Determine index of triangle point that remains after selecting the other two - c

(This feels like a really dumb problem, but I'm having trouble coming up with a "good" solution, despite a lot of vague Google searching.)
Let's say I have an array of triangles, and within each is an array containing the triangle's three points (indices 0, 1, 2). In the process of searching for a triangle that contains an edge, I find the triangle and record the indices of the two points on the edge in variables (i.e. 2 and 0). These two can be selected in any order.
Now I need to know which index was not selected. So if the edge was on indices 2 and 0 of the given triangle, then index 1 is the remaining point that was not selected.
Is there a way to determine this algorithmically, without using a tree of if statements for each combination? Perhaps a bit mask, though I'm not exactly sure how for this case.

If you have two distinct integers a, b out of 0, 1, 2, then the following trick will give you the third:
c = 3^a^b;
If a and b are 0 and 1, this produces 2. If they are 0 and 2, this produces 1. And if they are 1 and 2, this produces 0. Note that ^ is the bitwise exclusive-OR operator.
Alternatively, you could do:
c = 3-a-b;
to achieve the same result.
More generally, if you have three numbers x, y, and z, and a and b are two of those numbers, then c = s-a-b is the third, where s = x+y+z. Alternatively, c = p^a^b is the third, where p = x^y^z.

Related

Daily Coding Problem 260 : Reconstruct a jumbled array - Intuition?

I'm going through the question below.
The sequence [0, 1, ..., N] has been jumbled, and the only clue you have for its order is an array representing whether each number is larger or smaller than the last. Given this information, reconstruct an array that is consistent with it.
For example, given [None, +, +, -, +], you could return [1, 2, 3, 0, 4].
I went through the solution on this post but still unable to understand it as to why this solution works. I don't think I would be able to come up with the solution if I had this in front of me during an interview. Can anyone explain the intuition behind it? Thanks in advance!
This answer tries to give a general strategy to find an algorithm to tackle this type of problems. It is not trying to prove why the given solution is correct, but lying out a route towards such a solution.
A tried and tested way to tackle this kind of problem (actually a wide range of problems), is to start with small examples and work your way up. This works for puzzles, but even so for problems encountered in reality.
First, note that the question is formulated deliberately to not point you in the right direction too easily. It makes you think there is some magic involved. How can you reconstruct a list of N numbers given only the list of plusses and minuses?
Well, you can't. For 10 numbers, there are 10! = 3628800 possible permutations. And there are only 2⁹ = 512 possible lists of signs. It's a very huge difference. Most original lists will be completely different after reconstruction.
Here's an overview of how to approach the problem:
Start with very simple examples
Try to work your way up, adding a bit of complexity
If you see something that seems a dead end, try increasing complexity in another way; don't spend too much time with situations where you don't see progress
While exploring alternatives, revisit old dead ends, as you might have gained new insights
Try whether recursion could work:
given a solution for N, can we easily construct a solution for N+1?
or even better: given a solution for N, can we easily construct a solution for 2N?
Given a recursive solution, can it be converted to an iterative solution?
Does the algorithm do some repetitive work that can be postponed to the end?
....
So, let's start simple (writing 0 for the None at the start):
very short lists are easy to guess:
'0++' → 0 1 2 → clearly only one solution
'0--' → 2 1 0 → only one solution
'0-+' → 1 0 2 or 2 0 1 → hey, there is no unique outcome, though the question only asks for one of the possible outcomes
lists with only plusses:
'0++++++' → 0 1 2 3 4 5 6 → only possibility
lists with only minuses:
'0-------'→ 7 6 5 4 3 2 1 0 → only possibility
lists with one minus, the rest plusses:
'0-++++' → 1 0 2 3 4 5 or 5 0 1 2 3 4 or ...
'0+-+++' → 0 2 1 3 4 5 or 5 0 1 2 3 4 or ...
→ no very obvious pattern seem to emerge
maybe some recursion could help?
given a solution for N, appending one sign more?
appending a plus is easy: just repeat the solution and append the largest plus 1
appending a minus, after some thought: increase all the numbers by 1 and append a zero
→ hey, we have a working solution, but maybe not the most efficient one
the algorithm just appends to an existing list, no need to really write it recursively (although the idea is expressed recursively)
appending a plus can be improved, by storing the largest number in a variable so it doesn't need to be searched at every step; no further improvements seem necessary
appending a minus is more troublesome: the list needs to be traversed with each append
what if instead of appending a zero, we append -1, and do the adding at the end?
this clearly works when there is only one minus
when two minus signs are encountered, the first time append -1, the second time -2
→ hey, this works for any number of minuses encountered, just store its counter in a variable and sum with it at the end of the algorithm
This is in bird's eye view one possible route towards coming up with a solution. Many routes lead to Rome. Introducing negative numbers might seem tricky, but it is a logical conclusion after contemplating the recursive algorithm for a while.
It works because all changes are sequential, either adding one or subtracting one, starting both the increasing and the decreasing sequences from the same place. That guarantees we have a sequential list overall. For example, given the arbitrary
[None, +, -, +, +, -]
turned vertically for convenience, we can see
None 0
+ 1
- -1
+ 2
+ 3
- -2
Now just shift them up by two (to account for -2):
2 3 1 4 5 0
+ - + + -
Let's look at first to a solution which (I think) is easier to understand, formalize and demonstrate for correctness (but I will only explain it and not demonstrate in a formal way):
We name A[0..N] our input array (where A[k] is None if k = 0 and is + or - otherwise) and B[0..N] our output array (where B[k] is in the range [0, N] and all values are unique)
At first we see that our problem (find B such that B[k] > B[k-1] if A[k] == + and B[k] < B[k-1] if A[k] == -) is only a special case of another problem:
Find B such that B[k] == max(B[0..k]) if A[k] == + and B[k] == min(B[0..k]) if A[k] == -.
Which generalize from "A value must larger or smaller than the last" to "A value must be larger or smaller than everyone before it"
So a solution to this problem is a solution to the original one as well.
Now how do we approach this problem?
A greedy solution will be sufficient, indeed is easy to demonstrate that the value associated with the last + will be the biggest number in absolute (which is N), the one associated with the second last + will be the second biggest number in absolute (which is N-1) ecc...
And in the same time the value associated with the last - will be the smallest number in absolute (which is 0), the one associated with the second last - will be the second smallest (which is 1) ecc...
So we can start filling B from right to left remembering how many + we have seen (let's call this value X), how many - we have seen (let's call this value Y) and looking at what is the current symbol, if it is a + in B we put N-X and we increase X by 1 and if it is a - in B we put 0+Y and we increase Y by 1.
In the end we'll need to fill B[0] with the only remaining value which is equal to Y+1 and to N-X-1.
An interesting property of this solution is that if we look to only the values associated with a - they will be all the values from 0 to Y (where in this case Y is the total number of -) sorted in reverse order; if we look to only the values associated with a + they will be all the values from N-X to N (where in this case X is the total number of +) sorted and if we look at B[0] it will always be Y+1 and N-X-1 (which are equal).
So the - will have all the values strictly smaller than B[0] and reverse sorted and the + will have all the values strictly bigger than B[0] and sorted.
This property is the key to understand why the solution proposed here works:
It consider B[0] equals to 0 and than it fills B following the property, this isn't a solution because the values are not in the range [0, N], but it is possible with a simple translation to move the range and arriving to [0, N]
The idea is to produce a permutation of [0,1...N] which will follow the pattern of [+,-...]. There are many permutations which will be applicable, it isn't a single one. For instance, look the the example provided:
[None, +, +, -, +], you could return [1, 2, 3, 0, 4].
But you also could have returned other solutions, just as valid: [2,3,4,0,1], [0,3,4,1,2] are also solutions. The only concern is that you need to have the first number having at least two numbers above it for positions [1],[2], and leave one number in the end which is lower then the one before and after it.
So the question isn't finding the one and only pattern which is scrambled, but to produce any permutation which will work with these rules.
This algorithm answers two questions for the next member of the list: get a number who’s both higher/lower from previous - and get a number who hasn’t been used yet. It takes a starting point number and essentially create two lists: an ascending list for the ‘+’ and a descending list for the ‘-‘. This way we guarantee that the next member is higher/lower than the previous one (because it’s in fact higher/lower than all previous members, a stricter condition than the one required) and for the same reason we know this number wasn’t used before.
So the intuition of the referenced algorithm is to start with a referenced number and work your way through. Let's assume we start from 0. The first place we put 0+1, which is 1. we keep 0 as our lowest, 1 as the highest.
l[0] h[1] list[1]
the next symbol is '+' so we take the highest number and raise it by one to 2, and update both the list with a new member and the highest number.
l[0] h[2] list [1,2]
The next symbol is '+' again, and so:
l[0] h[3] list [1,2,3]
The next symbol is '-' and so we have to put in our 0. Note that if the next symbol will be - we will have to stop, since we have no lower to produce.
l[0] h[3] list [1,2,3,0]
Luckily for us, we've chosen well and the last symbol is '+', so we can put our 4 and call is a day.
l[0] h[4] list [1,2,3,0,4]
This is not necessarily the smartest solution, as it can never know if the original number will solve the sequence, and always progresses by 1. That means that for some patterns [+,-...] it will not be able to find a solution. But for the pattern provided it works well with 0 as the initial starting point. If we chose the number 1 is would also work and produce [2,3,4,0,1], but for 2 and above it will fail. It will never produce the solution [0,3,4,1,2].
I hope this helps understanding the approach.
This is not an explanation for the question put forward by OP.
Just want to share a possible approach.
Given: N = 7
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Go from 0 to N
[1] fill all '-' starting from right going left.
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Answer: 2 1 0
[2] fill all the vacant places i.e [X & +] starting from left going right.
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Answer: 3 4 5 6 7
Final:
Pattern: X + - + - + - + //X = None
Answer: 3 4 2 5 1 6 0 7
My answer definitely is too late for your problem but if you need a simple proof, you probably would like to read it:
+min_last or min_so_far is a decreasing value starting from 0.
+max_last or max_so_far is an increasing value starting from 0.
In the input, each value is either "+" or "-" and for each increase the value of max_so_far or decrease the value of min_so_far by one respectively, excluding the first one which is None. So, abs(min_so_far, max_so_far) is exactly equal to N, right? But because you need the range [0, n] but max_so_far and min_so_far now are equal to the number of "+"s and "-"s with the intersection part with the range [0, n] being [0, max_so_far], what you need to do is to pad it the value equal to min_so_far for the final solution (because min_so_far <= 0 so you need to take each value of the current answer to subtract by min_so_far or add by abs(min_so_far)).

Given an array with integer 0 to N, how many ways to arrange it such that array[i] cannot be i

Given an array with integer 0 to N, how many ways to arrange it such that at position i of the array, we cannot have i inserted in it?
For example, N = 2
The following arrangements is valid:
1,2,0
2,0,1
Thus, the answer is 2 arrangements
I can't think of a non-brute force method to do this in O(1) time, can anyone help me out?
Such kind of permutations is called derangement. Wiki page contains a lot of formulas to count them. For example, recurrence:
!n=(n-1)(!(n-1)+!(n-2))
where !n, known as the subfactorial, represents the number of derangements, with the starting values !0 = 1 and !1 = 0

The best order to choose elements in the random array to maximize output?

We have an array as input to production.
R = [5, 2, 8, 3, 6, 9]
If ith input is chosen the output is sum of ith element, the max element whose index is less than i and the min element whose index is greater than i.
For example if I take 8, output would be 8+5+3=16.
Selected items cannot be selected again. So, if I select 8 the next array for next selection would look like R = [5, 2, 3, 6, 9]
What is the order to choose all inputs with maximum output in total? If possible, please send dynamic programming solutions.
I'll start the bidding with an O(n2n) solution . . .
There are a number of ambiguities in your description of the problem, that you have declined to address in comments. None of these ambiguities affects the runtime complexity of this solution, but they do affect implementation details of the solution, so the solution is necessarily somewhat of a sketch.
The solution is as follows:
Create an array results of 2n integers. Each array index i will denote a certain subsequence of the input, and results[i] will be the greatest sum that we can achieve starting with that subsequence.
A convenient way to manage the index-to-subsequence mapping is to represent the first element of the input using the least significant bit (the 1's place), the second element with the 2's place, etc.; so, for example, if our input is [5, 2, 8, 3, 6, 9], then the subsequence 5 2 8 would be represented as array index 0001112 = 7, meaning results[7]. (You can also start with the most significant bit — which is probably more intuitive — but then the implementation of that mapping is a little bit less convenient. Up to you.)
Then proceed in order, from subset #0 (the empty subset) up through subset #2n−1 (the full input), calculating each array-element by seeing how much we get if we select each possible element and add the corresponding previously-stored values. So, for example, to calculate results[7] (for the subsequence 5 2 8), we select the largest of these values:
results[6] plus how much we get if we select the 5
results[5] plus how much we get if we select the 2
results[3] plus how much we get if we select the 8
Now, it might seem like it should require O(n2) time to compute any given array-element, since there are n elements in the input that we could potentially select, and seeing how much we get if we do so requires examining all other elements (to find the maximum among prior elements and the minimum among later elements). However, we can actually do it in just O(n) time by first making a pass from right to left to record the minimal value that is later than each element of the input, and then proceeding from left to right to try each possible value. (Two O(n) passes add up to O(n).)
An important caveat: I suspect that the correct solution only ever involves, at each step, selecting either the rightmost or second-to-rightmost element. If so, then the above solution calculates many, many more values than an algorithm that took that into account. For example, the result at index 1110002 is clearly not relevant in that case. But I can't prove this suspicion, so I present the above O(n2n) solution as the fastest solution whose correctness I'm certain of.
(I'm assuming that the elements are nonnegative absent a suggestion to the contrary.)
Here's an O(n^2)-time algorithm based on ruakh's conjecture that there exists an optimal solution where every selection is from the rightmost two, which I prove below.
The states of the DP are (1) n, the number of elements remaining (2) k, the index of the rightmost element. We have a recurrence
OPT(n, k) = max(max(R(0), ..., R(n - 2)) + R(n - 1) + R(k) + OPT(n - 1, k),
max(R(0), ..., R(n - 1)) + R(k) + OPT(n - 1, n - 1)),
where the first line is when we take the second rightmost element, and the second line is when we take the rightmost. The empty max is zero. The base cases are
OPT(1, k) = R(k)
for all k.
Proof: the condition of choosing from the two rightmost elements is equivalent to the restriction that the element at index i (counting from zero) can be chosen only when at most i + 2 elements remain. We show by induction that there exists an optimal solution satisfying this condition for all i < j where j is the induction variable.
The base case is trivial, since every optimal solution satisfies the vacuous restriction for j = 0. In the inductive case, assume that there exists an optimal solution satisfying the restriction for all i < j. If j is chosen when there are more than j + 2 elements left, let's consider what happens if we defer that choice until there are exactly j + 2 elements left. None of the elements left of j are chosen in this interval by the inductive hypothesis, so they are irrelevant. Choosing the elements right of j can only be at least as profitable, since including j cannot decrease the max. Meanwhile, the set of elements left of j is the same at both times, and the set of the elements right of j is a subset at the later time as compared to the earlier time, so the min does not decrease. We conclude that this deferral does not affect the profitability of the solution.

Sort an array so the difference of elements a[i]-a[i+1]<=a[i+1]-a[i+2]

My mind is blown since I began, last week, trying to sort an array of N elements by condition: the difference between 2 elements being always less or equal to the next 2 elements. For example:
Α[4] = { 10, 2, 7, 4}
It is possible to rearrange that array this way:
{2, 7, 10, 4} because (2 - ­7 = ­-5) < (7 - ­10 = -­3) < (10 - ­4 = 6)
{4, 10, 7, 2} because (4 - ­10 = -­6) < (10 - ­7 = ­3) < (7 - ­2 = 5)
One solution I considered was just shuffling the array and checking each time if it agreed with the conditions, an efficient method for a small number of elements, but time consuming or even impossible for a larger number of elements.
Another was trying to move elements around the array with loops, hoping again to meet the requirements, but again this method is very time consuming and also sometimes not possible.
Trying to find an algorithm doesn't seem to have any result but there must be something.
Thank you very much in advance.
I normally don't just provide code, but this question intrigued me, so here's a brute-force solution, that might get you started.
The concept will always be slow because the individual elements in the list to be sorted are not independent of each other, so they cannot be sorted using traditional O(N log N) algorithms. However, the differences can be sorted that way, which simplifies checking for a solution, and permutations could be checked in parallel to speed up the processing.
import os,sys
import itertools
def is_diff_sorted(qa):
diffs = [qa[i] - qa[i+1] for i in range(len(qa)-1)]
for i in range(len(diffs)-1):
if diffs[i] > diffs[i+1]:
return False
return True
a = [2,4,7,10]
#a = [1,4,6,7,20]
a.sort()
for perm in itertools.permutations(a):
if is_diff_sorted(perm):
print "Solution:",str(a)
break
This condition is related to differentiation. The (negative) difference between neighbouring elements has to be steady or increasing with increasing index. Multiply the condition by -1 and you get
a[i+1]-a[i] => a[i+2]-a[i+1]
or
0 => (a[i+2]-a[i+1])- (a[i+1]-a[i])
So the 2nd derivative has to be 0 or negative, which is the same as having the first derivative stay the same or changing downwards, like e.g. portions of the upper half of a circle. That does not means that the first derivative itself has to start out positive or negative, just that it never change upward.
The problem algorithmically is that it can't be a simple sort, since you never compare just 2 elements of the list, you'll have to compare three at a time (i,i+1,i+2).
So the only thing you know apart from random permutations is given in Klas` answer (values first rising if at all, then falling if at all), but his is not a sufficient condition since you can have a positive 2nd derivative in his two sets (rising/falling).
So is there a solution much faster than the random shuffle? I can only think of the following argument (similar to Klas' answer). For a given vector the solution is more likely if you separate the data into a 1st segment that is rising or steady (not falling) and a 2nd that is falling or steady (not rising) and neither is empty. Likely an argument could be made that the two segments should have approximately equal size. The rising segment should have the data that are closer together and the falling segment should contain data that are further apart. So one could start with the mean, and look for data that are close to it, move them to the first set,then look for more widely spaced data and move them to the 2nd set. So a histogram might help.
[4 7 10 2] --> diff [ 3 3 -8] --> 2diff [ 0 -11]
Here is a solution based on backtracking algorithm.
Sort input array in non-increasing order.
Start dividing the array's values into two subsets: put the largest element to both subsets (this would be the "middle" element), then place second largest one into arbitrary subset.
Sequentially put the remaining elements to either subset. If this cannot be done without violating the "difference" condition, use other subset. If both subsets are not acceptable, rollback and change preceding decisions.
Reverse one of the arrays produced on step 3 and concatenate it with other array.
Below is Python implementation (it is not perfect, the worst defect is recursive implementation: while recursion is quite common for backtracking algorithms, this particular algorithm seems to work in linear time, and recursion is not good for very large input arrays).
def is_concave_end(a, x):
return a[-2] - a[-1] <= a[-1] - x
def append_element(sa, halves, labels, which, x):
labels.append(which)
halves[which].append(x)
if len(labels) == len(sa) or split_to_halves(sa, halves, labels):
return True
if which == 1 or not is_concave_end(halves[1], halves[0][-1]):
halves[which].pop()
labels.pop()
return False
labels[-1] = 1
halves[1].append(halves[0][-1])
halves[0].pop()
if split_to_halves(sa, halves, labels):
return True
halves[1].pop()
labels.pop()
def split_to_halves(sa, halves, labels):
x = sa[len(labels)]
if len(halves[0]) < 2 or is_concave_end(halves[0], x):
return append_element(sa, halves, labels, 0, x)
if is_concave_end(halves[1], x):
return append_element(sa, halves, labels, 1, x)
def make_concave(a):
sa = sorted(a, reverse = True)
halves = [[sa[0]], [sa[0], sa[1]]]
labels = [0, 1]
if split_to_halves(sa, halves, labels):
return list(reversed(halves[1][1:])) + halves[0]
print make_concave([10, 2, 7, 4])
It is not easy to produce a good data set to test this algorithm: plain set of random numbers either is too simple for this algorithm or does not have any solutions. Here I tried to generate a set that is "difficult enough" by mixing together two sorted lists, each satisfying the "difference" condition. Still this data set is processed in linear time. And I have no idea how to prepare any data set that would demonstrate more-than-linear time complexity of this algorithm...
Not that since the diffence should be ever-rising, any solution will have element first in rising order and then in falling order. The length of either of the two "suborders" may be 0, so a solution could consist of a strictly rising or strictly falling sequence.
The following algorithm will find any solutions:
Divide the set into two sets, A and B. Empty sets are allowed.
Sort A in rising order and B in falling order.
Concatenate the two sorted sets: AB
Check if you have a solution.
Do this for all possible divisions into A and B.
Expanding on the #roadrunner66 analysis, the solution is to take two smallest elements of the original array, and make them first and last in the target array; take two next smallest elements and make them second and next-to-last; keep going until all the elements are placed into the target. Notice that which one goes to the left, and which one to the right doesn't matter.
Sorting the original array facilitates the process (finding smallest elements becomes trivial), so the time complexity is O(n log n). The space complexity is O(n), because it requires a target array. I don't know off-hand if it is possible to do it in-place.

Minimum Complexity of two lists element summation comparison

I have a question in algorithm design about arrays, which should be implement in C language.
Suppose that we have an array which has n elements. For simplicity n is power of '2' like 1, 2, 4, 8, 16 , etc. I want to separate this to 2 parts with (n/2) elements. Condition of separating is lowest absolute difference between sum of all elements in two arrays for example if I have this array (9,2,5,3,6,1,4,7) it will be separate to these arrays (9,5,1,3) and (6,7,4,2) . summation of first array's elements is 18 and the summation of second array's elements is 19 and the difference is 1 and these two arrays are the answer but two arrays like (9,5,4,2) and (7,6,3,1) isn't the answer because the difference of element summation is 4 and we have found 1 . so 4 isn't the minimum difference. How to solve this?
Thank you.
This is the Partition Problem, which is unfortunately NP-Hard.
However, since your numbers are integers, if they are relatively low, there is a pseudo polynomial O(W*n^2) solution using Dynamic Programming (where W is sum of all elements).
The idea is to create the DP matrix of size (W/2+1)*(n+1)*(n/2+1), based on the following recursive formula:
D(0,i,0) = true
D(0,i,k) = false k != 0
D(x,i,k) = false x < 0
D(x,0,k) = false x > 0
D(x,i,0) = false x > 0
D(x,i,k) = D(x,i-1,k) OR D(x-arr[i], i-1,k-1)
The above gives a 3d matrix, where each entry D(x,i,k) says if there is a subset containing exactly k elements, that sums to x, and uses the first i elements as candidates.
Once you have this matrix, you just need to find the highest x (that is smaller than SUM/2) such that D(x,n,n/2) = true
Later, you can get the relevant subset by going back on the table and "retracing" your choices at each step. This thread deals with how it is done on a very similar problem.
For small sets, there is also the alternative of a naive brute force solution, which basically splits the array to all possible halves ((2n)!/(n!*n!) of those), and picks the best one out of them.

Resources