Topological Sort - Creating a Direct Graph Issue - c

So I'm trying to implement the code, but it's not working properly. I'll put into comments where I'm pretty sure I'm making a mistake. I just started learning this chapter, and it's pretty hard and confusing, but I'm getting into it, that's why I have no idea what's wrong or not, please help.
#include "graph.h"
#include "queue.c"
#include "queue.h"
#include "topsort.c"
#include "fatal.h"
#include <stdlib.h>
#include <stdio.h>
Graph CreateDirectGraph(void)
{
int N, i;
Vertex v, w;
Graph G;
PtrToNode p;
printf("Create Directed Graph:\n");
printf("Number of vertexs in the graph:\n");
scanf("%d",&N);
G = (struct GraphRecord *)malloc(sizeof(struct GraphRecord));
G->vertices = (struct VertexRecord *)malloc(sizeof(struct VertexRecord) * (N + 1));
G->vexnum = N;
for (i = 1; i <= N; i++)
G->vertices[i].adjto = NULL;
printf("Number of edges in the graph:\n");
scanf("%d",&N);
printf("Input %2d edges:\n", N);
for (i = 1; i <= N; i++) {
scanf("%d%d", &v, &w);
p = ( struct Node *) malloc( sizeof( struct Node ) );
p->adjvex = NextAdjVex(G, v, w); /* <-- HERE */
p->next = G->vertices[v].adjto; /* <-- HERE */
G->vertices[v].adjto = p;
}
return G;
}
void DestroyGraph(Graph G)
{ /*free space*/
free(G->vertices);
free(G);
return;
}
Vertex FirstAdjVex(Graph G, Vertex v)
{
if (G->vertices[v].adjto)
return G->vertices[v].adjto->adjvex;
else return 0;
}
Vertex NextAdjVex(Graph G, Vertex v, Vertex w)
{
PtrToNode p;
p = G->vertices[v].adjto;
while (p->adjvex != w)
p = p->next;
if (p->next) return p->next->adjvex;
return 0;
}
int NumOfVex(Graph G)
{
return G->vexnum;
}
int Topsort( Graph G, int TopNum[] )
{
Queue Q;
int V, W, N;
int Counter = 0;
int *Indegree;
PtrToNode p;
N = NumOfVex(G);
Indegree = (int *)malloc(sizeof(int)*(N + 1));
for (V=1; V<=N; V++)
Indegree[V] = 0;
for (V=1; V<=N; V++)
for (p =G->vertices[V].adjto; p; p = p->next)
Indegree[p->adjvex]++;
Q = CreateQueue( N );
for (V = 1; V <= N; V++)
if ( Indegree[ V ] == 0 ) Enqueue( V, Q );
while ( !IsEmpty( Q ) ) {
V = Dequeue( Q );
TopNum[ ++ Counter ] = V; /* assign next */ /* <-- HERE */
for (W = FirstAdjVex(G, V); W; W = NextAdjVex(G, V, W))
if ( --Indegree[W] == 0 ) Enqueue( W, Q ); /* <-- HERE */
} /* end-while */
DisposeQueue( Q ); /* free memory */
if ( Counter != N )
return 0;
return 1;
}
/* <-- HERE */ means I probably made a mistake there, because I'm 99% sure the rest is correct, as I was being partly guided
OUTPUT:
Number of vertexs in the graph:
4
Number of edges in the graph:
4
Input 4 edges:
1 2
Then the runtime stops

Related

Critical error detected c0000374. MergeSort.exe has triggered a breakpoint

I was trying to implement merge sort in C.
But when I test the code I encounter this error c0000374 in my merge sort function when I try to split array into left right array.
The code is as follows.
typedef struct EntryStruct {
int data;
char *name;
} Entry;
typedef char *String;
void merge(Entry *output, Entry *L, int nL, Entry *R, int nR) {
int i = 0;
int j = 0;
int k = 0;
while (k < nL + nR) {
if ((L[i].data != NULL && L[i].data < R[i].data) || R[j].data == NULL) {
output[k] = L[i];
i++;
} else {
output[k] = R[j];
j++;
}
k++;
}
}
void merge_sort(Entry *entries, int n) {
if (n > 1) {
int mid = n / 2;
Entry *temp = (Entry *)malloc(n * sizeof(Entry));
Entry *left = (Entry *)malloc(mid * sizeof(Entry));
Entry *right = (Entry *)malloc((n - mid) * sizeof(Entry));
for (int l = 0; l < mid; l++)
left[l] = entries[l];
for (int r = mid; r < n; r++)
right[r] = entries[r];
merge_sort(left, mid);
merge_sort(right, n - mid);
merge(temp, left, mid, right, n - mid);
for (int i = 0 ; i < n; i++) {
entries[i] = temp[i];
}
free(temp);
}
}
Entry Entry_create(int data, String name) {
Entry node;
node.name = (String)malloc(strlen(name) + 1);
strcpy(node.name, name);
node.data = data;
return node;
}
void printArrByName(Entry *arr, int s) {
for (int i = 0; i < s; i++) {
printf("%s\n", arr[i].name);
}
}
int main(void) {
Entry *arr = malloc(5 * sizeof(*arr));
arr[0] = Entry_create(5, "abc");
arr[1] = Entry_create(6, "def");
arr[2] = Entry_create(2, "ghijk");
arr[3] = Entry_create(3, "ksdljf");
arr[4] = Entry_create(1, "lsdfjl");
merge_sort(arr, 5);
printArrByName(arr, 5);
free(arr);
}
I want to ask what is the cause of this problem in my case and how to solve it.
Is this happen because I split array in to left right in the wrong way or is it something to do with the initialization of the array.
There are multiple problems in the code causing undefined behavior:
[major: undefined behavior] In the merge_sort function, the loop for (int r = mid; r < n; r++) right[r] = entries[r]; accesses the array pointed to by right beyond the end. You should write:
for (int r = mid; r < n; r++)
right[r - mid] = entries[r];
This bug is a good candidate to explain the observed behavior as it corrupts the malloc() internal data, causing a subsequent call to malloc() to crash.
[major: memory leak] You do not free left, nor right. As a matter of fact, allocating copies of the left and right parts of the array is not even necessary.
[major: undefined behavior] In the merge function, you do not test if i is less than nL, nor of j is less than nR before accessing L[i] or R[j]. Testing if the data member is not NULL does not suffice, accessing an element beyond the end of an array has undefined behavior.
[minor: unstable sort] L[i].data < R[i].data might not preserve the order of entries that have the same data value. You should use L[i].data <= R[i].data to implement stable sorting.
[hint] Defining typedef char *String; is a bad idea. Do not hide pointers behind typedefs, it is confusing and error prone.
Here is a modified version:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct EntryStruct {
int data;
char *name;
} Entry;
#ifdef _MSC_VER
// define strdup on legacy systems
char *strdup(const char *s) {
size_t len = strlen(s);
char *p = (char *)malloc(len + 1);
if (p)
memcpy(p, s, len + 1);
return p;
}
#endif
void merge(Entry *output, Entry *L, int nL, Entry *R, int nR) {
int i = 0;
int j = 0;
int k = 0;
while (k < nL + nR) {
if (i < nL && (j >= nR || L[i].data <= R[j].data)) {
output[k] = L[i];
i++;
} else {
output[k] = R[j];
j++;
}
k++;
}
}
void merge_sort(Entry *entries, int n) {
if (n > 1) {
int mid = n / 2;
Entry *temp;
Entry *left = entries;
Entry *right = entries + mid;
merge_sort(left, mid);
merge_sort(right, n - mid);
temp = (Entry *)malloc(n * sizeof(Entry));
merge(temp, left, mid, right, n - mid);
for (int i = 0; i < n; i++) {
entries[i] = temp[i];
}
free(temp);
}
}
Entry Entry_create(int data, const char *name) {
Entry node;
node.name = strdup(name);
node.data = data;
return node;
}
void printArrByName(Entry *arr, int n) {
for (int i = 0; i < n; i++) {
printf("%s\n", arr[i].name);
}
}
int main(void) {
Entry *arr = malloc(5 * sizeof(*arr));
arr[0] = Entry_create(5, "abc");
arr[1] = Entry_create(6, "def");
arr[2] = Entry_create(2, "ghijk");
arr[3] = Entry_create(3, "ksdljf");
arr[4] = Entry_create(1, "lsdfjl");
merge_sort(arr, 5);
printArrByName(arr, 5);
for (int i = 0; i < 5; i++)
free(arr[i].name);
free(arr);
return 0;
}
Although not needed for small arrays, and since there are answers based on the questions code, here is a somewhat optimized top down merge sort that avoids copy backs by using a pair of mutually recursive functions (...a2a, ...a2b). An entry function does a one time allocation of the temporary array. On my system, it takes less than .5 second to sort an array of 4 million structures.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct EntryStruct {
int data;
char *name;
} Entry;
/* prototypes for mutually recursive functions */
void merge_sort_a2a(Entry *a, Entry *b, int ll, int ee);
void merge_sort_a2b(Entry *a, Entry *b, int ll, int ee);
void merge(Entry *a, Entry *b, int ll, int rr, int ee)
{
int o = ll; /* b[] index */
int l = ll; /* a[] left index */
int r = rr; /* a[] right index */
while(1){
if(a[l].data <= a[r].data){ /* if a[l] <= a[r] */
b[o++] = a[l++]; /* copy a[l] */
if(l < rr) /* if not end of left run */
continue; /* continue (back to while) */
while(r < ee) /* else copy rest of right run */
b[o++] = a[r++];
break; /* and return */
} else { /* else a[l] > a[r] */
b[o++] = a[r++]; /* copy a[r] */
if(r < ee) /* if not end of right run */
continue; /* continue (back to while) */
while(l < rr) /* else copy rest of left run */
b[o++] = a[l++];
break; /* and return */
}
}
}
void merge_sort_a2a(Entry *a, Entry *b, int ll, int ee)
{
int rr;
if(ee - ll < 2){ /* if 1 element */
return; /* return */
}
rr = ll + (ee-ll)/2; /* mid point, start of right run */
merge_sort_a2b(a, b, ll, rr);
merge_sort_a2b(a, b, rr, ee);
merge(b, a, ll, rr, ee);
}
void merge_sort_a2b(Entry *a, Entry *b, int ll, int ee)
{
int rr;
if(ee - ll < 2){ /* if 1 element */
b[ll] = a[ll]; /* copy to b */
return;
}
rr = ll + (ee-ll)/2; /* mid point, start of right run */
merge_sort_a2a(a, b, ll, rr);
merge_sort_a2a(a, b, rr, ee);
merge(a, b, ll, rr, ee);
}
void merge_sort(Entry *a, int n) {
if(n < 2)
return;
Entry *b = malloc(n * sizeof(Entry));
merge_sort_a2a(a, b, 0, n);
free(b);
}
Entry Entry_create(int data, const char *name) {
Entry node;
node.name = _strdup(name); /* _strdup is ISO name */
node.data = data;
return node;
}
void printArrByName(Entry *arr, int n) {
for (int i = 0; i < n; i++) {
printf("%s\n", arr[i].name);
}
}
int main(void) {
Entry *arr = malloc(5 * sizeof(*arr));
arr[0] = Entry_create(5, "abc");
arr[1] = Entry_create(6, "def");
arr[2] = Entry_create(2, "ghijk");
arr[3] = Entry_create(3, "ksdljf");
arr[4] = Entry_create(1, "lsdfjl");
merge_sort(arr, 5);
printArrByName(arr, 5);
for (int i = 0; i < 5; i++)
free(arr[i].name);
free(arr);
return 0;
}

Ensemble averaging over ten independent realizations

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
//#include<igraph.h>
#define NUM_VERTICES1 15000// No. of data for Newman Watts to be used 15000:
//#define strings 10 // No. of base strings to be used 160:
//Function for generating infection rate randomly:
void unifRand(double *x, double *x1, double *x2)
{
int i;
const int n = 200; // 20
srand(unsigned(time(NULL)));
for(i = 0; i < n - 1; i++)
{
//x2[i] = rand()/double(RAND_MAX); //generate random number for choosing the infected neighbors(m):
x[i] = (0.2)+(0.4-0.2)*rand()/double(RAND_MAX);
x2[i] = 0.02; // fix the neighbor m and check:
x1[i] = log(1-x[i]);// Infection rate lambda:
printf("%lf\t%lf\t%lf\t%d\t%d\t\n", x[i], x1[i],x2[i],rand(), RAND_MAX);
}
}
// Function 2:
struct Edge {
int vertex;
struct Edge * next;
};
// Inserts Node to the Linked List by Head Insertion - O(1)
// Returns address of head which is the newly created node.
struct Edge * addEdge(struct Edge * currentHead, int newVertex)
{
struct Edge * newHead
= (struct Edge *) malloc(sizeof(struct Edge));
newHead->vertex = newVertex;
newHead->next = currentHead;
return newHead;
}
int main()
{
FILE *wg = NULL;
FILE *ob = NULL;
wg = fopen("ncwang1.txt","w");
ob = fopen("obs.txt","w");
if(wg == NULL)
{
printf("Error in opening file wg!\n");
}
if(ob == NULL)
{
printf("Error in opening file ob!\n");
}
int vertices = 200, edges = 400, i; // 20,50:(100,50)
int strings = 160;
int nobs = 10;
int v1, v2;
double j;
int k;
double t=0.0;
double dt=0.1;
double b;
double x[vertices], x1[vertices];
double x2[vertices];
unifRand(x,x1,x2);
// printf("Enter the Number of Vertices -\n");
// scanf("%d", &vertices);
//printf("\nEnter the Number of Edges -\n");
// scanf("%d", &edges);
struct Edge * adjacencyList[vertices + 1];
// Size is made (vertices + 1) to use the
// array as 1-indexed, for simplicity
// initialize array:
for (i = 0; i <= vertices; ++i) {
adjacencyList[i] = NULL;
}
for (i = 0; i <= edges; ++i) {
//scanf(%d%d", &v1, &v2);
v1 = rand()%200;
v2 = rand()%200;
// Adding edge v1 --> v2
// Add edge from v1 --> v2
if(v1 != v2)
adjacencyList[v1] = addEdge(adjacencyList[v1], v2);
// Adding edge v2 --> v1
// Remove this if you want a Directed Graph
adjacencyList[v2] = addEdge(adjacencyList[v2], v1);
}
// Printing Adjacency List
printf("\nAdjacency List -\n\n");
for(j = 0; j < strings; j++){
for (i = 0; i <= vertices; ++i) {
printf("adjacencyList[%d] -> ", i);
struct Edge * traverse = adjacencyList[i];
while (traverse != NULL)
{
b = (double)j/vertices;
fprintf(wg,"%d \t%d \t\t%0.6lf\t\t%0.1lf\t\t%0.8lf\t\n", i, traverse->vertex,-(x1[i]*(traverse->vertex))/100,b,
x[i]);
//fprintf(ob,"%d\t%0.2lf\t%0.1lf\n",k,(-log(1-x[i])*(traverse->vertex)),b);
printf("%d -> ", traverse->vertex);
traverse = traverse->next;
}
printf("NULL\n");
}
}
return 0;
fclose(wg);
fclose(ob);
wg = NULL;
ob = NULL;
}
I have written the above code for a network reconstruction performance from a reseach paper. I have to plot 'b' versus (-log(1-x[i])*(traverse->vertex)) from the output. The authors of the paper have mentioned that "the results are obtained by ensemble averaging over 10 independent realizations. How I can implement this in my code. As I am new to statistical physics, I do not know how to implement. Any suggestions will be helpful. The current output gives only a single line at b = 0.1, 0.2..1.0 which is not the expected output.c

“Invalid operands to binary expressions” Error

I keep getting this error:
Invalid operands to binary expressions ('struct node'and 'int')
on two lines that I've marked below with ** in the function "reachR". Whats wrong and how can I fix it? The code is for a data structure assignment.
#include <stdio.h>
#include <stdlib.h>
#define Vertex int
#define maxV 10000
typedef struct digraph *Digraph;
typedef struct node *teste;
static int lbl[maxV];
typedef struct {
Vertex v, w;
} Arc;
struct digraph {
int V;
int A;
teste *adj;
};
struct node {
Vertex w;
teste next;
};
teste NEWnode( Vertex w, teste next) {
teste a = malloc( sizeof (struct node));
a->w = w;
a->next = next;
return a;
}
Arc ARC( Vertex v, Vertex w) {
Arc a;
a.v = v, a.w = w;
return a;
}
void reachR( Digraph G, Vertex v) {
Vertex w;
lbl[v] = 1;
for (w = 0; w < G->V; w++)
**if (G->adj[v][w] == 1 && lbl[w] == 0)**
reachR( G, w);
}
int DIGRAPHreach( Digraph G, Vertex s, Vertex t) {
Vertex v;
for (v = 0; v < G->V; v++)
lbl[v] = 0;
reachR( G, s);
if (lbl[t] == 0) return 0;
else return 1;
}
int digraphcycle( Digraph G) {
Vertex v; teste a; int output;
for (v = 0; v < G->V; v++)
for (a = G->adj[v]; a != NULL; a = a->next) {
output = DIGRAPHreach( G, a->w, v);
if (output == 1) return 1;
}
return 0;
}
Digraph DIGRAPHinit( int V) {
Vertex v;
Digraph G = malloc( sizeof *G);
G->V = V;
G->A = 0;
G->adj = malloc( V * sizeof (teste));
for (v = 0; v < V; v++)
G->adj[v] = NULL;
return G;
}
void DIGRAPHinsertA( Digraph G, Vertex v, Vertex w) {
teste a;
for (a = G->adj[v]; a != NULL; a = a->next)
if (a->w == w) return;
G->adj[v] = NEWnode( w, G->adj[v]);
G->A++;
}
int main (){
Digraph G = DIGRAPHinit(4);
DIGRAPHinsertA(G, 1, 2);
DIGRAPHinsertA(G, 1, 3);
DIGRAPHinsertA(G, 2, 3);
DIGRAPHinsertA(G, 3, 4);
if (digraphcycle(G)==1){
printf("SIM!");
}
}
You are trying to compare a struct with an int. Obviously cannot be done. The equals operator (==) is a binary one, and it requires two compare-able objects on both sides.
You can access the value of the Vertex (an int) like mentioned in the comments by performing
G->adj[v]->w

convert information of struct of an pointer to array

I have a problem with a for loop, which should put information of struct of a pointer to an array. This struct is for complex numbers. The problem is the numbers m[n].re/.im -they are not korrekt.
typedef struct
{
float re, im;
} Complex;
#define N 2
#define M 2
int main()
{
Complex* p;
Complex matrix[N][M]; //already filled
Complex m[N*M];
int n;
n = 0;
p = NULL;
for(p = &matrix[0][0]; p<= &matrix[0][0]+N*M-1; p++)
{
m[n] = *p;
n = n+1;
}
}
You can use standard C function memcpy declared in header <string.h> for example
memcpy( m, matrix, N * M * sizeof( Complex ) );
If you want to use a loop that uses pointers then it can look for example the following way
for ( Complex *q = ( Complex * )matrix, *p = m; q != ( Complex * )matrix + N * M; p++, q++ )
{
*p = *q;
}
I've modified your program to initialize the matrix array, and to print to stdout the values of matrix and the array m after the copy using the for loop:
#include <stdio.h>
typedef struct
{
float re, im;
} Complex;
#define N 2
#define M 2
int main()
{
Complex* p;
Complex matrix[N][M]; //already filled
Complex m[N*M];
int idx, jdx, val = 1;
for (idx = 0; idx < N; idx++) {
for (jdx = 0; jdx < M; jdx++) {
matrix[idx][jdx].re = val;
matrix[idx][jdx].im = val;
++val;
}
}
int n;
n = 0;
p = NULL;
for (p = &matrix[0][0]; p < &matrix[0][0] + N*M; p++)
{
printf("matrix[%d] = %f + %fi\n", n, p->re, p->im);
m[n] = *p;
n = n+1;
}
int midx = 0;
for (midx = 0; midx < N*M; midx++) {
printf("m[%d] = %f + %fi\n", midx, m[midx].re, m[midx].im);
}
return 0;
}
I'm not sure what happened but to me it just looks like you didn't initialize the arrays. Remember, memcpy is your friend. Hope this code helps.
I think the pointer p holds the address of a struct Complex. Not sure but try once like this
for(p = &matrix[0][0]; p<= &matrix[0][0]+N*M-1; p = p + sizeof(int))
{
m[n] = *p;
n = n+1;
}
}
The fastest way to do the copy is with memcpy, but if you want to use a loop, the code should look like this
Complex matrix[N][M];
Complex array[N*M];
Complex *p = array;
for ( int n = 0; n < N; n++ )
for ( int m = 0; m < M; m++ )
*p++ = matrix[n][m];
In response to the comment, given only a pointer to the matrix, and knowing the dimensions, it's possible to create a pointer that acts like a two dimensional array.
void someFunction( Complex *matrix, int sizeN, int sizeM )
{
Complex (*p)[sizeM] = (void *)matrix;
for ( int n = 0; n < sizeN; n++ )
for ( int m = 0; m < sizeM; m++ )
printf( "%f %f\n", p[n][m].re, p[n][m].im );
}

Prim's algorithm for MST, Adjacency List Implementation in C

I have this question for my programming class which I have been struggling to complete for the past day ... and I have no real idea what to do.
I understand the basic concept of Prim's algorithm:
1. Start at an arbitrary node (the first node will do) and
add all of its links onto a list.
2. Add the smallest link (which doesn't duplicate an existing path)
in the MST, to the Minimum Spanning Tree.
Remove this link from the list.
3. Add all of the links from the newly linked node onto the list
4. repeat steps 2 & 3 until MST is achieved
(there are no nodes left unconnected).
I have been given this implementation of a Graph (using an Adjacency List) to implement Prim's algorithm on. The problem is I don't really understand the implementation. My understanding of the implementation so far is as follows:
Being an adjacency list, we have all the nodes in array form: Linked to this is a list of links, containing details of the weight, the destination, and a pointer to the rest of the links of the specific node:
Something that looks a bit like this:
[0] -> [weight = 1][Destination = 3] -> [weight = 6][Destination = 4][NULL]
[1] -> [weight = 4][Destination = 3][NULL]
and so on...
We also have an "Edge" struct, which I think is supposed to make things simpler for the implementation, but I'm not really seeing it.
Here is the code given:
GRAPH.h interface:
typedef struct {
int v;
int w;
int weight;
} Edge;
Edge EDGE (int, int, int);
typedef struct graph *Graph;
Graph GRAPHinit (int);
void GRAPHinsertE (Graph, Edge);
void GRAPHremoveE (Graph, Edge);
int GRAPHedges (Edge [], Graph g);
Graph GRAPHcopy (Graph);
void GRAPHdestroy (Graph);
int GRAPHedgeScan (Edge *);
void GRAPHEdgePrint (Edge);
int GRAPHsearch (Graph, int[]);
Graph GRAPHmst (Graph);
Graph GRAPHmstPrim (Graph);
#define maxV 8
GRAPH.c implementation:
#include <stdlib.h>
#include <stdio.h>
#include "GRAPH.h"
#define exch(A, B) { Edge t = A; A = B; B = t; }
#define max(A,B)(A>B?A:B)
#define min(A,B)(A<B?A:B)
typedef struct node *link;
struct node {
int v;
int weight;
link next;
};
struct graph {
int V;
int E;
link *adj;
};
static void sortEdges (Edge *edges, int noOfEdges);
static void updateConnectedComponent (Graph g, int from, int to, int newVal, int *connectedComponent);
Edge EDGE (int v, int w, int weight) {
Edge e = {v, w, weight};
return e;
}
link NEW (int v, int weight, link next) {
link x = malloc (sizeof *x);
x->v = v;
x->next = next;
x->weight = weight;
return x;
}
Graph GRAPHinit (int V) {
int v;
Graph G = malloc (sizeof *G);
// Set the size of the graph, = number of verticies
G->V = V;
G->E = 0;
G->adj = malloc (V * sizeof(link));
for (v = 0; v < V; v++){
G->adj[v] = NULL;
}
return G;
}
void GRAPHdestroy (Graph g) {
// not implemented yet
}
void GRAPHinsertE(Graph G, Edge e){
int v = e.v;
int w = e.w;
int weight = e.weight;
G->adj[v] = NEW (w, weight, G->adj[v]);
G->adj[w] = NEW (v, weight, G->adj[w]);
G->E++;
}
void GRAPHremoveE(Graph G, Edge e){
int v = e.v;
int w = e.w;
link *curr;
curr = &G->adj[w];
while (*curr != NULL){
if ((*curr)->v == v) {
(*curr) = (*curr)->next;
G->E--;
break;
}
curr= &((*curr)->next);
}
curr = &G->adj[v];
while (*curr != NULL){
if ((*curr)->v == w) {
(*curr) = (*curr)->next;
break;
}
curr= &((*curr)->next);
}
}
int GRAPHedges (Edge edges[], Graph g) {
int v, E = 0;
link t;
for (v = 0; v < g->V; v++) {
for (t = g->adj[v]; t != NULL; t = t->next) {
if (v < t->v) {
edges[E++] = EDGE(v, t->v, t->weight);
}
}
}
return E;
}
void GRAPHEdgePrint (Edge edge) {
printf ("%d -- (%d) -- %d", edge.v, edge.weight, edge.w);
}
int GRAPHedgeScan (Edge *edge) {
if (edge == NULL) {
printf ("GRAPHedgeScan: called with NULL \n");
abort();
}
if ((scanf ("%d", &(edge->v)) == 1) &&
(scanf ("%d", &(edge->w)) == 1) &&
(scanf ("%d", &(edge->weight)) == 1)) {
return 1;
} else {
return 0;
}
}
// Update the CC label for all the nodes in the MST reachable through the edge from-to
// Assumes graph is a tree, will not terminate otherwise.
void updateConnectedComponent (Graph g, int from, int to, int newVal, int *connectedComponent) {
link currLink = g->adj[to];
connectedComponent[to] = newVal;
while (currLink != NULL) {
if (currLink->v != from) {
updateConnectedComponent (g, to, currLink->v, newVal, connectedComponent);
}
currLink = currLink->next;
}
}
// insertion sort, replace with O(n * lon n) alg to get
// optimal work complexity for Kruskal
void sortEdges (Edge *edges, int noOfEdges) {
int i;
int l = 0;
int r = noOfEdges-1;
for (i = r-1; i >= l; i--) {
int j = i;
while ((j < r) && (edges[j].weight > edges[j+1].weight)) {
exch (edges[j], edges[j+1]);
j++;
}
}
}
Graph GRAPHmst (Graph g) {
Edge *edgesSorted;
int i;
int *connectedComponent = malloc (sizeof (int) * g->V);
int *sizeOfCC = malloc (sizeof (int) * g->V);
Graph mst = GRAPHinit (g->V);
edgesSorted = malloc (sizeof (*edgesSorted) * g->E);
GRAPHedges (edgesSorted, g);
sortEdges (edgesSorted, g->E);
// keep track of the connected component each vertex belongs to
// in the current MST. Initially, MST is empty, so no vertex is
// in an MST CC, therefore all are set to -1.
// We also keep track of the size of each CC, so that we're able
// to identify the CC with fewer vertices when merging two CCs
for (i = 0; i < g->V; i++) {
connectedComponent[i] = -1;
sizeOfCC[i] = 0;
}
int currentEdge = 0; // the shortest edge not yet in the mst
int mstCnt = 0; // no of edges currently in the mst
int v, w;
// The MST can have at most min (g->E, g->V-1) edges
while ((currentEdge < g->E) && (mstCnt < g->V)) {
v = edgesSorted[currentEdge].v;
w = edgesSorted[currentEdge].w;
printf ("Looking at Edge ");
GRAPHEdgePrint (edgesSorted[currentEdge]);
if ((connectedComponent[v] == -1) ||
(connectedComponent[w] == -1)) {
GRAPHinsertE (mst, edgesSorted[currentEdge]);
mstCnt++;
if (connectedComponent[v] == connectedComponent[w]) {
connectedComponent[v] = mstCnt;
connectedComponent[w] = mstCnt;
sizeOfCC[mstCnt] = 2; // initialise a new CC
} else {
connectedComponent[v] = max (connectedComponent[w], connectedComponent[v]);
connectedComponent[w] = max (connectedComponent[w], connectedComponent[v]);
sizeOfCC[connectedComponent[w]]++;
}
printf (" is in MST\n");
} else if (connectedComponent[v] == connectedComponent[w]) {
printf (" is not in MST\n");
} else {
printf (" is in MST, connecting two msts\n");
GRAPHinsertE (mst, edgesSorted[currentEdge]);
mstCnt++;
// update the CC label of all the vertices in the smaller CC
// (size is only important for performance, not correctness)
if (sizeOfCC[connectedComponent[w]] > sizeOfCC[connectedComponent[v]]) {
updateConnectedComponent (mst, v, v, connectedComponent[w], connectedComponent);
sizeOfCC[connectedComponent[w]] += sizeOfCC[connectedComponent[v]];
} else {
updateConnectedComponent (mst, w, w, connectedComponent[v], connectedComponent);
sizeOfCC[connectedComponent[v]] += sizeOfCC[connectedComponent[w]];
}
}
currentEdge++;
}
free (edgesSorted);
free (connectedComponent);
free (sizeOfCC);
return mst;
}
// my code so far
Graph GRAPHmstPrim (Graph g) {
// Initializations
Graph mst = GRAPHinit (g->V); // graph to hold the MST
int i = 0;
int nodeIsConnected[g->V];
// initially all nodes are not connected, initialize as 0;
for(i = 0; i < g->V; i++) {
nodeIsConnected[i] = 0;
}
// extract the first vertex from the graph
nodeIsConnected[0] = 1;
// push all of the links from the first node onto a temporary list
link tempList = newList();
link vertex = g->adj[0];
while(vertex != NULL) {
tempList = prepend(tempList, vertex);
vertex = vertex->next;
}
// find the smallest link from the node;
mst->adj[0] =
}
// some helper functions I've been writing
static link newList(void) {
return NULL;
}
static link prepend(link list, link node) {
link temp = list;
list = malloc(sizeof(list));
list->v = node->v;
list->weigth = node->weight;
list->next = temp;
return list;
}
static link getSmallest(link list, int nodeIsConnected[]) {
link smallest = list;
while(list != NULL){
if((list->weight < smallest->weight)&&(nodeIsConnected[list->v] == 0)) {
smallest = list;
}
list = list->next;
}
if(nodeIsConnected[smallest->v] != 0) {
return NULL;
} else {
return smallest;
}
}
For clarity, file to obtain test data from file:
#include <stdlib.h>
#include <stdio.h>
#include "GRAPH.h"
// call with graph_e1.txt as input, for example.
//
int main (int argc, char *argv[]) {
Edge e, *edges;
Graph g, mst;
int graphSize, i, noOfEdges;
if (argc < 2) {
printf ("No size provided - setting max. no of vertices to %d\n", maxV);
graphSize = maxV;
} else {
graphSize = atoi (argv[1]);
}
g = GRAPHinit (graphSize);
printf ("Reading graph edges (format: v w weight) from stdin\n");
while (GRAPHedgeScan (&e)) {
GRAPHinsertE (g, e);
}
edges = malloc (sizeof (*edges) * graphSize * graphSize);
noOfEdges = GRAPHedges (edges, g);
printf ("Edges of the graph:\n");
for (i = 0; i < noOfEdges; i++) {
GRAPHEdgePrint (edges[i]);
printf ("\n");
}
mst = GRAPHmstPrim (g);
noOfEdges = GRAPHedges (edges, mst);
printf ("\n MST \n");
for (i = 0; i < noOfEdges; i++) {
GRAPHEdgePrint (edges[i]);
printf ("\n");
}
GRAPHdestroy (g);
GRAPHdestroy (mst);
free (edges);
return EXIT_SUCCESS;
}
Thanks in advance.
Luke
files in full: http://www.cse.unsw.edu.au/~cs1927/12s2/labs/13/MST.html
UPDATE: I have had another attempt at this question. Here is the updated code (One edit above to change the graph_client.c to use "GRAPHmstPrim" function that I have written.
GRAPH_adjlist.c::
#include <stdlib.h>
#include <stdio.h>
#include "GRAPH.h"
#define exch(A, B) { Edge t = A; A = B; B = t; }
#define max(A,B)(A>B?A:B)
#define min(A,B)(A<B?A:B)
typedef struct _node *link;
struct _node {
int v;
int weight;
link next;
}node;
struct graph {
int V;
int E;
link *adj;
};
typedef struct _edgeNode *edgeLink;
struct _edgeNode {
int v;
int w;
int weight;
edgeLink next;
}edgeNode;
static void sortEdges (Edge *edges, int noOfEdges);
static void updateConnectedComponent (Graph g, int from, int to, int newVal, int *connectedComponent);
Edge EDGE (int v, int w, int weight) {
Edge e = {v, w, weight};
return e;
}
link NEW (int v, int weight, link next) {
link x = malloc (sizeof *x);
x->v = v;
x->next = next;
x->weight = weight;
return x;
}
Graph GRAPHinit (int V) {
int v;
Graph G = malloc (sizeof *G);
G->V = V;
G->E = 0;
G->adj = malloc (V * sizeof(link));
for (v = 0; v < V; v++){
G->adj[v] = NULL;
}
return G;
}
void GRAPHdestroy (Graph g) {
// not implemented yet
}
void GRAPHinsertE(Graph G, Edge e){
int v = e.v;
int w = e.w;
int weight = e.weight;
G->adj[v] = NEW (w, weight, G->adj[v]);
G->adj[w] = NEW (v, weight, G->adj[w]);
G->E++;
}
void GRAPHremoveE(Graph G, Edge e){
int v = e.v;
int w = e.w;
link *curr;
curr = &G->adj[w];
while (*curr != NULL){
if ((*curr)->v == v) {
(*curr) = (*curr)->next;
G->E--;
break;
}
curr= &((*curr)->next);
}
curr = &G->adj[v];
while (*curr != NULL){
if ((*curr)->v == w) {
(*curr) = (*curr)->next;
break;
}
curr= &((*curr)->next);
}
}
int GRAPHedges (Edge edges[], Graph g) {
int v, E = 0;
link t;
for (v = 0; v < g->V; v++) {
for (t = g->adj[v]; t != NULL; t = t->next) {
if (v < t->v) {
edges[E++] = EDGE(v, t->v, t->weight);
}
}
}
return E;
}
void GRAPHEdgePrint (Edge edge) {
printf ("%d -- (%d) -- %d", edge.v, edge.weight, edge.w);
}
int GRAPHedgeScan (Edge *edge) {
if (edge == NULL) {
printf ("GRAPHedgeScan: called with NULL \n");
abort();
}
if ((scanf ("%d", &(edge->v)) == 1) &&
(scanf ("%d", &(edge->w)) == 1) &&
(scanf ("%d", &(edge->weight)) == 1)) {
return 1;
} else {
return 0;
}
}
// Update the CC label for all the nodes in the MST reachable through the edge from-to
// Assumes graph is a tree, will not terminate otherwise.
void updateConnectedComponent (Graph g, int from, int to, int newVal, int *connectedComponent) {
link currLink = g->adj[to];
connectedComponent[to] = newVal;
while (currLink != NULL) {
if (currLink->v != from) {
updateConnectedComponent (g, to, currLink->v, newVal, connectedComponent);
}
currLink = currLink->next;
}
}
// insertion sort, replace with O(n * lon n) alg to get
// optimal work complexity for Kruskal
void sortEdges (Edge *edges, int noOfEdges) {
int i;
int l = 0;
int r = noOfEdges-1;
for (i = r-1; i >= l; i--) {
int j = i;
while ((j < r) && (edges[j].weight > edges[j+1].weight)) {
exch (edges[j], edges[j+1]);
j++;
}
}
}
Graph GRAPHmst (Graph g) {
Edge *edgesSorted;
int i;
int *connectedComponent = malloc (sizeof (int) * g->V);
int *sizeOfCC = malloc (sizeof (int) * g->V);
Graph mst = GRAPHinit (g->V);
edgesSorted = malloc (sizeof (*edgesSorted) * g->E);
GRAPHedges (edgesSorted, g);
sortEdges (edgesSorted, g->E);
// keep track of the connected component each vertex belongs to
// in the current MST. Initially, MST is empty, so no vertex is
// in an MST CC, therefore all are set to -1.
// We also keep track of the size of each CC, so that we're able
// to identify the CC with fewer vertices when merging two CCs
for (i = 0; i < g->V; i++) {
connectedComponent[i] = -1;
sizeOfCC[i] = 0;
}
int currentEdge = 0; // the shortest edge not yet in the mst
int mstCnt = 0; // no of edges currently in the mst
int v, w;
// The MST can have at most min (g->E, g->V-1) edges
while ((currentEdge < g->E) && (mstCnt < g->V)) {
v = edgesSorted[currentEdge].v;
w = edgesSorted[currentEdge].w;
printf ("Looking at Edge ");
GRAPHEdgePrint (edgesSorted[currentEdge]);
if ((connectedComponent[v] == -1) ||
(connectedComponent[w] == -1)) {
GRAPHinsertE (mst, edgesSorted[currentEdge]);
mstCnt++;
if (connectedComponent[v] == connectedComponent[w]) {
connectedComponent[v] = mstCnt;
connectedComponent[w] = mstCnt;
sizeOfCC[mstCnt] = 2; // initialise a new CC
} else {
connectedComponent[v] = max (connectedComponent[w], connectedComponent[v]);
connectedComponent[w] = max (connectedComponent[w], connectedComponent[v]);
sizeOfCC[connectedComponent[w]]++;
}
printf (" is in MST\n");
} else if (connectedComponent[v] == connectedComponent[w]) {
printf (" is not in MST\n");
} else {
printf (" is in MST, connecting two msts\n");
GRAPHinsertE (mst, edgesSorted[currentEdge]);
mstCnt++;
// update the CC label of all the vertices in the smaller CC
// (size is only important for performance, not correctness)
if (sizeOfCC[connectedComponent[w]] > sizeOfCC[connectedComponent[v]]) {
updateConnectedComponent (mst, v, v, connectedComponent[w], connectedComponent);
sizeOfCC[connectedComponent[w]] += sizeOfCC[connectedComponent[v]];
} else {
updateConnectedComponent (mst, w, w, connectedComponent[v], connectedComponent);
sizeOfCC[connectedComponent[v]] += sizeOfCC[connectedComponent[w]];
}
}
currentEdge++;
}
free (edgesSorted);
free (connectedComponent);
free (sizeOfCC);
return mst;
}
edgeLink newEdgeList(void) {
return NULL;
}
edgeLink addEdgeList(edgeLink list, int node, link edge) {
printf("EdgeListStart");
edgeLink temp = list;
list = malloc(sizeof(edgeNode));
list->w = node;
list->v = edge->v;
list->weight = edge->weight;
list->next = temp;
printf("EdgeListEnd");
return list;
}
edgeLink findSmallest(edgeLink waitList, int nodeIsConnected[]) {
printf("SmallestSTart");
edgeLink smallest = waitList;
int small = 99999;
while(waitList != NULL) {
if((waitList->weight < small)&&(nodeIsConnected[waitList->v] == 0)) {
smallest = waitList;
small = smallest->weight;
} else {
printf("\n\n smallest already used %d", waitList->v);
}
waitList = waitList->next;
}
printf("SmallestEnd");
if(nodeIsConnected[smallest->v] == 0){
return smallest;
} else {
printf("Returning NULL");
return NULL;
}
}
link addList(edgeLink smallest, link list, int v) {
printf(":istsatt");
link temp = list;
list = malloc(sizeof(node));
list->v = v;
list->weight = smallest->weight;
list->next = temp;
printf("Listend");
return list;
}
Graph GRAPHmstPrim (Graph g) {
Graph mst = GRAPHinit (g->V); // graph to hold the MST
int i = 0;
int v = 0;
int w = 0;
int nodeIsConnected[g->V]; // array to hold whether a vertex has been added to MST
int loopStarted = 0;
edgeLink smallest = NULL;
// initially all nodes are not in the MST
for(i = 0; i < g->V; i++) {
nodeIsConnected[i] = 0;
}
while((smallest != NULL)||(loopStarted == 0)) {
printf("v is : %d", v);
// add the very first node to the MST
nodeIsConnected[v] = 1;
loopStarted = 1;
// push all of its links onto the list
link vertex = g->adj[v];
edgeLink waitList = newEdgeList();
while(vertex != NULL) {
waitList = addEdgeList(waitList, v, vertex);
vertex = vertex->next;
}
// find the smallest edge from the list
// which doesn't duplicate a connection
smallest = findSmallest(waitList, nodeIsConnected);
// no nodes don't duplicate a connection
// return the current MST
if(smallest == NULL){
return mst;
}
// otherwise add the attributes to the MST graph
w = smallest->w;
v = smallest->v;
mst->adj[v] = addList(smallest, mst->adj[v], w);
mst->adj[w] = addList(smallest, mst->adj[w], v);
}
return mst;
}
Summary of changes:
- Added edgeList to hold the edges that may be entered into the MST
- Array nodeIsConnected[] to track whether a node is in the MST
- Function to select the smallest node. If there is no node which doesn't duplicate a link this returns NULL
Seeing as this seems homework, I'm not going to give the entire answer in code. Your code seems to be on the right track. The next step you need is indeed to add the smallest link from your temporary list to to your mst. By adding the smallest one from your list, you are actually connecting your (partially built) mst to a node that is not yet in your mst. The link with the smallest weight will always be the cheapest way to connect the nodes in your mst to the other nodes.
When you add the smallest link, you are adding a node to the partially built tree and you need to update your temporary list. You need to add all the links of your new node to the list. Once you've done that, your temporary list contains all links of all nodes in your partially built mst. You continue that process of adding nodes until all nodes are in your mst.
When adding the cheapest link, you need to check if you are connecting a new node to your mst. The cheapest link could be connecting 2 nodes that are already in your mst. If so, that link needs to be skipped and you take the next cheapest one. There are actually several ways of handling this. You could maintain a set/vector of nodes that are already in your mst, maintain a vector of booleans to track the status of a node or make sure your temporary list only contains links that connect new nodes (although this is the most intensive approach).

Resources