and displays itself in this strange behavior must all result sets always be freed? However same table and same program behaves as should on another computer.
Could corruption of the result set occur because of implementation issues in either the application or the mysql client library?
Anything is possible, however I'd be inclined to go with app-level issues by default. Any problem that smells like it could be memory related is a prime candidate for a heap corruption bug if you're coding in C/C++, and that could cause result set problems. Also, I'm curious about how long you're holding this result set open for -- is it possible that the rows that you're "missing" might have been inserted between the time the query ran and when you're retrieving the value from the result set?
Finally, releasing a result set on the server happens automatically when you close the database connection, so unless you're holding a single connection open for days, that is unlikely to be the problem, absent a bug in MySQL.
You may think about upgrading to MySQL 5.
It's usually good to have the latest version.