Calculate the average bits of byte in C - c

I try to writ a function that calculate the average bits of byte.
float AvgOnesOnBinaryString (int x)
for example:
-252 is 11111111 11111111 11111111 00000100
so the function return 6.25
because ( 8+8+8+1) / 4 = 6.25
I have to use the function that count bits in char:
int countOnesOnBinaryString (char x){
int bitCount = 0;
while(x > 0)
{
if ( x & 1 == 1 )
bitCount++;
x = x>>1;
}
return bitCount;
}
I tried:
float AvgOnesOnBinaryString (int x){
float total = 0;
total += countOnesOnBinaryString((x >> 24));
total += countOnesOnBinaryString((x >> 16));
total += countOnesOnBinaryString((x >> 8));
total += countOnesOnBinaryString(x);
return total/4;
}
but I get the answae 0.25 and not 6.25
what could be the problem?
UPDATE
I can't change the AvgOnesOnBinaryString function signature.

The C language allows compilers to define char as either a signed or unsigned type. I suspect it is signed on your platform, meaning that a byte like 0xff is likely interpreted as -1. This means that the x > 0 test in countOnesOnBinaryString yields false, so countOnesOnBinaryString(0xff) would return 0 instead of the correct value 8.
You should change countOnesOnBinaryString to take an argument of type unsigned char instead of char.
For somewhat related reasons, it would also be a good idea to change the argument of AvgOnesOnBinaryString to be unsigned int. Or even better, uint32_t from <stdint.h>, since your code assumes the input value is 32 bits, and (unsigned) int is allowed to be of some other size.

There is one algorithm that gives you the count of the number of 1 bits in an unsigned variable far more quickly. Only 5 iterations are needed in a 32 bit integer. I'll show it to you in C for a full length 64 bit unsigned number, so probably you can guess the pattern and why it works (it is explained below):
uint64_t
no_of_1_bits(uint64_t the_value)
{
the_value = ((the_value & 0xaaaaaaaaaaaaaaaa) >> 1) + (the_value & 0x5555555555555555);
the_value = ((the_value & 0xcccccccccccccccc) >> 2) + (the_value & 0x3333333333333333);
the_value = ((the_value & 0xf0f0f0f0f0f0f0f0) >> 4) + (the_value & 0x0f0f0f0f0f0f0f0f);
the_value = ((the_value & 0xff00ff00ff00ff00) >> 8) + (the_value & 0x00ff00ff00ff00ff);
the_value = ((the_value & 0xffff0000ffff0000) >> 16) + (the_value & 0x0000ffff0000ffff);
the_value = ((the_value & 0xffffffff00000000) >> 32) + (the_value & 0x00000000ffffffff);
return the_value;
}
The number of 1 bits will be in the 64bit value of the_value. If you divide the result by eight, you'll have the average of 1 bits per byte for an unsigned long (beware of making the shifts with signed chars as the sign bit is replicated, so your algorithm will never stop for a negative number)
For 8 bit bytes, the algorithm reduces to:
uint8_t
no_of_1_bits(uint8_t the_value)
{
the_value = ((the_value & 0xaa) >> 1) + (the_value & 0x55);
the_value = ((the_value & 0xcc) >> 2) + (the_value & 0x33);
the_value = ((the_value & 0xf0) >> 4) + (the_value & 0x0f);
return the_value;
}
and again, the number of 1 bits is in the variable the_value.
The idea of this algorithm is to produce in the first step the sum of each pair of bits in a two bit accumulator (we shift the left bit of a pair to the right to align it with the right one, then we add them together, and in parallel for each pair of bits). As the accumulators are two bits, it is impossible to overflow (so there's never a carry from a pair of bits to the next, and we use the full integer as a series of two bit registers to add the sum)
Then we sum each pair of bits in an accumulator of four bits and again, that never overflows... let's do the same thing with the nibbles we got, and sum them into registers of 8 bits.... If it was impossible to overflow a 4 bit accumulator with two bits, it is more impossible to overflow an 8 bit accumulator with four bit addings.... and continue until you add the left half of the word with the right half. You finally end with the sum of all bits in one full length register of the word length.
Easy, isn't it? :)

Related

Bit Shifting - Finding nth byte in a number [duplicate]

I know you can get the first byte by using
int x = number & ((1<<8)-1);
or
int x = number & 0xFF;
But I don't know how to get the nth byte of an integer.
For example, 1234 is 00000000 00000000 00000100 11010010 as 32bit integer
How can I get all of those bytes? first one would be 210, second would be 4 and the last two would be 0.
int x = (number >> (8*n)) & 0xff;
where n is 0 for the first byte, 1 for the second byte, etc.
For the (n+1)th byte in whatever order they appear in memory (which is also least- to most- significant on little-endian machines like x86):
int x = ((unsigned char *)(&number))[n];
For the (n+1)th byte from least to most significant on big-endian machines:
int x = ((unsigned char *)(&number))[sizeof(int) - 1 - n];
For the (n+1)th byte from least to most significant (any endian):
int x = ((unsigned int)number >> (n << 3)) & 0xff;
Of course, these all assume that n < sizeof(int), and that number is an int.
int nth = (number >> (n * 8)) & 0xFF;
Carry it into the lowest byte and take it in the "familiar" manner.
If you are wanting a byte, wouldn't the better solution be:
byte x = (byte)(number >> (8 * n));
This way, you are returning and dealing with a byte instead of an int, so we are using less memory, and we don't have to do the binary and operation & 0xff just to mask the result down to a byte. I also saw that the person asking the question used an int in their example, but that doesn't make it right.
I know this question was asked a long time ago, but I just ran into this problem, and I think that this is a better solution regardless.
//was trying to do inplace, would have been better if I had swapped higher and lower bytes somehow
uint32_t reverseBytes(uint32_t value) {
uint32_t temp;
size_t size=sizeof(uint32_t);
for(int i=0; i<size/2; i++){
//get byte i
temp = (value >> (8*i)) & 0xff;
//put higher in lower byte
value = ((value & (~(0xff << (8*i)))) | (value & ((0xff << (8*(size-i-1)))))>>(8*(size-2*i-1))) ;
//move lower byte which was stored in temp to higher byte
value=((value & (~(0xff << (8*(size-i-1)))))|(temp << (8*(size-i-1))));
}
return value;
}

Reverse the order of bits in a bit array

I have a long sequence of bits stored in an array of unsigned long integers, like this
struct bit_array
{
int size; /* nr of bits */
unsigned long *array; /* the container that stores bits */
}
I am trying to design an algorithm to reverse the order of bits in *array. Problems:
size can be anything, i.e. not necessarily a multiple of 8 or 32 etc, so the first bit in the input array can end up at any position within the unsigned long in the output array;
the algorithm should be platform-independent, i.e. work for any sizeof(unsigned long).
Code, pseudocode, algo description etc. -- anything better than bruteforce ("bit by bit") approach is welcome.
My favorite solution is to fill a lookup-table that does bit-reversal on a single byte (hence 256 byte entries).
You apply the table to 1 to 4 bytes of the input operand, with a swap. If the size isn't a multiple of 8, you will need to adjust by a final right shift.
This scales well to larger integers.
Example:
11 10010011 00001010 -> 01010000 11001001 11000000 -> 01 01000011 00100111
To split the number into bytes portably, you need to use bitwise masking/shifts; mapping of a struct or array of bytes onto the integer can make it more efficient.
For brute performance, you can think of mapping up to 16 bits at a time, but this doesn't look quite reasonable.
I like the idea of lookup table. Still it's also a typical task for log(n) group bit tricks that may be very fast. Like:
unsigned long reverseOne(unsigned long x) {
x = ((x & 0xFFFFFFFF00000000) >> 32) | ((x & 0x00000000FFFFFFFF) << 32);
x = ((x & 0xFFFF0000FFFF0000) >> 16) | ((x & 0x0000FFFF0000FFFF) << 16);
x = ((x & 0xFF00FF00FF00FF00) >> 8) | ((x & 0x00FF00FF00FF00FF) << 8);
x = ((x & 0xF0F0F0F0F0F0F0F0) >> 4) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
x = ((x & 0xCCCCCCCCCCCCCCCC) >> 2) | ((x & 0x3333333333333333) << 2);
x = ((x & 0xAAAAAAAAAAAAAAAA) >> 1) | ((x & 0x5555555555555555) << 1);
return x;
}
The underlying idea is that when we aim to reverse the order of some sequence we may swap the head and tail halves of this sequence and then separately reverse each of halves (which is done here by applying the same procedure recursively to each half).
Here is a more portable version supporting unsigned long widths of 4,8,16 or 32 bytes.
#include <limits.h>
#define ones32 0xFFFFFFFFUL
#if (ULONG_MAX >> 128)
#define fill32(x) (x|(x<<32)|(x<<64)|(x<<96)|(x<<128)|(x<<160)|(x<<192)|(x<<224))
#define patt128 (ones32|(ones32<<32)|(ones32<<64) |(ones32<<96))
#define patt64 (ones32|(ones32<<32)|(ones32<<128)|(ones32<<160))
#define patt32 (ones32|(ones32<<64)|(ones32<<128)|(ones32<<192))
#else
#if (ULONG_MAX >> 64)
#define fill32(x) (x|(x<<32)|(x<<64)|(x<<96))
#define patt64 (ones32|(ones32<<32))
#define patt32 (ones32|(ones32<<64))
#else
#if (ULONG_MAX >> 32)
#define fill32(x) (x|(x<<32))
#define patt32 (ones32)
#else
#define fill32(x) (x)
#endif
#endif
#endif
unsigned long reverseOne(unsigned long x) {
#if (ULONG_MAX >> 32)
#if (ULONG_MAX >> 64)
#if (ULONG_MAX >> 128)
x = ((x & ~patt128) >> 128) | ((x & patt128) << 128);
#endif
x = ((x & ~patt64) >> 64) | ((x & patt64) << 64);
#endif
x = ((x & ~patt32) >> 32) | ((x & patt32) << 32);
#endif
x = ((x & fill32(0xffff0000UL)) >> 16) | ((x & fill32(0x0000ffffUL)) << 16);
x = ((x & fill32(0xff00ff00UL)) >> 8) | ((x & fill32(0x00ff00ffUL)) << 8);
x = ((x & fill32(0xf0f0f0f0UL)) >> 4) | ((x & fill32(0x0f0f0f0fUL)) << 4);
x = ((x & fill32(0xccccccccUL)) >> 2) | ((x & fill32(0x33333333UL)) << 2);
x = ((x & fill32(0xaaaaaaaaUL)) >> 1) | ((x & fill32(0x55555555UL)) << 1);
return x;
}
In a collection of related topics which can be found here, the bits of an individual array entry could be reversed as follows.
unsigned int v; // input bits to be reversed
unsigned int r = v; // r will be reversed bits of v; first get LSB of v
int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
for (v >>= 1; v; v >>= 1)
{
r <<= 1;
r |= v & 1;
s--;
}
r <<= s; // shift when v's highest bits are zero
The reversal of the entire array could be done afterwards by rearranging the individual positions.
You must define what is the order of bits in an unsigned long. You might assume that bit n is corresponds to array[x] & (1 << n) but this needs to be specified. If so, you need to handle the byte ordering (little or big endian) if you are going to use access the array as bytes instead of unsigned long.
I would definitely implement brute force first and measure whether the speed is an issue. No need to waste time trying to optimize this if it is not used a lot on large arrays. An optimized version can be tricky to implement correctly. If you end up trying anyway, the brute force version can be used to verify correctness on test values and benchmark the speed of the optimized version.
The fact that the size is not multiple of sizeof(long) is the hardest part of the problem. This can result in a lot of bit shifting.
But, you don't have to do that if you can introduce new struct member:
struct bit_array
{
int size; /* nr of bits */
int offset; /* First bit position */
unsigned long *array; /* the container that stores bits */
}
Offset would tell you how many bits to ignore at the beginning of the array.
Then you only only have to do following steps:
Reverse array elements.
Swap bits of each element. There are many hacks for in the other answers, but your compiler might also provide intrisic functions to do it in fewer instructions (like RBIT instruction on some ARM cores).
Calculate new starting offset. This is equal to unused bits the last element had.
I would split the problem into two parts.
First, I would ignore the fact that the number of used bits is not a multiple of 32. I would use one of the given methods to swap around the whole array like that.
pseudocode:
for half the longs in the array:
take the first longword;
take the last longword;
swap the bits in the first longword
swap the bits in the last longword;
store the swapped first longword into the last location;
store the swapped last longword into the first location;
and then fix up the fact that the first few bits (call than number n) are actually garbage bits from the end of the longs:
for all of the longs in the array:
split the value in the leftmost n bits and the rest;
store the leftmost n bits into the righthand part of the previous word;
shift the rest bits to the left over n positions (making the rightmost n bits zero);
store them back;
You could try to fold that into one pass over the whole array of course. Something like this:
for half the longs in the array:
take the first longword;
take the last longword;
swap the bits in the first longword
swap the bits in the last longword;
split both value in the leftmost n bits and the rest;
for the new first longword:
store the leftmost n bits into the righthand side of the previous word;
store the remaining bits into the first longword, shifted left;
for the new last longword:
remember the leftmost n bits for the next iteration;
store the remembered leftmost n bits, combined with the remaining bits, into the last longword;
store the swapped first longword into the last location;
store the swapped last longword into the first location;
I'm abstracting from the edge cases here (first and last longword), and you may need to reverse the shifting direction depending on how the bits are ordered inside each longword.

Can anyone explain this bitwise function to compute log(n)

int howManyBits(int x) {
int concatenate;
int bias;
int sign = x >> 31; //get the sign
x = (sign & (~x)) | (~sign & x);
concatenate = (!!(x >> 16)) << 4;
concatenate |= (!!(x >> (concatenate + 8))) << 3;
concatenate |= (!!(x >> (concatenate + 4))) << 2;
concatenate |= (!!(x >> (concatenate + 2))) << 1;
concatenate |= x >> (concatenate + 1);
bias = !(x ^ 0);
return concatenate + 2 + (~bias + 1);
}
This code is presented as a way to calculate the minimum number of bits required to represent an integer n in 2's complement, with the assumption that the int data type is represented with 32 bits. Right shifting is assumed to be arithmetic.
I understand that the basic method is to take the log base 2 of n, round it up, and then add 1 bit to account for the sign bit.
I also understand that left-shifting is equivalent to multiplying by 2 and that right-shifting is equivalent to dividing by 2.
That being said, without comments I can't decipher what this code is doing beyond the portion where it obtains the value of the sign bit. I worked through it on pencil and paper with a sample int of the value 5 - the code works, but I don't understand why.
Could someone provide some intuitive breakdown of what the code is doing?
This code could use some comments.
This leaves x as it is if it is positive or takes the one's complement if negative. This allows the calculation to search for the most significant one regardless of positive or negative
x = (sign & (~x)) | (~sign & x);
I think the following would have been more clear:
x = sign ? ~x : x;
Next is a search for the highest 1 bit done with a binary search. First the top half of the word is searched.
concatenate = (!!(x >> 16)) << 4;
If the top half has a 1, then the result is 16. The 16 is used later both as part of the answer, but also to determine where to search next. Since it is used in the shifts that follow it will cause the following tests to either be done with the top half of the board or the bottom half.
The following concatenate operations are searching in a progressively smaller piece of the original number looking is the most significant one in the upper 8 bits or the lower 8 bits of the 16 bits that was chosen, then the upper 4 bits or the lower 4 bits of the 8 bits that was chosen, and so forth.
concatenate |= (!!(x >> (concatenate + 8))) << 3; // Check which 8 bits
concatenate |= (!!(x >> (concatenate + 4))) << 2; // Check which 4 bits
concatenate |= (!!(x >> (concatenate + 2))) << 1; // Check which 2 bits
concatenate |= x >> (concatenate + 1); // Check which 1 bit
The bias is just checking is the number 0 or not. It is 1 only if x is 0. I don't understand the need for the XOR operator.
Finally the pieces are added together.

Extracting 4 bits from N to N+4 in unsigned long

Consider the following integer:
uint32_t p = 0xdeadbeef;
I want to get:
0..3 bits so I did:
p & ((1 << 4) - 1); and that went good.
however, for 4..7 what I tried did not go as expected:
(p >> 16) & 0xFFFF0000
Why would it not extract the bits I want? Am I not moving p 16 positions to the right and then taking out 4 bits?
Would really appreciate an answer with explanation, thanks!
If you want to get bits from 4..7
(p>>4) & 0xf
If you want to get bits from N to (N+4-1)
(p>>N) & 0xf
And N should be <32 (if your system is 32 bits system). otherwise you will get undefined behaviour
No, you're actually removing bits 0 to 15 from p, so it will hold 0xdead and afterwards you perform the bitwise and so this will yield 0.
If you want to extract the upper 16 bits you will first have to the & operation and shift afterwards:
p = (p & 0xffff0000) >> 16;
To extracts the bits 4 to 7 you will want to do:
p = p & 0xf0;
or if you want them shifted down
p = (p & 0xf0) >> 4;
Btw. Could it be that mean the term nibble 4 to 7 instead of bit 4..7? Nibbles are 4 bits and represented by one hex digit, this would correlate with what you are trying to in the code

How to tell if a 32 bit int can fit in a 16 bit short

Using only:
! ~ & ^ | + << >>
I need to find out if a signed 32 bit integer can be represented as a 16 bit, two's complement integer.
My first thoughts were to separate the MSB 16 bits and the LSB 16 bits and then use a mask to and the last 16 bits so if its not zero, it wont be able to be represented and then use that number to check the MSB bits.
An example of the function I need to write is: fitsInShort(33000) = 0 (cant be represented) and fitsInShort(-32768) = 1 (can be represented)
bool fits16(int x)
{
short y = x;
return y == x;
}
Just kidding :) Here's the real answer, assuming int is 32 bits and short is 16 bits and two's complement represantation:
Edit: Please see the last edit for the correct answer!
bool fits16(int x)
{
/* Mask out the least significant word */
int y = x & 0xffff0000;
if (x & 0x00008000) {
return y == 0xffff0000;
} else {
return y == 0;
}
}
Without if statements i beleive that should do it:
return (
!(!(x & 0xffff0000) || !(x & 0x00008000)) ||
!((x & 0xffff0000) || (x & 0x00008000))
);
Edit: Oli's right. I somehow thought that they were allowed. Here's the last attempt, with explanation:
We need the 17 most significant bits of x to be either all ones or all zeroes. So let's start by masking other bits out:
int a = x & 0xffff8000; // we need a to be either 0xffff8000 or 0x00000000
int b = a + 0x00008000; // if a == 0xffff8000 then b is now 0x00000000
// if a == 0x00000000 then b is now 0x00008000
// in any other case b has a different value
int c = b & 0xffff7fff; // all zeroes if it fits, something else if it doesn't
return c;
Or more concisely:
return ((x & 0xffff8000) + 0x8000) & 0xffff7fff;
If a 32-bit number is in the range [-32768,+32767], then the 17 msbs will all be the same.
Here's a crappy way of telling if a 3-bit number is all ones or all zeros using only your operations (I'm assuming that you're not allowed conditional control structures, because they require implicit logical operations):
int allOnes3(int x)
{
return ((x >> 0) & (x >> 1) & (x >> 2)) & 1;
}
int allTheSame3(int x)
{
return allOnes3(x) | allOnes3(~x);
}
I'll leave you to extend/improve this concept.
Here's a solution without casting, if-statements and using only the operators you asked for:
#define fitsInShort(x) !(((((x) & 0xffff8000) >> 15) + 1) & 0x1fffe)
short fitsInShort(int x)
{
int positiveShortRange = (int) ((short) 0xffff / (short) 2);
int negativeShortRange = (int) ((short) 0xffff / (short) 2) + 1;
if(x > negativeShortRange && x < positiveShortRange)
return (short) x;
else
return (short) 0;
}
if (!(integer_32 & 0x8000000))
{
/* if +ve number */
if (integer_32 & 0xffff8000)
/* cannot fit */
else
/* can fit */
}
else if (integer_32 & 0x80000000)
{
/* if -ve number */
if ( ~((integer_32 & 0xffff8000) | 0x00007fff))
/* cannot fit */
else
/* can fit */
}
First if Checks for +ve number first by checking the signed bit. If +ve , then it checks if the bit 15 to bit 31 are 0, if 0, then it cannot fit into short, else it can.
The negative number is withing range if bit 15 to 31 are all set (2's complement method representation).
Therefore The second if it is a -ve number, then the bit 15 to 31 are masked out and the remaining lower bits (0 to 14) are set. If this is 0xffffffff then only the one's complement will be 0, which indicates the bit 15 to 31 are all set, therefore it can fit (the else part), otherwise it cannot fit (the if condition).

Categories

Resources