Taylor Series in C (problem with sin(240) and sin(300)) - c

#include <stdio.h>
#include <math.h>
const int TERMS = 7;
const float PI = 3.14159265358979;
int fact(int n) {
return n<= 0 ? 1 : n * fact(n-1);
}
double sine(int x) {
double rad = x * (PI / 180);
double sin = 0;
int n;
for(n = 0; n < TERMS; n++) { // That's Taylor series!!
sin += pow(-1, n) * pow(rad, (2 * n) + 1)/ fact((2 * n) + 1);
}
return sin;
}
double cosine(int x) {
double rad = x * (PI / 180);
double cos = 0;
int n;
for(n = 0; n < TERMS; n++) { // That's also Taylor series!
cos += pow(-1, n) * pow(rad, 2 * n) / fact(2 * n);
}
return cos;
}
int main(void){
int y;
scanf("%d",&y);
printf("sine(%d)= %lf\n",y, sine(y));
printf("cosine(%d)= %lf\n",y, cosine(y));
return 0;
}
The code above was implemented to compute sine and cosine using Taylor series.
I tried testing the code and it works fine for sine(120).
I am getting wrong answers for sine(240) and sine(300).
Can anyone help me find out why those errors occur?

You should calculate the functions in the first quadrant only [0, pi/2). Exploit the properties of the functions to get the values for other angles. For instance, for values of x between [pi/2, pi), sin(x) can be calculated by sin(pi - x).
The sine of 120 degrees, which is 40 past 90 degrees, is the same as 50 degrees: 40 degrees before 90. Sine starts at 0, then rises toward 1 at 90 degrees, and then falls again in a mirror image to zero at 180.
The negative sine values from pi to 2pi are just -sin(x - pi). I'd handle everything by this recursive definition:
sin(x):
cases x of:
[0, pi/2) -> calculate (Taylor or whatever)
[pi/2, pi) -> sin(pi - x)
[pi/2, 2pi) -> -sin(x - pi)
< 0 -> sin(-x)
>= 2pi -> sin(fmod(x, 2pi)) // floating-point remainder
A similar approach for cos, using identity cases appropriate for it.

The key point is:
TERMS is too small to have proper precision. And if you increase TERMS, you have to change fact implementation as it will likely overflow when working with int.
I would use a sign to toggle the -1 power instead of pow(-1,n) overkill.
Then use double for the value of PI to avoid losing too many decimals
Then for high values, you should increase the number of terms (this is the main issue). using long long for your factorial method or you get overflow. I set 10 and get proper results:
#include <stdio.h>
#include <math.h>
const int TERMS = 10;
const double PI = 3.14159265358979;
long long fact(int n) {
return n<= 0 ? 1 : n * fact(n-1);
}
double powd(double x,int n) {
return n<= 0 ? 1 : x * powd(x,n-1);
}
double sine(int x) {
double rad = x * (PI / 180);
double sin = 0;
int n;
int sign = 1;
for(n = 0; n < TERMS; n++) { // That's Taylor series!!
sin += sign * powd(rad, (2 * n) + 1)/ fact((2 * n) + 1);
sign = -sign;
}
return sin;
}
double cosine(int x) {
double rad = x * (PI / 180);
double cos = 0;
int n;
int sign = 1;
for(n = 0; n < TERMS; n++) { // That's also Taylor series!
cos += sign * powd(rad, 2 * n) / fact(2 * n);
sign = -sign;
}
return cos;
}
int main(void){
int y;
scanf("%d",&y);
printf("sine(%d)= %lf\n",y, sine(y));
printf("cosine(%d)= %lf\n",y, cosine(y));
return 0;
}
result:
240
sine(240)= -0.866026
cosine(240)= -0.500001
Notes:
my recusive implementation of pow using successive multiplications is probably not needed, since we're dealing with floating point. It introduces accumulation error if n is big.
fact could be using floating point to allow bigger numbers and better precision. Actually I suggested long long but it would be better not to assume that the size will be enough. Better use standard type like int64_t for that.
fact and pow results could be pre-computed/hardcoded as well. This would save computation time.

const double TERMS = 14;
const double PI = 3.14159265358979;
double fact(double n) {return n <= 0.0 ? 1 : n * fact(n - 1);}
double sine(double x)
{
double rad = x * (PI / 180);
rad = fmod(rad, 2 * PI);
double sin = 0;
for (double n = 0; n < TERMS; n++)
sin += pow(-1, n) * pow(rad, (2 * n) + 1) / fact((2 * n) + 1);
return sin;
}
double cosine(double x)
{
double rad = x * (PI / 180);
rad = fmod(rad,2*PI);
double cos = 0;
for (double n = 0; n < TERMS; n++)
cos += pow(-1, n) * pow(rad, 2 * n) / fact(2 * n);
return cos;
}
int main()
{
printf("sine(240)= %lf\n", sine(240));
printf("cosine(300)= %lf\n",cosine(300));
}

Related

Logistic regression code stops working above ~43,500 generated observations

Having some difficulty troubleshooting code I wrote in C to perform a logistic regression. While it seems to work on smaller, semi-randomized datasets, it stops working (e.g. assigning proper probabilities of belonging to class 1) at around the point where I pass 43,500 observations (determined by tweaking the number of observations created. When creating the 150 features used in the code, I do create the first two as a function of the number of observations, so I'm not sure if maybe that's the issue here, though I am using double precision. Maybe there's an overflow somewhere in the code?
The below code should be self-contained; it generates m=50,000 observations with n=150 features. Setting m below 43,500 should return "Percent class 1: 0.250000", setting to 44,000 or above will return "Percent class 1: 0.000000", regardless of what max_iter (number of times we sample m observations) is set to.
The first feature is set to 1.0 divided by the total number of observations, if class 0 (first 75% of observations), or the index of the observation divided by the total number of observations otherwise.
The second feature is just index divided by total number of observations.
All other features are random.
The logistic regression is intended to use stochastic gradient descent, randomly selecting an observation index, computing the gradient of the loss with the predicted y using current weights, and updating weights with the gradient and learning rate (eta).
Using the same initialization with Python and NumPy, I still get the proper results, even above 50,000 observations.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
// Compute z = w * x + b
double dlc( int n, double *X, double *coef, double intercept )
{
double y_pred = intercept;
for (int i = 0; i < n; i++)
{
y_pred += X[i] * coef[i];
}
return y_pred;
}
// Compute y_hat = 1 / (1 + e^(-z))
double sigmoid( int n, double alpha, double *X, double *coef, double beta, double intercept )
{
double y_pred;
y_pred = dlc(n, X, coef, intercept);
y_pred = 1.0 / (1.0 + exp(-y_pred));
return y_pred;
}
// Stochastic gradient descent
void sgd( int m, int n, double *X, double *y, double *coef, double *intercept, double eta, int max_iter, int fit_intercept, int random_seed )
{
double *gradient_coef, *X_i;
double y_i, y_pred, resid;
int idx;
double gradient_intercept = 0.0, alpha = 1.0, beta = 1.0;
X_i = (double *) malloc (n * sizeof(double));
gradient_coef = (double *) malloc (n * sizeof(double));
for ( int i = 0; i < n; i++ )
{
coef[i] = 0.0;
gradient_coef[i] = 0.0;
}
*intercept = 0.0;
srand(random_seed);
for ( int epoch = 0; epoch < max_iter; epoch++ )
{
for ( int run = 0; run < m; run++ )
{
// Randomly sample an observation
idx = rand() % m;
for ( int i = 0; i < n; i++ )
{
X_i[i] = X[n*idx+i];
}
y_i = y[idx];
// Compute y_hat
y_pred = sigmoid( n, alpha, X_i, coef, beta, *intercept );
resid = -(y_i - y_pred);
// Compute gradients and adjust weights
for (int i = 0; i < n; i++)
{
gradient_coef[i] = X_i[i] * resid;
coef[i] -= eta * gradient_coef[i];
}
if ( fit_intercept == 1 )
{
*intercept -= eta * resid;
}
}
}
}
int main(void)
{
double *X, *y, *coef, *y_pred;
double intercept;
double eta = 0.05;
double alpha = 1.0, beta = 1.0;
long m = 50000;
long n = 150;
int max_iter = 20;
long class_0 = (long)(3.0 / 4.0 * (double)m);
double pct_class_1 = 0.0;
clock_t test_start;
clock_t test_end;
double test_time;
printf("Constructing variables...\n");
X = (double *) malloc (m * n * sizeof(double));
y = (double *) malloc (m * sizeof(double));
y_pred = (double *) malloc (m * sizeof(double));
coef = (double *) malloc (n * sizeof(double));
// Initialize classes
for (int i = 0; i < m; i++)
{
if (i < class_0)
{
y[i] = 0.0;
}
else
{
y[i] = 1.0;
}
}
// Initialize observation features
for (int i = 0; i < m; i++)
{
if (i < class_0)
{
X[n*i] = 1.0 / (double)m;
}
else
{
X[n*i] = (double)i / (double)m;
}
X[n*i + 1] = (double)i / (double)m;
for (int j = 2; j < n; j++)
{
X[n*i + j] = (double)(rand() % 100) / 100.0;
}
}
// Fit weights
printf("Running SGD...\n");
test_start = clock();
sgd( m, n, X, y, coef, &intercept, eta, max_iter, 1, 42 );
test_end = clock();
test_time = (double)(test_end - test_start) / CLOCKS_PER_SEC;
printf("Time taken: %f\n", test_time);
// Compute y_hat and share of observations predicted as class 1
printf("Making predictions...\n");
for ( int i = 0; i < m; i++ )
{
y_pred[i] = sigmoid( n, alpha, &X[i*n], coef, beta, intercept );
}
printf("Printing results...\n");
for ( int i = 0; i < m; i++ )
{
//printf("%f\n", y_pred[i]);
if (y_pred[i] > 0.5)
{
pct_class_1 += 1.0;
}
// Troubleshooting print
if (i < 10 || i > m - 10)
{
printf("%g\n", y_pred[i]);
}
}
printf("Percent class 1: %f", pct_class_1 / (double)m);
return 0;
}
For reference, here is my (presumably) equivalent Python code, which returns the correct percent of identified classes at more than 50,000 observations:
import numpy as np
import time
def sigmoid(x):
return 1 / (1 + np.exp(-x))
class LogisticRegressor:
def __init__(self, eta, init_runs, fit_intercept=True):
self.eta = eta
self.init_runs = init_runs
self.fit_intercept = fit_intercept
def fit(self, x, y):
m, n = x.shape
self.coef = np.zeros((n, 1))
self.intercept = np.zeros((1, 1))
for epoch in range(self.init_runs):
for run in range(m):
idx = np.random.randint(0, m)
x_i = x[idx:idx+1, :]
y_i = y[idx]
y_pred_i = sigmoid(x_i.dot(self.coef) + self.intercept)
gradient_w = -(x_i.T * (y_i - y_pred_i))
self.coef -= self.eta * gradient_w
if self.fit_intercept:
gradient_b = -(y_i - y_pred_i)
self.intercept -= self.eta * gradient_b
def predict_proba(self, x):
m, n = x.shape
y_pred = np.ones((m, 2))
y_pred[:,1:2] = sigmoid(x.dot(self.coef) + self.intercept)
y_pred[:,0:1] -= y_pred[:,1:2]
return y_pred
def predict(self, x):
return np.round(sigmoid(x.dot(self.coef) + self.intercept))
m = 50000
n = 150
class1 = int(3.0 / 4.0 * m)
X = np.random.rand(m, n)
y = np.zeros((m, 1))
for obs in range(m):
if obs < class1:
continue
else:
y[obs,0] = 1
for obs in range(m):
if obs < class1:
X[obs, 0] = 1.0 / float(m)
else:
X[obs, 0] = float(obs) / float(m)
X[obs, 1] = float(obs) / float(m)
logit = LogisticRegressor(0.05, 20)
start_time = time.time()
logit.fit(X, y)
end_time = time.time()
print(round(end_time - start_time, 2))
y_pred = logit.predict(X)
print("Percent:", y_pred.sum() / len(y_pred))
The issue is here:
// Randomly sample an observation
idx = rand() % m;
... in light of the fact that the OP's RAND_MAX is 32767. This is exacerbated by the fact that all of the class 0 observations are at the end.
All samples will be drawn from the first 32768 observations, and when the total number of observations is greater than that, the proportion of class 0 observations among those that can be sampled is less than 0.25. At 43691 total observations, there are no class 0 observations among those that can be sampled.
As a secondary issue, rand() % m does not yield a wholly uniform distribution if m does not evenly divide RAND_MAX + 1, though the effect of this issue will be much more subtle.
Bottom line: you need a better random number generator.
At minimum, you could consider combining the bits from two calls to rand() to yield an integer with sufficient range, but you might want to consider getting a third-party generator. There are several available.
Note: OP reports "m=50,000 observations with n=150 features.", so perhaps this is not the issue for OP, but I'll leave this answer up for reference when OP tries larger tasks.
A potential issue:
long overflow
m * n * sizeof(double) risks overflow when long is 32-bit and m*n > LONG_MAX (or about 46,341 if m, n are the same).
OP does report
A first step is to perform the multiplication using size_t math where we gain at least 1 more bit in the calculation.
// m * n * sizeof(double)
sizeof(double) * m * n
Yet unless OP's size_t is more than 32-bit, we still have trouble.
IAC, I recommend to use size_t for array sizing and indexing.
Check allocations for failure too.
Since RAND_MAX may be too small and array indexing should be done using size_t math, consider a helper function to generate a random index over the entire size_t range.
// idx = rand() % m;
size_t idx = rand_size_t() % (size_t)m;
If stuck with the standard rand(), below is a helper function to extend its range as needed.
It uses the real nifty IMAX_BITS(m).
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
// https://stackoverflow.com/a/4589384/2410359
/* Number of bits in inttype_MAX, or in any (1<<k)-1 where 0 <= k < 2040 */
#define IMAX_BITS(m) ((m)/((m)%255+1) / 255%255*8 + 7-86/((m)%255+12))
// Test that RAND_MAX is a power of 2 minus 1
_Static_assert((RAND_MAX & 1) && ((RAND_MAX/2 + 1) & (RAND_MAX/2)) == 0, "RAND_MAX is not a Mersenne number");
#define RAND_MAX_WIDTH (IMAX_BITS(RAND_MAX))
#define SIZE_MAX_WIDTH (IMAX_BITS(SIZE_MAX))
size_t rand_size_t(void) {
size_t index = (size_t) rand();
for (unsigned i = RAND_MAX_WIDTH; i < SIZE_MAX_WIDTH; i += RAND_MAX_WIDTH) {
index <<= RAND_MAX_WIDTH;
index ^= (size_t) rand();
}
return index;
}
Further considerations can replace the rand_size_t() % (size_t)m with a more uniform distribution.
As has been determined elsewhere, the problem is due to the implementation's RAND_MAX value being too small.
Assuming 32-bit ints, a slightly better PRNG function can be implemented in the code, such as this C implementation of the minstd_rand() function from C++:
#define MINSTD_RAND_MAX 2147483646
// Code assumes `int` is at least 32 bits wide.
static unsigned int minstd_seed = 1;
static void minstd_srand(unsigned int seed)
{
seed %= 2147483647;
// zero seed is bad!
minstd_seed = seed ? seed : 1;
}
static int minstd_rand(void)
{
minstd_seed = (unsigned long long)minstd_seed * 48271 % 2147483647;
return (int)minstd_seed;
}
Another problem is that expressions of the form rand() % m produce a biased result when m does not divide (unsigned int)RAND_MAX + 1. Here is an unbiased function that returns a random integer from 0 to le inclusive, making use of the minstd_rand() function defined earlier:
static int minstd_rand_max(int le)
{
int r;
if (le < 0)
{
r = le;
}
else if (le >= MINSTD_RAND_MAX)
{
r = minstd_rand();
}
else
{
int rm = MINSTD_RAND_MAX - le + MINSTD_RAND_MAX % (le + 1);
while ((r = minstd_rand()) > rm)
{
}
r /= (rm / (le + 1) + 1);
}
return r;
}
(Actually, it does still have a very small bias because minstd_rand() will never return 0.)
For example, replace rand() % 100 with minstd_rand_max(99), and replace rand() % m with minstd_rand_max(m - 1). Also replace srand(random_seed) with minstd_srand(random_seed).

Poisson calculation (erlang C)

i posted this before, user told me to post it on codereview. i did, and they closed it...so one more time here: (i deleted the old question)
I have these formulas:
and I need the Poisson formulas for the erlangC formula:
I tried to rebuild the formulas in C:
double getPoisson(double m, double u, bool cumu)
{
double ret = 0;
if(!cumu)
{
ret = (exp(-u)*pow(u,m)) / (factorial(m));
}
else
{
double facto = 1;
double ehu = exp(-u);
for(int i = 0; i < m; i++)
{
ret = ret + (ehu * pow(u,i)) / facto;
facto *= (i+1);
}
}
return ret;
}
The Erlang C Formula:
double getErlangC(double m, double u, double p)
{
double numerator = getPoisson(m, u, false);
double denominator = getPoisson(m, u, false) + (1-p) * getPoisson(m, u, true);
return numerator/denominator;
}
The main problem is, the m parameter in getPoisson is a big value (>170)
so it wants to calculate >170! but it cannot handle it. I think the primitive data types are too small to work correctly, or what do you say?
BTW: This is the factorial function I use for the first Poisson:
double factorial(double n)
{
if(n >= 1)
return n*factorial(n-1);
else
return 1;
}
Some samples:
Input:
double l = getErlangC(50, 48, 0.96);
printf("%g", l);
Output:
0.694456 (correct)
Input:
double l = getErlangC(100, 96, 0.96);
printf("%g", l);
Output:
0.5872811 (correct)
if i use a value higher than 170 for the first parameter (m) of getErlangC like:
Input:
double l = getErlangC(500, 487, 0.974);
printf("%g", l);
Output:
naN (incorrect)
Excepted:
0.45269
How's my approach? Would be there a better way to calculate Poisson and erlangC?
Some Info: Excel has the POISSON Function, and on Excel it works perfekt... would there be a way to see the algorithm(code) EXCEL uses for POISSON?
(pow(u, m)/factorial(m)) can be expressed as a recursive loop with each element shown as u/n where each n is an element of m!.
double ratio(double u, int n)
{
if(n > 0)
{
// Avoid the ratio overflow by calculating each ratio element
double val;
val = u/n;
return val*ratio(u, n-1);
}
else
{
// Avoid division by 0 as power and factorial of 0 are 1
return 1;
}
}
Note that if you want to avoid recursion, you can do it as a loop as well
double ratio(double u, int n)
{
int i;
// Avoid the ratio overflow by calculating each ratio element
// default the ratio to 1 for n == 0
double val = 1;
// calculate the next n-1 ratios and put them into the total
for (i = 1; i<=n; i++)
{
// Put in the next element of the ratio
val *= u/i;
}
// return the final value of the ratio
return val;
}
To cope with values exceeding the double range, re-code to use the log of values. Downside- some precision loss.
Precision can be re-gained with improved code, but here is something that at least copes with the range issues.
Slight variant of OP's code follows: Used for comparison.
long double factorial(unsigned m) {
long double f = 1.0;
while (m > 0) {
f *= m;
m--;
}
return f;
}
double getPoisson(unsigned m, double u, bool cumu) {
double ret = 0;
if (!cumu) {
ret = (double) ((exp(-u) * pow(u, m)) / (factorial(m)));
} else {
double facto = 1;
double ehu = exp(-u);
for (unsigned i = 0; i < m; i++) {
ret = ret + (ehu * pow(u, i)) / facto;
facto *= (i + 1);
}
}
return ret;
}
double getErlang(unsigned m, double u, double p) {
double numerator = getPoisson(m, u, false);
double denominator = numerator + (1.0 - p) * getPoisson(m, u, true);
return numerator / denominator;
}
Suggested changes
#ifdef M_PI
#define MY_PI M_PI
#else
#define MY_PI 3.1415926535897932384626433832795
#endif
// log of n!
//
// Gosper Approximation of Stirling's Approximation
// http://mathworld.wolfram.com/StirlingsApproximation.html
// n! about= sqrt(pi*(2*n + 1/3.)) * pow(n,n) * exp(-n)
static double ln_factorial(unsigned n) {
if (n <= 1) return 0.0;
double x = n;
return log(sqrt(MY_PI * (2 * x + 1 / 3.0))) + log(x) * x - x;
}
double getPoisson_2(unsigned m, double u, bool cumu) {
double ret = 0.0;
if (cumu) {
// Simplify term calculation. `mul` does not get too large nor small.
double mul = exp(-u);
for (unsigned i = 0; i < m; i++) {
ret += mul;
mul *= u/(i + 1);
// printf("ret:% 10e mul:% 10e\n", ret, mul);
}
} else {
// ret = (exp(-u) * pow(u, m)) / (factorial(m));
double ln_ret = -u + log(u) * m - ln_factorial(m);
return exp(ln_ret);
}
return ret;
}
double getErlang_2(unsigned m, double u, double p) {
double numerator = getPoisson_2(m, u, false);
double denominator = numerator + (1 - p) * getPoisson_2(m, u, true);
return numerator / denominator;
}
Test code
void ErTest(unsigned m, double u, double p, double expect) {
printf("m:%4u u:% 14e p:% 14e", m, u, p);
printf(" E0:% 14e", expect);
double y1 = getErlang(m, u, p);
printf(" E1:% 14e", y1);
double y2 = getErlang_2(m, u, p);
printf(" E2:% 14e", y2);
puts("");
}
int main(void) {
ErTest(50, 48, 0.96, 0.694456);
ErTest(100, 96, 0.96, 0.5872811);
ErTest(500, 487, 0.974, 0.45269);
}
m: 50 u: 4.800000e+01 p: 9.600000e-01 E0: 6.944560e-01 E1: 6.944556e-01 E2: 6.944562e-01
m: 100 u: 9.600000e+01 p: 9.600000e-01 E0: 5.872811e-01 E1: 5.872811e-01 E2: 5.872813e-01
m: 500 u: 4.870000e+02 p: 9.740000e-01 E0: 4.526900e-01 E1: nan E2: 4.464746e-01
Your large recursive factorial is a problem as it might produce a stack overflow as well as a value overflow. pow might also get large.
Here's a way to combine things incrementally:
double
getPoisson(double m, double u, bool cumu)
{
double sum = 0;
double facto = 1;
double u_i = 1;
double ehu = exp(-u);
double cur = ehu;
// u_i -- pow(u,i)
// cur -- current/last term in series
// sum -- sum of terms
for (int i = 0; i < m; i++) {
cur = (ehu * u_i) / facto;
sum += cur;
u_i *= u;
facto *= (i + 1);
}
return cumu ? sum : cur;
}
The above is "okay", but still might overflow some values because of the u_i and facto terms.
Here is an alternate that combines the terms as a ratio. It is less likely to overflow:
double
getPoisson(double m, double u, bool cumu)
{
double sum = 0;
double ehu = exp(-u);
double cur = ehu;
double ratio = 1;
// cur -- current/last term in series
// sum -- sum of terms
// ratio -- u^i / factorial(i)
for (int i = 0; i < m; i++) {
cur = ehu * ratio;
sum += cur;
ratio *= u;
ratio /= (i + 1);
}
return cumu ? sum : cur;
}
The above might still produce some large values. If so, you might have to use long double, quadmath, or multiprecision arithmetic. Or, come up with an "analog" of the equation/algorithm.

How to implement natural logarithm with continued fraction in C?

Here I have a little problem. Create something from this formula:
This is what I have, but it doesn't work. Franky, I really don't understand how it should work.. I tried to code it with some bad instructions. N is number of iteration and parts of fraction. I think it leads somehow to recursion but don't know how.
Thanks for any help.
double contFragLog(double z, int n)
{
double cf = 2 * z;
double a, b;
for(int i = n; i >= 1; i--)
{
a = sq(i - 2) * sq(z);
b = i + i - 2;
cf = a / (b - cf);
}
return (1 + cf) / (1 - cf);
}
The central loop is messed. Reworked. Recursion not needed either. Just compute the deepest term first and work your way out.
double contFragLog(double z, int n) {
double zz = z*z;
double cf = 1.0; // Important this is not 0
for (int i = n; i >= 1; i--) {
cf = (2*i -1) - i*i*zz/cf;
}
return 2*z/cf;
}
void testln(double z) {
double y = log((1+z)/(1-z));
double y2 = contFragLog(z, 8);
printf("%e %e %e\n", z, y, y2);
}
int main() {
testln(0.2);
testln(0.5);
testln(0.8);
return 0;
}
Output
2.000000e-01 4.054651e-01 4.054651e-01
5.000000e-01 1.098612e+00 1.098612e+00
8.000000e-01 2.197225e+00 2.196987e+00
[Edit]
As prompted by #MicroVirus, I found double cf = 1.88*n - 0.95; to work better than double cf = 1.0;. As more terms are used, the value used makes less difference, yet a good initial cf requires fewer terms for a good answer, especially for |z| near 0.5. More work could be done here as I studied 0 < z <= 0.5. #MicroVirus suggestion of 2*n+1 may be close to my suggestion due to an off-by-one of what n is.
This is based on reverse computing and noting the value of CF[n] as n increased. I was surprised the "seed" value did not appear to be some nice integer equation.
Here's a solution to the problem that does use recursion (if anyone is interested):
#include <math.h>
#include <stdio.h>
/* `i` is the iteration of the recursion and `n` is
just for testing when we should end. 'zz' is z^2 */
double recursion (double zz, int i, int n) {
if (!n)
return 1;
return 2 * i - 1 - i * i * zz / recursion (zz, i + 1, --n);
}
double contFragLog (double z, int n) {
return 2 * z / recursion (z * z, 1, n);
}
void testln(double z) {
double y = log((1+z)/(1-z));
double y2 = contFragLog(z, 8);
printf("%e %e %e\n", z, y, y2);
}
int main() {
testln(0.2);
testln(0.5);
testln(0.8);
return 0;
}
The output is identical to the solution above:
2.000000e-01 4.054651e-01 4.054651e-01
5.000000e-01 1.098612e+00 1.098612e+00
8.000000e-01 2.197225e+00 2.196987e+00

Realtime Band-Limited Impulse Train Synthesis using SDL mixer

I'm trying to implement a audio synthesizer using this technique:
https://ccrma.stanford.edu/~stilti/papers/blit.pdf
I'm doing it in standard C, using SDL2_Mixer library.
This is my BLIT function implementation:
double blit(double angle, double M, double P) {
double x = M * angle / P;
double denom = (M * sin(M_PI * angle / P));
if (denom < 1)
return (M / P) * cos(M_PI * x) / cos(M_PI * x / M);
else {
double numerator = sin(M_PI * x);
return (M / P) * numerator / denom;
}
}
The idea is to combine it to generate a square wave, following the paper instructions. I setted up SDL2_mixer with this configuration:
SDL_AudioSpec *desired, *obtained;
SDL_AudioSpec *hardware_spec;
desired = (SDL_AudioSpec*)malloc(sizeof(SDL_AudioSpec));
obtained = (SDL_AudioSpec*)malloc(sizeof(SDL_AudioSpec));
desired->freq=44100;
desired->format=AUDIO_U8;
desired->channels=1;
desired->samples=2048;
desired->callback=create_rect;
desired->userdata=NULL;
And here's my create_rect function. It creates a bipolar impulse train, then it integrates it's value to generate a band-limited rect function.
void create_rect(void *userdata, Uint8 *stream, int len) {
static double angle = 0;
static double integral = 0;
int i = 0;
// This is the freq of my tone
double f1 = tone_table[current_wave.note];
// Sample rate
double fs = 44100;
// Pulse
double P = fs / f1;
int M = 2 * floor(P / 2) + 1;
double oldbipolar = 0;
double bipolar = 0;
for(i = 0; i < len; i++) {
if (++angle > P)
angle -= P;
double angle2 = angle + floor(P/2);
if (angle2 > P)
angle2 -= P;
bipolar = blit(angle2, M, P) - blit(angle, M, P);
integral += (bipolar + old bipolar) * 0.5;
oldbipolar = bipolar;
*stream++ = (integral + 0.5) * 127;
}
}
My problem is: the resulting wave is quite ok, but after few seconds it starts to make noises. I tried to plot the result, and here's it:
Any idea?
EDIT: Here's a plot of the bipolar BLIT before integrating it:

Own asin() function (with Taylor series) not accurate

I need to write my own asin() function without math.h library with the use of Taylor series. It works fine for numbers between <-0.98;0.98> but when I am close to limits it stops with 1604 iterations and therefore is inaccurate.
I don't know how to make it more accurete. Any suggestions are very appreciated!
The code is following:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define EPS 0.000000000001
double my_arcsin(double x)
{
long double a, an, b, bn;
a = an = 1.0;
b = bn = 2.0;
long double n = 3.0;
double xn;
double xs = x;
double xp = x;
int iterace = 0;
xn = xs + (a/b) * (my_pow(xp,n) / n);
while (my_abs(xn - xs) >= EPS)
{
n += 2.0;
an += 2.0;
bn += 2.0;
a = a * an;
b = b * bn;
xs = xn;
xn = xs + (a/b) * (my_pow(xp,n) / n);
iterace++;
}
//printf("%d\n", iterace);
return xn;
}
int main(int argc, char* argv[])
{
double x = 0.0;
if (argc > 2)
x = strtod(argv[2], NULL);
if (strcmp(argv[1], "--asin") == 0)
{
if (x < -1 || x > 1)
printf("nan\n");
else
{
printf("%.10e\n", my_arcsin(x));
//printf("%.10e\n", asin(x));
}
return 0;
}
}
And also a short list of my values and expected ones:
My values Expected values my_asin(x)
5.2359877560e-01 5.2359877560e-01 0.5
1.5567132089e+00 1.5707963268e+00 1 //problem
1.4292568534e+00 1.4292568535e+00 0.99 //problem
1.1197695150e+00 1.1197695150e+00 0.9
1.2532358975e+00 1.2532358975e+00 0.95
Even though the convergence radius of the series expansion you are using is 1, therefore the series will eventually converge for -1 < x < 1, convergence is indeed painfully slow close to the limits of this interval. The solution is to somehow avoid these parts of the interval.
I suggest that you
use your original algorithm for |x| <= 1/sqrt(2),
use the identity arcsin(x) = pi/2 - arcsin(sqrt(1-x^2)) for 1/sqrt(2) < x <= 1.0,
use the identity arcsin(x) = -pi/2 + arcsin(sqrt(1-x^2)) for -1.0 <= x < -1/sqrt(2).
This way you can transform your input x into [-1/sqrt(2),1/sqrt(2)], where convergence is relatively fast.
PLEASE NOTICE: In this case I strongly recommend #Bence's method, since you can't expect a slowly convergent method with low data accuracy to obtain arbitrary precision.
However I'm willing to show you how to improve the result using your current algorithm.
The main problem is that a and b grows too fast and soon become inf (after merely about 150 iterations). Another similar problem is my_pow(xp,n) grows fast when n grows, however this doesn't matter much in this very case since we could assume the input data goes inside the range of [-1, 1].
So I've just changed the method you deal with a/b by introducing ab_ratio, see my edited code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define EPS 0.000000000001
#include <math.h>
#define my_pow powl
#define my_abs fabsl
double my_arcsin(double x)
{
#if 0
long double a, an, b, bn;
a = an = 1.0;
b = bn = 2.0;
#endif
unsigned long _n = 0;
long double ab_ratio = 0.5;
long double n = 3.0;
long double xn;
long double xs = x;
long double xp = x;
int iterace = 0;
xn = xs + ab_ratio * (my_pow(xp,n) / n);
long double step = EPS;
#if 0
while (my_abs(step) >= EPS)
#else
while (1) /* manually stop it */
#endif
{
n += 2.0;
#if 0
an += 2.0;
bn += 2.0;
a = a * an;
b = b * bn;
#endif
_n += 1;
ab_ratio *= (1.0 + 2.0 * _n) / (2.0 + 2.0 * _n);
xs = xn;
step = ab_ratio * (my_pow(xp,n) / n);
xn = xs + step;
iterace++;
if (_n % 10000000 == 0)
printf("%lu %.10g %g %g %g %g\n", _n, (double)xn, (double)ab_ratio, (double)step, (double)xn, (double)my_pow(xp, n));
}
//printf("%d\n", iterace);
return xn;
}
int main(int argc, char* argv[])
{
double x = 0.0;
if (argc > 2)
x = strtod(argv[2], NULL);
if (strcmp(argv[1], "--asin") == 0)
{
if (x < -1 || x > 1)
printf("nan\n");
else
{
printf("%.10e\n", my_arcsin(x));
//printf("%.10e\n", asin(x));
}
return 0;
}
}
For 0.99 (and even 0.9999999) it soon gives correct results with more than 10 significant digits. However it gets slow when getting near to 1.
Actually the process has been running for nearly 12 minutes on my laptop calculating --asin 1, and the current result is 1.570786871 after 3560000000 iterations.
UPDATED: It's been 1h51min now and the result 1.570792915 and iteration count is 27340000000.

Resources