How does c language store int in memory? - c

#include <stdio.h>
#include <stdlib.h>
int main() {
int *p_x = (int *)malloc(1 * sizeof(int));
scanf("%d", p_x);
for (int i = 0; i < 4; i++) {
char *one_byte_slice = (((char *)(p_x)) + i);
printf("slice : %d , value : %d\n", i, *one_byte_slice);
}
return 0;
}
When I entered positive values they seems understandable to me but for negative I don't understand it well.
For *p_x = 127:
127
slice : 0 , value : 127
slice : 1 , value : 0
slice : 2 , value : 0
slice : 3 , value : 0
p_x ---> 0111 1111
0000 0000
0000 0000
0000 0000
For *p_x = 256:
256
slice : 0 , value : 0
slice : 1 , value : 1
slice : 2 , value : 0
slice : 3 , value : 0
p_x ---> 0000 0000
0000 0001
0000 0000
0000 0000
For *p_x = -20:
-20
slice : 0 , value : -20
slice : 1 , value : -1
slice : 2 , value : -1
slice : 3 , value : -1
p_x ---> 1001 0100
1000 0001
1000 0001
1000 0001
And for *p_x = -256:
-256
slice : 0 , value : 0
slice : 1 , value : -1
slice : 2 , value : -1
slice : 3 , value : -1
p_x ---> 0000 0000
1000 0001
1000 0001
1000 0001
So how is it stored in memory for fixed point numbers is is stored in 2's complement or other way?

This is called low-endian encoding. The individual bit slices of the integer are stored from least significative to most significative in the consecutive byte cells.
Your integer is represented in binary form as:
0000 0000 0000 0000 0000 0000 0111 1111
(where I have used a space to separate each group of four bits).
Each byte is stored from the least significant group of eight bits to the most, in growing byte addresses, starting from the right above:
Addr. Value.
0000: 0111 1111
0001: 0000 0000
0002: 0000 0000
0003: 0000 0000
There's another way to do it, which is called big-endian, which stores the bytes just in the reverse direction, and some machines do it:
(Big-endian)
Addr. Value.
0000: 0000 0000
0001: 0000 0000
0002: 0000 0000
0003: 0111 1111
There are other ways to do, but today's computers normally use one of these two.
In the case of negative numbers, the solution consists in thinking that negative numbers and positive numbers are so that adding and subtrating can be done withou having to use an alternate circuitry. So numbers are divided in two halves and the ones with the most significant bit represent the negative ones... so numbers are represented (I'll use only four bits for brevity):
1000: -8
1001: -7
1010: -6
1011: -5
1100: -4
1101: -3
1110: -2
1111: -1
0000: 0
0001: 1
0010: 2
0011: 3
0100: 4
0101: 5
0110: 6
0111: 7
With 32 bits the result is the same, but extended to 32 bits... this makes that all the small negative numbers have all the most significant bits equal to 1.
1000 0000 0000 0000: -2147483648
1000 0000 0000 0001: -2147483647
...
1111 1111 1111 1101: -3
1111 1111 1111 1110: -2
1111 1111 1111 1111: -1
0000 0000 0000 0000: 0
0000 0000 0000 0001: 1
...
0111 1111 1111 1100: 2147483644
0111 1111 1111 1101: 2147483645
0111 1111 1111 1110: 2147483646
0111 1111 1111 1111: 2147483647
in such a way that adding is jumping in the previous table downwards and subtracting going upwards. This is called two's complement encoding.

Yeah i think i got my answer.
#include <stdio.h>
#include <stdlib.h>
int main() {
int *p_x = (int *) malloc(1*sizeof(int));
scanf("%d",p_x);
for(int i=0;i<4;i++) {
unsigned char *one_byte_slice = ( ((unsigned char *)(p_x)) + i);
printf("slice : %d , value : %hhx\n",i,*one_byte_slice);
}
return 0;
}
When i tried %hhx and unsigned char * it's shows me 2's complement for negative values.
-1
slice : 0 , value : ff
slice : 1 , value : ff
slice : 2 , value : ff
slice : 3 , value : ff
p_x ---> 1111 1111
1111 1111
1111 1111
1111 1111
-3
slice : 0 , value : fd
slice : 1 , value : ff
slice : 2 , value : ff
slice : 3 , value : ff
p_x ---> 1111 1101
1111 1111
1111 1111
1111 1111
Yeah so conclusion is it's stored in 2's complement format.

Related

what does bit_test() function do?

I'm reading Programming in C, 4th edn by Stephen Kochan.
Exercise: Write a function called bit_test() that takes two arguments: an unsigned int and a bit number n. Have the function return 1 if bit number n is on inside the word, and 0 if it is off. Assume that bit number 0 references the leftmost bit inside the integer. Also write a corresponding function called bit_set() that takes two arguments: an unsigned int and a bit number n. Have the function return the result of turning bit n on inside the integer.
This is one of the exercise's answers on their forum.
12-5
-----
/* test bit n in word to see if it is on
assumes words are 32 bits long */
int bit_test (unsigned int word, int n)
{
if ( n < 0 || n > 31 )
return 0;
if ( (word >> (31 - n)) & 0x1 )
return 1;
else
return 0;
}
unsigned int bit_set (unsigned int word, int n)
{
if ( n < 0 || n > 31 )
return 0;
return word | (1 << (31 - n));
}
Now I tried to understand it like this and as per my understanding it always returns 0. What does this function actually do?
It just checks whether a bit is set or not.
It assumes that it unsigned int is stored in 32 bit on that particular system.
Why the check?
Check is needed to make it safe ( I am not shifting a negative value or value greater than 31 ) As first one complains of being an error and the seecond one is useless as it returns 0.
what it really does in (word >> (31 - n)) & 0x1 )?
x x y x x x x x x
0 1 2 3 4 5 6 7 8
|-----------|
8-2=6
(Here I considered 9 bit words instead of 32. In your case it will be 31-3=28
So right shift it 6 bit
0 0 0 0 0 0 x x y
Now how to check if it is set or not?
0 0 0 0 0 0 x x y
& 0 0 0 0 0 0 0 0 1
________________________
0 0 0 0 0 0 0 0 y if it is set it returns 1 else 0
if that bit is et the result will be 1 else 0.
What does bit_set do?
It returns that nth bit set.
So if you input
0001 0010 1
and set bit is 0 (you want to set bit at position 0) then you will get
1001 0010 1
return word | (1 << (31 - n));
let the word be 0001 1001 1
You want to set bit 2 [0 indexing]
0001 1001 1
| 0010 0000 0
0011 1001 1
You have to apply logical or operation on with that value.
How to get that value?
Here we just want this number
0010 0000 0
|-------|
6 shift needed (left shift)
1 << (8-2) ---> is how you get it.
Or in your case 1<<(31-n)
Now I get what you are thinking wrong.....
You considered 25
0000 0000 0000 0000 0000 0000 0000 1101
The bit in 3rd (0 indexing) position is this
000[0] 0000 0000 0000 0000 0000 0000 1101
This bit is unset or 0.
Try 29th position of number 25 you will get 1 as answer.
The problem statement has us identify the leftmost, or highest order bit as n = 0, and the rightmost, or lowest order bit as n = 31.
The bit_test() function shifts the test bit to the lowest order position and does a bitwise AND to find if the test bit was set. For example, to test if the bit n = 0 is set for the bit pattern:
1111 1111 1111 1111 1111 1111 1111 1111
there is a shift to the right (word >> 31 - 0):
0000 0000 0000 0000 0000 0000 0000 0001
then the bitwise AND with 0x1 evaluates to 1, indicating that the n = 0 bit was set.
The bit_set() function shifts a bit-pattern with only the lowest order bit set to the left so that only the bit indicated by n is set, and then combines this bit pattern with the input number using a bitwise OR to set the n bit. If the input number is 0, and n = 3, then the lowest order bit of the bit pattern for 1 (or 0x1):
0000 0000 0000 0000 0000 0000 0000 0001
is shifted to the left (1 << 31 - 3):
0001 0000 0000 0000 0000 0000 0000 0000
and combined with the bit-pattern for 0 using a bitwise OR:
0001 0000 0000 0000 0000 0000 0000 0000
The result is that the n bit of the input number is set to 1.

Decide if X is at most half as long as Y, in binary, for unsigned ints in C

I have two unsigned ints X and Y, and I want to efficiently decide if X is at most half as long as Y, where the length of X is k+1, where 2^k is the largest power of 2 that is no larger than X.
i.e., X=0000 0101 has length 3, Y=0111 0000 is more than twice as long as X.
Obviously we can check by looking at individual bits in X and Y, for example by shifting right and counting in a loop, but is there an efficient, bit-twiddling (and loop-less) solution?
The (toy) motivation comes from the fact that I want to divide the range RAND_MAX either into range buckets or RAND_MAX/range buckets, plus some remainder, and I prefer use the larger number of buckets. If range is (approximately) at most the square root of RAND_MAX (i.e., at most half as long), than I prefer using RAND_MAX/range buckets, and otherwise I want to use range buckets.
It should be noted, therefore, that X and Y might be large, where possibly Y=1111 1111, in the 8-bit example above. We certainly don't want to square X.
Edit, post-answer: The answer below mentions the built-in count leading zeros function (__builtin_clz()), and that is probably the fastest way to compute the answer. If for some reason this is unavailable, the lengths of X and Y can be obtained through some well-known bit twiddling.
First, smear the bits of X to the right (filling X with 1s except its leading 0s), and then do a population count. Both of these operations involve O(log k) operations, where k is the number of bits that X occupies in memory (my examples are for uint32_t, 32 bit unsigned integers). There are various implementations, but I put the ones that are easiest to understand below:
//smear
x = x | x>>1;
x = x | x>>2;
x = x | x>>4;
x = x | x>>8;
x = x | x>>16;
//population count
x = ( x & 0x55555555 ) + ( (x >> 1 ) & 0x55555555 );
x = ( x & 0x33333333 ) + ( (x >> 2 ) & 0x33333333 );
x = ( x & 0x0F0F0F0F ) + ( (x >> 4 ) & 0x0F0F0F0F );
x = ( x & 0x00FF00FF ) + ( (x >> 8 ) & 0x00FF00FF );
x = ( x & 0x0000FFFF ) + ( (x >> 16) & 0x0000FFFF );
The idea behind the population count is to divide and conquer. For example with
01 11, I first count the 1-bits in 01: there is 1 1-bit on the right, and
there are 0 1-bits on the left, so I record that as 01 (in place). Similarly,
11 becomes 10, so the updated bit-string is 01 10, and now I will add the
numbers in buckets of size 2, and replace the pair of them with the result;
1+2=3, so the bit string becomes 0011, and we are done. The original
bit-string is replaced with the population count.
There are faster ways to do the pop count given in Hacker's Delight, but this
one is easier to explain, and seems to be the basis for most of the others. You
can get my code as a
Gist here..
X=0000 0000 0111 1111 1000 1010 0010 0100
Set every bit that is 1 place to the right of a 1
0000 0000 0111 1111 1100 1111 0011 0110
Set every bit that is 2 places to the right of a 1
0000 0000 0111 1111 1111 1111 1111 1111
Set every bit that is 4 places to the right of a 1
0000 0000 0111 1111 1111 1111 1111 1111
Set every bit that is 8 places to the right of a 1
0000 0000 0111 1111 1111 1111 1111 1111
Set every bit that is 16 places to the right of a 1
0000 0000 0111 1111 1111 1111 1111 1111
Accumulate pop counts of bit buckets size 2
0000 0000 0110 1010 1010 1010 1010 1010
Accumulate pop counts of bit buckets size 4
0000 0000 0011 0100 0100 0100 0100 0100
Accumulate pop counts of bit buckets size 8
0000 0000 0000 0111 0000 1000 0000 1000
Accumulate pop counts of bit buckets size 16
0000 0000 0000 0111 0000 0000 0001 0000
Accumulate pop counts of bit buckets size 32
0000 0000 0000 0000 0000 0000 0001 0111
The length of 8358436 is 23 bits
Y=0000 0000 0000 0000 0011 0000 1010 1111
Set every bit that is 1 place to the right of a 1
0000 0000 0000 0000 0011 1000 1111 1111
Set every bit that is 2 places to the right of a 1
0000 0000 0000 0000 0011 1110 1111 1111
Set every bit that is 4 places to the right of a 1
0000 0000 0000 0000 0011 1111 1111 1111
Set every bit that is 8 places to the right of a 1
0000 0000 0000 0000 0011 1111 1111 1111
Set every bit that is 16 places to the right of a 1
0000 0000 0000 0000 0011 1111 1111 1111
Accumulate pop counts of bit buckets size 2
0000 0000 0000 0000 0010 1010 1010 1010
Accumulate pop counts of bit buckets size 4
0000 0000 0000 0000 0010 0100 0100 0100
Accumulate pop counts of bit buckets size 8
0000 0000 0000 0000 0000 0110 0000 1000
Accumulate pop counts of bit buckets size 16
0000 0000 0000 0000 0000 0000 0000 1110
Accumulate pop counts of bit buckets size 32
0000 0000 0000 0000 0000 0000 0000 1110
The length of 12463 is 14 bits
So now I know that 12463 is significantly larger than the square root of
8358436, without taking square roots, or casting to floats, or dividing or
multiplying.
See also
Stackoverflow
and Haacker's Delight (it's
a book, of course, but I linked to some snippets on their website).
If you are dealing with unsigned int and sizeof(unsigned long long) >= sizeof(unsigned int), you can just use the square method after casting:
(unsigned long long)X * (unsigned long long)X <= (unsigned long long)Y
If not, you can still use the square method if X is less than the square root of UINT_MAX+1, which you may need to hard code in the function.
Otherwise, you could use floating point calculation:
sqrt((double)Y) >= (double)X
On modern CPUs, this would be quite fast anyway.
If you are OK with gcc extensions, you can use __builtin_clz() to compute the length of X and Y:
int length_of_X = X ? sizeof(X) * CHAR_BIT - __builtin_clz(X) : 0;
int length_of_Y = Y ? sizeof(Y) * CHAR_BIT - __builtin_clz(Y) : 0;
return length_of_X * 2 <= length_of_Y;
__buitin_clz() compiles to a single instruction on modern Intel CPUs.
Here is a discussion on more portable ways to count leading zeroes you could use to implement your length function: Counting leading zeros in a 32 bit unsigned integer with best algorithm in C programming or this one: Implementation of __builtin_clz

Bitwise addition of opposite signs

int main(){
int a = 10, b = -2;
printf("\n %d \n",a^b);
return 0;
}
This program outputs -12. I could not understand how. Please explain.
0111 1110 -> 2's complement of -2
0000 1010 -> 10
---------
0111 0100
This no seems to be greater than -12 and is +ve. But how did I get the o/p as -12 ?
To find the two's complement of a negative integer, first find the binary representation of its magnitude. Then flip all its bits, i.e., apply the bitwise NOT operator !. Then add 1 to it. Therefore, we have
2 --> 0000 0000 0000 0010
~2 --> 1111 1111 1111 1101 // flip all the bits
~2 + 1 --> 1111 1111 1111 1110 // add 1
Therefore, the binary representation of -2 in two's complement is
1111 1111 1111 1110
Now, assuming the size of int is 4, the representation of a and b in two's complement is -
a --> 0000 0000 0000 1010 --> 10
b --> 1111 1111 1111 1110 --> -2
a^b --> 1111 1111 1111 0100 --> -12
The operator ^ is the bitwise XOR, or exclusive OR operator. If operates on the corresponding bits of a and b and evaluates to 1 only when the bits are not both 0 or both 1, else it evaluate to 0.
Seems legit!
1111 1110 (-2)
xor
0000 1010 (10)
=
1111 0100 (-12)
^ is the bitwise XOR, not power
a = 10 = 0000 1010
b = -2 = 1111 1110
──────────────────
a^b = 1111 0100 = -12
(int) -2 = 0xfffffffe
(int) 10 = 0x0000000a
0xfffffffe ^ 0x0000000a = fffffff4 = (int) -12

set the m-bit to n-bit [closed]

This question is unlikely to help any future visitors; it is only relevant to a small geographic area, a specific moment in time, or an extraordinarily narrow situation that is not generally applicable to the worldwide audience of the internet. For help making this question more broadly applicable, visit the help center.
Closed 9 years ago.
I have a 32-bit number and without using for loop, I want to set m bit to n bits.
For example:
m bit may be 2nd or 5th or 9th or 10th.
n bit may be 22nd or 27 or 11th bit.
I assume (m < n).
Please help me.Thanks
Suppose Bits are numbered from LSB to MSB:
BIT NUMBER 31 0
▼ ▼
number bits 0000 0000 0000 0000 0000 0000 0001 0101
▲ ^ ^ ▲
MSB | | LSB
| |
n=27 m=17
LSB - Least Significant Bit (numbered 0)
MSB - Most Significant Bit (numbered 31)
In the figure above, I have shown how bits are numbered from LSB to MSB.
Notice the relative positions of n and m where n > m.
To set (all one) bits from n to m
To set-1 all bits from position m to n (where n > m) in a 32-bit number.
You need a 32-bit mask in which all bits are 1 from n to m and remaining bits are 0.
For example, to set all bits from m=17 to n=27 we need mask like:
BIT NUMBER 31 n=27 m=17 0
▼ ▼ ▼ ▼
mask = 0000 1111 1111 1110 0000 0000 0000 0000
And if we have any 32-bit number, by bitwise OR (|) with this number we can set-1 all bits from m to n. All other bits will be unchanged.
Remember OR works like:
x | 1 = 1 , and
x | 0 = x
where x value can be either 1 or 0.
So by doing:
num32bit = num32bit | mask;
we can set n to m bit 1 and remaining bits will be unchanged. For example, suppose, num32bit = 0011 1001 1000 0000 0111 1001 0010 1101,
then:
0011 1001 1000 0000 0111 1001 0010 1101 <--- num32bit
0000 1111 1111 1110 0000 0000 0000 0000 <--- mask
---------------------------------------- ---------------Bitwise OR operation
0011 1111 1111 1110 0111 1001 0010 1101 <--- new number
---- ▲ ▲ -------------------
|-----------| this bits are from `num32bit`
all bits are
1 here
This is what I mean by:
num32bit = num32bit | mask;
##How to make the mask?
To make a mask in which all bits are 1 from n to m and others are 0, we need three steps:
Create mask_n: All bits on Right side from n=27 are one
BIT NUMBER 31 n=27 0
▼ ▼ ▼
mask_27= 0000 1111 1111 1111 1111 1111 1111 1111
In programming this can be created by right-shift (>>) 4 times.
And, why 4?
4 = 32 - n - 1 ==> 31 - 27 ==> 4
Also note: the complement (~) of 0 has all bits one,
and we need unsigned right shift in C.
Understand the difference between signed and unsigned right shift
Create mask_m: All bits on left side from m=17 are one.
BIT NUMBER 31 m=17 0
▼ ▼ ▼
mask_17 1111 1111 1111 1110 0000 0000 0000 0000
Create mask: Bitwise AND of above to: mask = mask_n & mask_m:
mask = 0000 1111 1111 1110 0000 0000 0000 0000
▲ ▲
BIT NUMBER 27 17
And, below is my getMask(n, m) function that returns a unsigned number that looks like mask in step-3.
#define BYTE 8
typedef char byte; // Bit_sizeof(char) == BYTE
unsigned getMask(unsigned n,
unsigned m){
byte noOfBits = sizeof(unsigned) * BYTE;
unsigned mask_n = ((unsigned)~0u) >> (noOfBits - n - 1),
mask_m = (~0u) << (noOfBits - m),
mask = mask_n & mask_m; // bitwise & of 2 sub masks
return mask;
}
To test my getMask() I have also written a main() function and a binary() function, which prints a given number in binary format.
void binary(unsigned);
int main(){
unsigned num32bit = 964720941u;
unsigned mask = 0u;
unsigned rsult32bit;
int i = 51;
mask = getMask(27, 17);
rsult32bit = num32bit | mask; //set n to m bits 1
printf("\nSize of int is = %ld bits, and "
"Size of unsigned = %ld e.g.\n", sizeof(int) * BYTE,
sizeof(unsigned) * BYTE);
printf("dec= %-4u, bin= ", 21);
binary(21);
printf("\n\n%s %d\n\t ", "num32bit =", num32bit);
binary(num32bit);
printf("mask\t ");
binary(mask);
while(i--) printf("-");
printf("\n\t ");
binary(rsult32bit);
printf("\n");
return EXIT_SUCCESS;
}
void binary(unsigned dec){
int i = 0,
left = sizeof(unsigned) * BYTE - 1;
for(i = 0; left >= 0; left--, i++){
printf("%d", !!(dec & ( 1 << left )));
if(!((i + 1) % 4)) printf(" ");
}
printf("\n");
}
This test code runs like (the output is quite same as I explained in above example):
Output of code:
-----------------
$ gcc b.c
:~$ ./a.out
Size of int is = 32 bits, and Size of unsigned = 32 e.g.
dec= 21 , bin= 0000 0000 0000 0000 0000 0000 0001 0101
num32bit = 964720941
0011 1001 1000 0000 0111 1001 0010 1101
mask 0000 1111 1111 1110 0000 0000 0000 0000
---------------------------------------------------
0011 1111 1111 1110 0111 1001 0010 1101
:~$
Additionally, you can write getMask() function in shorter form in two statements, as follows:
unsigned getMask(unsigned n,
unsigned m){
byte noOfBits = sizeof(unsigned) * BYTE;
return ((unsigned)~0u >> (noOfBits - n - 1)) &
(~0u << (noOfBits -m));
}
Note: I removed redundant parentheses, to clean up the code. Although you never need to remember precedence of operators, as you can override precedence using (), a good programmer always refers to precedence table to write neat code.
A better approach may be to write a macro as below:
#define _NO_OF_BITS sizeof(unsigned) * CHAR_BIT
#define MASK(n, m) (((unsigned)~0u >> (_NO_OF_BITS - n - 1)) & \
(~0u << (_NO_OF_BITS - m)))
And call like:
result32bit = num32bit | MASK(27, 17);
To reset (all zero) bits from n to m
To reset all bits from n to m = 0, and leave the rest unchanged, you just need complement (~) of mask.
mask 0000 1111 1111 1111 1000 0000 0000 0000
~mask 1111 0000 0000 0000 0111 1111 1111 1111 <-- complement
Also instead of | operator to set zero & is required.
remember AND works like:
x & 0 = 0 , and
x & 0 = 0
where x value can be 1 or 0.
Because we already have a bitwise complement ~ operator and and & operator, we just need to do:
rsult32bit = num32bit & ~MASK(27, 17);
And it will work like:
num32bit = 964720941
0011 1001 1000 0000 0111 1001 0010 1101
mask 1111 0000 0000 0000 0111 1111 1111 1111
---------------------------------------------------
0011 0000 0000 0000 0111 1001 0010 1101

Complementing binary numbers

When I complement 1 (~1), I get the output as -2. How is this done internally?
I first assumed that the bits are inverted, so 0001 becomes 1110 and then 1 is added to it, so it becomes 1111 which is stored, how is the number then retrieved?
Well, no. When you complement 1, you go just invert the bits:
1 == 0b00000001
~1 == 0b11111110
And that's -2 in two's complement, which is the way your computer internally represents negative numbers. See http://en.wikipedia.org/wiki/Two's_complement but here are some examples:
-1 == 0b11111111
-2 == 0b11111110
....
-128== 0b10000000
+127== 0b01111111
....
+2 == 0b00000010
+1 == 0b00000001
0 == 0b00000000
Whar do you mean "when I complement 1 (~1)," ? There is what is called Ones-complement, and there is what is called Twos-Complement. Twos-Complement is more common (it is used on most computers) as it allows negative numbers to be added and subtracted using the same algorithm as postive numbers.
Twos-Complement is created by taking the binary representation of the postive number and switching every bit from 1 to 0 and from 0 to 1, and then adding one
5 0000 0101
4 0000 0100
3 0000 0011
2 0000 0010
1 0000 0001
0 0000 0000
-1 1111 1111
-2 1111 1110
-3 1111 1101
-4 1111 1100
-5 1111 1011
etc.

Resources