I have a list of strings and I want to keep only the most unique strings. Here is how I have implemented this (maybe there's an issue with the loop),
def filter_descriptions(descriptions):
MAX_SIMILAR_ALLOWED = 0.6 #40% unique and 60% similar
i = 0
while i < len(descriptions):
print("Processing {}/{}...".format(i + 1, len(descriptions)))
desc_to_evaluate = descriptions[i]
j = i + 1
while j < len(descriptions):
similarity_ratio = SequenceMatcher(None, desc_to_evaluate, descriptions[j]).ratio()
if similarity_ratio > MAX_SIMILAR_ALLOWED:
del descriptions[j]
j += 1
i += 1
return descriptions
Please note that the list might have around 110K items which is why I am shortening the list every iteration.
Can anyone please identify what is wrong with this current implementation?
Edit 1:
The current results are "too similar". The filter_descriptions function returned 16 items (from a list of ~110K items). When I tried the following,
SequenceMatcher(None, descriptions[0], descriptions[1]).ratio()
The ratio was 0.99, and with SequenceMatcher(None, descriptions[1], descriptions[2]).ratio() it was around 0.98. But with SequenceMatcher(None, descriptions[0], descriptions[15]).ratio() it was around 0.65 (which is better)
I hope this helps.
If you invert your logic, you can escape having to modify the list in place and still reduce the number of comparisons needed. That is, start with an empty output/unique list and iterate over your descriptions seeing if you can add each one. So for the first description you can add it immediately as it cannot be similar to anything in an empty list. The second description only needs to be compared to the first as opposed to all other descriptions. Later iterations can short circuit as soon as they find a previous description with which they are similar to (and have the candidate description be discarded). ie.
import operator
def unique(items, compare=operator.eq):
# compare is a function that returns True if its two arguments are deemed similar to
# each other and False otherwise.
unique_items = []
for item in items:
if not any(compare(item, uniq) for uniq in unique_items):
# any will stop as soon as compare(item, uniq) returns True
# you could also use `if all(not compare(item, uniq) ...` if you prefer
unique_items.append(item)
return unique_items
Examples:
assert unique([2,3,4,5,1,2,3,3,2,1]) == [2, 3, 4, 5, 1]
# note that order is preserved
assert unique([1, 2, 0, 3, 4, 5], compare=(lambda x, y: abs(x - y) <= 1))) == [1, 3, 5]
# using a custom comparison function we can exclude items that are too similar to previous
# items. Here 2 and 0 are excluded because they are too close to 1 which was accepted
# as unique first. Change the order of 3 and 4, and then 5 would also be excluded.
With your code your comparison function would look like:
MAX_SIMILAR_ALLOWED = 0.6 #40% unique and 60% similar
def description_cmp(candidate_desc, unique_desc):
# use unique_desc as first arg as this keeps the argument order the same as with your filter
# function where the first description is the one that is retained if the two descriptions
# are deemed to be too similar
similarity_ratio = SequenceMatcher(None, unique_desc, candidate_desc).ratio()
return similarity_ratio > MAX_SIMILAR_ALLOWED
def filter_descriptions(descriptions):
# This would be the new definition of your filter_descriptions function
return unique(descriptions, compare=descriptions_cmp)
The number of comparisons should be exactly the same. That is, in your implementation the first element is compared to all the others, and the second element is only compared to elements that were deemed not similar to the first element and so on. In this implementation the first item is not compared to anything initially, but all other items must be compared to it to be allowed to be added to the unique list. Only items deemed not similar to the first item will be compared to the second unique item, and so on.
The unique implementation will do less copying as it only has to copy the unique list when the backing array runs out of space. Whereas, with the del statement parts of the list must be copied each time it is used (to move all subsequent items into their new correct position). This will likely have a negligible impact on performance though, as the bottleneck is probably the ratio calculation in the sequence matcher.
The Problem with your logic is that each time when you delete an item from the array, the index gets re-arranged and skips a string in between. Eg:
Assume that this is the array:
Description : ["A","A","A","B","C"]
iterartion 1:
i=0 -------------0
description[i]="A"
j=i+1 -------------1
description[j]="A"
similarity_ratio>0.6
del description[j]
Now the array is re-indexed like:
Description:["A","A","B","C"]. The next step is:
j=j+1 ------------1+1= 2
Description[2]="B"
You have skipped Description[1]="A"
To fix this :
Replace
j+=1
With
j=i+1
if deleted. Else do the normal j=j+1 iteration
The value of j should not change when an item from the list is deleted (since a different list item will be present on that spot in the next iteration). Doing j=i+1 restarts the iteration every time an item is deleted (which is not what is desired). The updated code now only increments j in the else condition.
def filter_descriptions(descriptions):
MAX_SIMILAR_ALLOWED = 0.6 #40% unique and 60% similar
i = 0
while i < len(descriptions):
print("Processing {}/{}...".format(i + 1, len(descriptions)))
desc_to_evaluate = descriptions[i]
j = i + 1
while j < len(descriptions):
similarity_ratio = SequenceMatcher(None, desc_to_evaluate, descriptions[j]).ratio()
if similarity_ratio > MAX_SIMILAR_ALLOWED:
del descriptions[j]
else:
j += 1
i += 1
return descriptions
Related
Input: n arrays of integers of length p.
Output: An array of p integers built by copying contiguous subarrays of the input arrays into matching indices of the output, satisfying the following conditions.
At most one subarray is used from each input array.
Every index of the output array is filled from exactly one subarray.
The output array has the minimum possible sum.
Suppose I have 2 arrays:
[1,7,2]
[2,1,8]
So if I choose a subarray [1,7] from array 1 and subarray [8] from array 2. since these 2 subarrays are not overlapping for any index and are contiguous. We are also not taking any subarray twice from an array from which we have already chosen a subarray.
We have the number of elements in the arrays inside the collection = 2 + 1 = 3, which is the same as the length of the individual array (i.e. len(array 1) which is equal to 3). So, this collection is valid.
The sum here for [1,7] and [8] is 1 + 7 + 8 = 16
We have to find a collection of such subarrays such that the total sum of the elements of subarrays is minimum.
A solution to the above 2 arrays would be a collection [2,1] from array 1 and [2] from array 2.
This is a valid collection and the sum is 2 + 1 + 2 = 5 which is the minimum sum for any such collection in this case.
I cannot think of any optimal or correct approach, so I need help.
Some Ideas:
I tried a greedy approach by choosing minimum elements from all array for a particular index since the index is always increasing (non-overlapping) after a valid choice, I don't have to bother about storing minimum value indices for every array. But this approach is clearly not correct since it will visit the same array twice.
Another method I thought was to start from the 0th index for all arrays and start storing their sum up to k elements for every array since the no. of arrays are finite, I can store the sum upto k elements in an array. Now I tried to take a minimum across these sums and for a "minimum sum", the corresponding subarray giving this sum (i.e. k such elements in that array) can be a candidate for a valid subarray of size k, thus if we take this subarray, we can add a k + 1-th element corresponding to every array into their corresponding sum and if the original minimum still holds, then we can keep on repeating this step. When the minima fail, we can consider the subarray up to the index for which minima holds and this will be a valid starting subarray. However, this approach will also clearly fail because there could exist another subarray of size < k giving minima along with remaining index elements from our subarray of size k.
Sorting is not possible either, since if we sort then we are breaking consecutive condition.
Of course, there is a brute force method too.
I am thinking, working through a greedy approach might give a progress in the approach.
I have searched on other Stackoverflow posts, but couldn't find anything which could help my problem.
To get you started, here's a recursive branch-&-bound backtracking - and potentially exhaustive - search. Ordering heuristics can have a huge effect on how efficient these are, but without mounds of "real life" data to test against there's scant basis for picking one over another. This incorporates what may be the single most obvious ordering rule.
Because it's a work in progress, it prints stuff as it goes along: all solutions found, whenever they meet or beat the current best; and the index at which a search is cut off early, when that happens (because it becomes obvious that the partial solution at that point can't be extended to meet or beat the best full solution known so far).
For example,
>>> crunch([[5, 6, 7], [8, 0, 3], [2, 8, 7], [8, 2, 3]])
displays
new best
L2[0:1] = [2] 2
L1[1:2] = [0] 2
L3[2:3] = [3] 5
sum 5
cut at 2
L2[0:1] = [2] 2
L1[1:3] = [0, 3] 5
sum 5
cut at 2
cut at 2
cut at 2
cut at 1
cut at 1
cut at 2
cut at 2
cut at 2
cut at 1
cut at 1
cut at 1
cut at 0
cut at 0
So it found two ways to get a minimal sum 5, and the simple ordering heuristic was effective enough that all other paths to full solutions were cut off early.
def disp(lists, ixs):
from itertools import groupby
total = 0
i = 0
for k, g in groupby(ixs):
j = i + len(list(g))
chunk = lists[k][i:j]
total += sum(chunk)
print(f"L{k}[{i}:{j}] = {chunk} {total}")
i = j
def crunch(lists):
n = len(lists[0])
assert all(len(L) == n for L in lists)
# Start with a sum we know can be beat.
smallest_sum = sum(lists[0]) + 1
smallest_ixs = [None] * n
ixsofar = [None] * n
def inner(i, sumsofar, freelists):
nonlocal smallest_sum
assert sumsofar <= smallest_sum
if i == n:
print()
if sumsofar < smallest_sum:
smallest_sum = sumsofar
smallest_ixs[:] = ixsofar
print("new best")
disp(lists, ixsofar)
print("sum", sumsofar)
return
# Simple greedy heuristic: try available lists in the order
# of smallest-to-largest at index i.
for lix in sorted(freelists, key=lambda lix: lists[lix][i]):
L = lists[lix]
newsum = sumsofar
freelists.remove(lix)
# Try all slices in L starting at i.
for j in range(i, n):
newsum += L[j]
# ">" to find all smallest answers;
# ">=" to find just one (potentially faster)
if newsum > smallest_sum:
print("cut at", j)
break
ixsofar[j] = lix
inner(j + 1, newsum, freelists)
freelists.add(lix)
inner(0, 0, set(range(len(lists))))
How bad is brute force?
Bad. A brute force way to compute it: say there are n lists each with p elements. The code's ixsofar vector contains p integers each in range(n). The only constraint is that all occurrences of any integer that appears in it must be consecutive. So a brute force way to compute the total number of such vectors is to generate all p-tuples and count the number that meet the constraints. This is woefully inefficient, taking O(n**p) time, but is really easy, so hard to get wrong:
def countb(n, p):
from itertools import product, groupby
result = 0
seen = set()
for t in product(range(n), repeat=p):
seen.clear()
for k, g in groupby(t):
if k in seen:
break
seen.add(k)
else:
#print(t)
result += 1
return result
For small arguments, we can use that as a sanity check on the next function, which is efficient. This builds on common "stars and bars" combinatorial arguments to deduce the result:
def count(n, p):
# n lists of length p
# for r regions, r from 1 through min(p, n)
# number of ways to split up: comb((p - r) + r - 1, r - 1)
# for each, ff(n, r) ways to spray in list indices = comb(n, r) * r!
from math import comb, prod
total = 0
for r in range(1, min(n, p) + 1):
total += comb(p-1, r-1) * prod(range(n, n-r, -1))
return total
Faster
Following is the best code I have for this so far. It builds in more "smarts" to the code I posted before. In one sense, it's very effective. For example, for randomized p = n = 20 inputs it usually finishes within a second. That's nothing to sneeze at, since:
>>> count(20, 20)
1399496554158060983080
>>> _.bit_length()
71
That is, trying every possible way would effectively take forever. The number of cases to try doesn't even fit in a 64-bit int.
On the other hand, boost n (the number of lists) to 30, and it can take an hour. At 50, I haven't seen a non-contrived case finish yet, even if left to run overnight. The combinatorial explosion eventually becomes overwhelming.
OTOH, I'm looking for the smallest sum, period. If you needed to solve problems like this in real life, you'd either need a much smarter approach, or settle for iterative approximation algorithms.
Note: this is still a work in progress, so isn't polished, and prints some stuff as it goes along. Mostly that's been reduced to running a "watchdog" thread that wakes up every 10 minutes to show the current state of the ixsofar vector.
def crunch(lists):
import datetime
now = datetime.datetime.now
start = now()
n = len(lists[0])
assert all(len(L) == n for L in lists)
# Start with a sum we know can be beat.
smallest_sum = min(map(sum, lists)) + 1
smallest_ixs = [None] * n
ixsofar = [None] * n
import threading
def watcher(stop):
if stop.wait(60):
return
lix = ixsofar[:]
while not stop.wait(timeout=600):
print("watch", now() - start, smallest_sum)
nlix = ixsofar[:]
for i, (a, b) in enumerate(zip(lix, nlix)):
if a != b:
nlix.insert(i,"--- " + str(i) + " -->")
print(nlix)
del nlix[i]
break
lix = nlix
stop = threading.Event()
w = threading.Thread(target=watcher, args=[stop])
w.start()
def inner(i, sumsofar, freelists):
nonlocal smallest_sum
assert sumsofar <= smallest_sum
if i == n:
print()
if sumsofar < smallest_sum:
smallest_sum = sumsofar
smallest_ixs[:] = ixsofar
print("new best")
disp(lists, ixsofar)
print("sum", sumsofar, now() - start)
return
# If only one input list is still free, we have to take all
# of its tail. This code block isn't necessary, but gives a
# minor speedup (skips layers of do-nothing calls),
# especially when the length of the lists is greater than
# the number of lists.
if len(freelists) == 1:
lix = freelists.pop()
L = lists[lix]
for j in range(i, n):
ixsofar[j] = lix
sumsofar += L[j]
if sumsofar >= smallest_sum:
break
else:
inner(n, sumsofar, freelists)
freelists.add(lix)
return
# Peek ahead. The smallest completion we could possibly get
# would come from picking the smallest element in each
# remaining column (restricted to the lists - rows - still
# available). This probably isn't achievable, but is an
# absolute lower bound on what's possible, so can be used to
# cut off searches early.
newsum = sumsofar
for j in range(i, n): # pick smallest from column j
newsum += min(lists[lix][j] for lix in freelists)
if newsum >= smallest_sum:
return
# Simple greedy heuristic: try available lists in the order
# of smallest-to-largest at index i.
sortedlix = sorted(freelists, key=lambda lix: lists[lix][i])
# What's the next int in the previous slice? As soon as we
# hit an int at least that large, we can do at least as well
# by just returning, to let the caller extend the previous
# slice instead.
if i:
prev = lists[ixsofar[i-1]][i]
else:
prev = lists[sortedlix[-1]][i] + 1
for lix in sortedlix:
L = lists[lix]
if prev <= L[i]:
return
freelists.remove(lix)
newsum = sumsofar
# Try all non-empty slices in L starting at i.
for j in range(i, n):
newsum += L[j]
if newsum >= smallest_sum:
break
ixsofar[j] = lix
inner(j + 1, newsum, freelists)
freelists.add(lix)
inner(0, 0, set(range(len(lists))))
stop.set()
w.join()
Bounded by DP
I've had a lot of fun with this :-) Here's the approach they were probably looking for, using dynamic programming (DP). I have several programs that run faster in "smallish" cases, but none that can really compete on a non-contrived 20x50 case. The runtime is O(2**n * n**2 * p). Yes, that's more than exponential in n! But it's still a minuscule fraction of what brute force can require (see above), and is a hard upper bound.
Note: this is just a loop nest slinging machine-size integers, and using no "fancy" Python features. It would be easy to recode in C, where it would run much faster. As is, this code runs over 10x faster under PyPy (as opposed to the standard CPython interpreter).
Key insight: suppose we're going left to right, have reached column j, the last list we picked from was D, and before that we picked columns from lists A, B, and C. How can we proceed? Well, we can pick the next column from D too, and the "used" set {A, B, C} doesn't change. Or we can pick some other list E, the "used" set changes to {A, B, C, D}, and E becomes the last list we picked from.
Now in all these cases, the details of how we reached state "used set {A, B, C} with last list D at column j" make no difference to the collection of possible completions. It doesn't matter how many columns we picked from each, or the order in which A, B, C were used: all that matters to future choices is that A, B, and C can't be used again, and D can be but - if so - must be used immediately.
Since all ways of reaching this state have the same possible completions, the cheapest full solution must have the cheapest way of reaching this state.
So we just go left to right, one column at a time, and remember for each state in the column the smallest sum reaching that state.
This isn't cheap, but it's finite ;-) Since states are subsets of row indices, combined with (the index of) the last list used, there are 2**n * n possible states to keep track of. In fact, there are only half that, since the way sketched above never includes the index of the last-used list in the used set, but catering to that would probably cost more than it saves.
As is, states here are not represented explicitly. Instead there's just a large list of sums-so-far, of length 2**n * n. The state is implied by the list index: index i represents the state where:
i >> n is the index of the last-used list.
The last n bits of i are a bitset, where bit 2**j is set if and only if list index j is in the set of used list indices.
You could, e.g., represent these by dicts mapping (frozenset, index) pairs to sums instead, but then memory use explodes, runtime zooms, and PyPy becomes much less effective at speeding it.
Sad but true: like most DP algorithms, this finds "the best" answer but retains scant memory of how it was reached. Adding code to allow for that is harder than what's here, and typically explodes memory requirements. Probably easiest here: write new to disk at the end of each outer-loop iteration, one file per column. Then memory use isn't affected. When it's done, those files can be read back in again, in reverse order, and mildly tedious code can reconstruct the path it must have taken to reach the winning state, working backwards one column at a time from the end.
def dumbdp(lists):
import datetime
_min = min
now = datetime.datetime.now
start = now()
n = len(lists)
p = len(lists[0])
assert all(len(L) == p for L in lists)
rangen = range(n)
USEDMASK = (1 << n) - 1
HUGE = sum(sum(L) for L in lists) + 1
new = [HUGE] * (2**n * n)
for i in rangen:
new[i << n] = lists[i][0]
for j in range(1, p):
print("working on", j, now() - start)
old = new
new = [HUGE] * (2**n * n)
for key, g in enumerate(old):
if g == HUGE:
continue
i = key >> n
new[key] = _min(new[key], g + lists[i][j])
newused = (key & USEDMASK) | (1 << i)
for i in rangen:
mask = 1 << i
if newused & mask == 0:
newkey = newused | (i << n)
new[newkey] = _min(new[newkey],
g + lists[i][j])
result = min(new)
print("DONE", result, now() - start)
return result
I have a method that shifts all the items, in an array, to the left by one position. In my post condition I need to ensure that my items have shifted to the left by one. I have already compared the first element of the old array to the last element of the new array. How do i across loop through the old array from 2 until count, loop through the new array from 1 until count-1 and compare them? This is my implementation so far.
items_shifted:
old array.deep_twin[1] ~ array[array.count]
and
across 2 |..| (old array.deep_twin.count) as i_twin all
across 1 |..| (array.count-1) as i_orig all
i_twin.item ~ i_orig.item
end
end
end
I expected the result to be true but instead I get a contract violation pointing to this post condition. I have tested the method out manually by printing out the array before and after the method and I get the expected result.
In the postcondition that fails, the loop cursors i_twin and i_orig iterate over sequences 2 .. array.count and 1 .. array.count - 1 respectively, i.e. their items are indexes 2, 3, ... and 1, 2, .... So, the loop performs comparisons 2 ~ 1, 3 ~ 2, etc. (at run-time, it stops on the first inequality). However, you would like to compare elements, not indexes.
One possible solution is shown below:
items_shifted:
across array as c all
c.item =
if c.target_index < array.upper then
(old array.twin) [c.target_index + 1]
else
old array [array.lower]
end
end
The loop checks that all elements are shifted. If the cursor points to the last element, it compares it against the old first element. Otherwise, it tests whether the current element is equal to the old element at the next index.
Cosmetics:
The postcondition does not assume that the array starts at 1, and uses array.lower and array.upper instead.
The postcondition does not perform a deep twin of the original array. This allows for comparing elements using = rather than ~.
Edit: To avoid potential confusion caused by precedence rules, and to highlight that comparison is performed for all items between old and new array, a better variant suggested by Eric Bezault looks like:
items_shifted:
across array as c all
c.item =(old array.twin)
[if c.target_index < array.upper then
c.target_index + 1
else
array.lower
end]
end
I'm starting with Python and I have a basic question with "for" loop
I have two array which contains a values of a same variables:
A = data_lac[:,0]
In the first array, I have values of area and in the second on, values of mean depth.
I would like to find a way to automatize my calculation with different value of a parameter. The equation is the following one:
g= (np.sqrt(A/pi))/n
Here I can calculte my "g" for each row. Now I want to have a loop with differents values of "n". I did this:
i=0
while i <= len(A)-1:
for n in range(2,6):
g[i] = (np.sqrt(A[i]/pi))/n
i += 1
break
In this case, I just have one column with the calculation for n = 2 but not the following one. I tried to add a second dimension to my array but I have an error message saying that I have too many indices for array.
In other, I would like this array:
g[len(A),5]
g has 5 columns each one calculating with a different "n"
Any tips would be very helpful,
Thanks
Update of the code:
data_lac=np.zeros((106,7))
data_lac[:,0:2]=np.loadtxt("/home...", delimiter=';', skiprows=1, usecols=(0,1))
data_lac[:,1]=data_lac[:,1]*0.001
#Initialisation
A = data_lac[:,0]
#example for A with 4 elements
A=[2.1, 32.0, 4.6, 25]
g = np.zeros((len(A),))
I believe you share the indexes within both loops. You were increasing the i (index for the upper while loop) inside the inner for loop (which index with n).
I guess you have A (1 dim array) and you want to produce G (2 dim array) with size of (Len(A, 5))
I am not sure I'm fully understand your require output but I believe you want something like:
i=0
while i <= len(A)-1:
for n in range(2,6):
g[i][n-2] = (np.sqrt(A[i]/pi))/n # n-2 is to get first index as 0 and last as 4
i += 1 # notice the increace of the i is for the upper while loop
break
Important - remember that in python indentation means a lot -> so make sure the i +=1 is under the while scope and not indent to be inside the for loop
Notice - G definition should be as:
g = np.zeros((len(A),4), dtype=float)
The way you define it (without the 4) cause it to be 1 dim array and not 2-dim
My aim is to display the number of identical elements in an array.
Here is my code:
a = [5, 2, 4, 1, 2]
b = []
for i in a
unless b.include?(a[i])
b << a[i]
print i," appears ",a.count(i)," times\n"
end
end
I get this output:
5 appears 1 times
2 appears 2 times
4 appears 1 times
The output misses 1.
Here's a different way to do it, assuming I understand what "it" is (counting elements in an array):
a = [5,2,4,1,2]
counts = a.each_with_object(Hash.new(0)) do |element, counter|
counter[element] += 1
end
# => {5=>1, 2=>2, 4=>1, 1=>1}
# i.e. one 5, two 2s, one 4, one 1.
counts.each do |element, count|
puts "#{element} appears #{count} times"
end
# => 5 appears 1 times
# => 2 appears 2 times
# => 4 appears 1 times
# => 1 appears 1 times
Hash.new(0) initialises a hash with a default value 0. We iterate on a (while passing the hash as an additional object), so element will be each element of a in order, and counter will be our hash. We will increment the value of the hash indexed by the element by one; on the first go for each element, there won't be anything there, but our default value saves our bacon (and 0 + 1 is 1). The next time we encounter an element, it will increment whatever value already is present in the hash under that index.
Having obtained a hash of elements and their counts, we can print them, of course, puts is same as print but automatically inserts a newline; and rather than using commas to print several things, it is much nicer to put the values directly into the printed string itself using the string interpolation syntax ("...#{...}...").
The problems in your code are as follows:
[logic] for i in a will give you elements of a, not indices. Thus, a[i] will give you nil for the first element, not 5, since a[5] is outside the list. This is why 1 is missing from your output: a[1] (i.e. 2) is already in b when you try to process it.
[style] for ... in ... is almost never seen in Ruby code, with strong preference to each and other methods of Enumerable module
[performance] a.count(i) inside a loop increases your algorithmic complexity: count itself has to see the whole array, and you need to iterate the array to see i, which will be exponentially slower with huge arrays. The method above only has one loop, as access to hashes is very fast, and thus grows more or less linearly with the size of the array.
The stylistic and performance problems are minor, of course; you won't see performance drop till you need to process really large arrays, and style errors won't make your code not work; however, if you're learning Ruby, you should aim to work with the language from the start, to get used to its idioms as you go along, as it will give you much stronger foundation than transplanting other languages' idioms onto it.
a = [5,2,4,1,2]
b = a.uniq
for i in b
print i," appears ",a.count(i)," times\n"
end
print b
Result:
5 appears 1 times
2 appears 2 times
4 appears 1 times
1 appears 1 times
[5, 2, 4, 1]
I have for example 5 arrays with some inserted elements (numbers):
1,4,8,10
1,2,3,4,11,15
2,4,20,21
2,30
I need to find most common elements in those arrays and every element should go all the way till the end (see example below). In this example that would be the bold combination (or the same one but with "30" on the end, it's the "same") because it contains the smallest number of different elements (only two, 4 and 2/30).
This combination (see below) isn't good because if I have for ex. "4" it must "go" till it ends (next array mustn't contain "4" at all). So combination must go all the way till the end.
1,4,8,10
1,2,3,4,11,15
2,4,20,21
2,30
EDIT2: OR
1,4,8,10
1,2,3,4,11,15
2,4,20,21
2,30
OR anything else is NOT good.
Is there some algorithm to speed this thing up (if I have thousands of arrays with hundreds of elements in each one)?
To make it clear - solution must contain lowest number of different elements and the groups (of the same numbers) must be grouped from first - larger ones to the last - smallest ones. So in upper example 4,4,4,2 is better then 4,2,2,2 because in first example group of 4's is larger than group of 2's.
EDIT: To be more specific. Solution must contain the smallest number of different elements and those elements must be grouped from first to last. So if I have three arrrays like
1,2,3
1,4,5
4,5,6
Solution is 1,1,4 or 1,1,5 or 1,1,6 NOT 2,5,5 because 1's have larger group (two of them) than 2's (only one).
Thanks.
EDIT3: I can't be more specific :(
EDIT4: #spintheblack 1,1,1,2,4 is the correct solution because number used first time (let's say at position 1) can't be used later (except it's in the SAME group of 1's). I would say that grouping has the "priority"? Also, I didn't mention it (sorry about that) but the numbers in arrays are NOT sorted in any way, I typed it that way in this post because it was easier for me to follow.
Here is the approach you want to take, if arrays is an array that contains each individual array.
Starting at i = 0
current = arrays[i]
Loop i from i+1 to len(arrays)-1
new = current & arrays[i] (set intersection, finds common elements)
If there are any elements in new, do step 6, otherwise skip to 7
current = new, return to step 3 (continue loop)
print or yield an element from current, current = arrays[i], return to step 3 (continue loop)
Here is a Python implementation:
def mce(arrays):
count = 1
current = set(arrays[0])
for i in range(1, len(arrays)):
new = current & set(arrays[i])
if new:
count += 1
current = new
else:
print " ".join([str(current.pop())] * count),
count = 1
current = set(arrays[i])
print " ".join([str(current.pop())] * count)
>>> mce([[1, 4, 8, 10], [1, 2, 3, 4, 11, 15], [2, 4, 20, 21], [2, 30]])
4 4 4 2
If all are number lists, and are all sorted, then,
Convert to array of bitmaps.
Keep 'AND'ing the bitmaps till you hit zero. The position of the 1 in the previous value indicates the first element.
Restart step 2 from the next element
This has now turned into a graphing problem with a twist.
The problem is a directed acyclic graph of connections between stops, and the goal is to minimize the number of lines switches when riding on a train/tram.
ie. this list of sets:
1,4,8,10 <-- stop A
1,2,3,4,11,15 <-- stop B
2,4,20,21 <-- stop C
2,30 <-- stop D, destination
He needs to pick lines that are available at his exit stop, and his arrival stop, so for instance, he can't pick 10 from stop A, because 10 does not go to stop B.
So, this is the set of available lines and the stops they stop on:
A B C D
line 1 -----X-----X-----------------
line 2 -----------X-----X-----X-----
line 3 -----------X-----------------
line 4 -----X-----X-----X-----------
line 8 -----X-----------------------
line 10 -----X-----------------------
line 11 -----------X-----------------
line 15 -----------X-----------------
line 20 -----------------X-----------
line 21 -----------------X-----------
line 30 -----------------------X-----
If we consider that a line under consideration must go between at least 2 consecutive stops, let me highlight the possible choices of lines with equal signs:
A B C D
line 1 -----X=====X-----------------
line 2 -----------X=====X=====X-----
line 3 -----------X-----------------
line 4 -----X=====X=====X-----------
line 8 -----X-----------------------
line 10 -----X-----------------------
line 11 -----------X-----------------
line 15 -----------X-----------------
line 20 -----------------X-----------
line 21 -----------------X-----------
line 30 -----------------------X-----
He then needs to pick a way that transports him from A to D, with the minimal number of line switches.
Since he explained that he wants the longest rides first, the following sequence seems the best solution:
take line 4 from stop A to stop C, then switch to line 2 from C to D
Code example:
stops = [
[1, 4, 8, 10],
[1,2,3,4,11,15],
[2,4,20,21],
[2,30],
]
def calculate_possible_exit_lines(stops):
"""
only return lines that are available at both exit
and arrival stops, discard the rest.
"""
result = []
for index in range(0, len(stops) - 1):
lines = []
for value in stops[index]:
if value in stops[index + 1]:
lines.append(value)
result.append(lines)
return result
def all_combinations(lines):
"""
produce all combinations which travel from one end
of the journey to the other, across available lines.
"""
if not lines:
yield []
else:
for line in lines[0]:
for rest_combination in all_combinations(lines[1:]):
yield [line] + rest_combination
def reduce(combination):
"""
reduce a combination by returning the number of
times each value appear consecutively, ie.
[1,1,4,4,3] would return [2,2,1] since
the 1's appear twice, the 4's appear twice, and
the 3 only appear once.
"""
result = []
while combination:
count = 1
value = combination[0]
combination = combination[1:]
while combination and combination[0] == value:
combination = combination[1:]
count += 1
result.append(count)
return tuple(result)
def calculate_best_choice(lines):
"""
find the best choice by reducing each available
combination down to the number of stops you can
sit on a single line before having to switch,
and then picking the one that has the most stops
first, and then so on.
"""
available = []
for combination in all_combinations(lines):
count_stops = reduce(combination)
available.append((count_stops, combination))
available = [k for k in reversed(sorted(available))]
return available[0][1]
possible_lines = calculate_possible_exit_lines(stops)
print("possible lines: %s" % (str(possible_lines), ))
best_choice = calculate_best_choice(possible_lines)
print("best choice: %s" % (str(best_choice), ))
This code prints:
possible lines: [[1, 4], [2, 4], [2]]
best choice: [4, 4, 2]
Since, as I said, I list lines between stops, and the above solution can either count as lines you have to exit from each stop or lines you have to arrive on into the next stop.
So the route is:
Hop onto line 4 at stop A and ride on that to stop B, then to stop C
Hop onto line 2 at stop C and ride on that to stop D
There are probably edge-cases here that the above code doesn't work for.
However, I'm not bothering more with this question. The OP has demonstrated a complete incapability in communicating his question in a clear and concise manner, and I fear that any corrections to the above text and/or code to accommodate the latest comments will only provoke more comments, which leads to yet another version of the question, and so on ad infinitum. The OP has gone to extraordinary lengths to avoid answering direct questions or to explain the problem.
I am assuming that "distinct elements" do not have to actually be distinct, they can repeat in the final solution. That is if presented with [1], [2], [1] that the obvious answer [1, 2, 1] is allowed. But we'd count this as having 3 distinct elements.
If so, then here is a Python solution:
def find_best_run (first_array, *argv):
# initialize data structures.
this_array_best_run = {}
for x in first_array:
this_array_best_run[x] = (1, (1,), (x,))
for this_array in argv:
# find the best runs ending at each value in this_array
last_array_best_run = this_array_best_run
this_array_best_run = {}
for x in this_array:
for (y, pattern) in last_array_best_run.iteritems():
(distinct_count, lengths, elements) = pattern
if x == y:
lengths = tuple(lengths[:-1] + (lengths[-1] + 1,))
else :
distinct_count += 1
lengths = tuple(lengths + (1,))
elements = tuple(elements + (x,))
if x not in this_array_best_run:
this_array_best_run[x] = (distinct_count, lengths, elements)
else:
(prev_count, prev_lengths, prev_elements) = this_array_best_run[x]
if distinct_count < prev_count or prev_lengths < lengths:
this_array_best_run[x] = (distinct_count, lengths, elements)
# find the best overall run
best_count = len(argv) + 10 # Needs to be bigger than any possible answer.
for (distinct_count, lengths, elements) in this_array_best_run.itervalues():
if distinct_count < best_count:
best_count = distinct_count
best_lengths = lengths
best_elements = elements
elif distinct_count == best_count and best_lengths < lengths:
best_count = distinct_count
best_lengths = lengths
best_elements = elements
# convert it into a more normal representation.
answer = []
for (length, element) in zip(best_lengths, elements):
answer.extend([element] * length)
return answer
# example
print find_best_run(
[1,4,8,10],
[1,2,3,4,11,15],
[2,4,20,21],
[2,30]) # prints [4, 4, 4, 30]
Here is an explanation. The ...this_run dictionaries have keys which are elements in the current array, and they have values which are tuples (distinct_count, lengths, elements). We are trying to minimize distinct_count, then maximize lengths (lengths is a tuple, so this will prefer the element with the largest value in the first spot) and are tracking elements for the end. At each step I construct all possible runs which are a combination of a run up to the previous array with this element next in sequence, and find which ones are best to the current. When I get to the end I pick the best possible overall run, then turn it into a conventional representation and return it.
If you have N arrays of length M, this should take O(N*M*M) time to run.
I'm going to take a crack here based on the comments, please feel free to comment further to clarify.
We have N arrays and we are trying to find the 'most common' value over all arrays when one value is picked from each array. There are several constraints 1) We want the smallest number of distinct values 2) The most common is the maximal grouping of similar letters (changing from above for clarity). Thus, 4 t's and 1 p beats 3 x's 2 y's
I don't think either problem can be solved greedily - here's a counterexample [[1,4],[1,2],[1,2],[2],[3,4]] - a greedy algorithm would pick [1,1,1,2,4] (3 distinct numbers) [4,2,2,2,4] (two distinct numbers)
This looks like a bipartite matching problem, but I'm still coming up with the formulation..
EDIT : ignore; This is a different problem, but if anyone can figure it out, I'd be really interested
EDIT 2 : For anyone that's interested, the problem that I misinterpreted can be formulated as an instance of the Hitting Set problem, see http://en.wikipedia.org/wiki/Vertex_cover#Hitting_set_and_set_cover. Basically the left hand side of the bipartite graph would be the arrays and the right hand side would be the numbers, edges would be drawn between arrays that contain each number. Unfortunately, this is NP complete, but the greedy solutions described above are essentially the best approximation.