I’m trying to use TSLM to create a model, do both time series need to be stationary before we use the TSLM, i.e do you need to do differencing to stationarize the TS. According to Rob Hyndman notes the TSLM should take care of that, is that correct?
For any TSLM model, the residuals should be white noise (and therefore also stationary). So just check that the residuals look like white noise (use checkresiduals()).
If they are not white noise, you should try a dynamic regression model instead, using auto.arima() for example.
If you do use auto.arima(), and the residuals are non-stationary, differencing will be applied before estimation.
Related
I have a painting app which at any given time interactively shows content from an array of 200 or so CALayers via an UIImageView. I get reasonable performance, but I'm wondering if there could be any performance benefits with using CAMetalLayers instead. In particular, I'm curious if I could benefit from blitting textures directly to each CAMetalLayer, and would there be any hardware considerations with stacking/displaying so many CAMetalLayers at once.
Are there any gotchas I should consider before implementing, and should I continue using an UIImageView (or other) to host these newly Metal-backed sublayers? Any thoughts would be appreciated.
That’s not going to work. You should be keeping track of your stroke’s data. For example an array of points would be a single stroke and then you should have an array of those strokes. It could be only points (x, y) or more probably also containing color, size and other variables. You should know what do you need to describe your stroke.
Then use that to draw (stamp at those locations). When you want to undo, just start drawing from the beginning all the strokes in the array until n-1, n-2, etc...
I have a question that's very specific, yet very general at the same time. (Also, I don't know if this is quite the right site for this.)
The Scenario
Let's say I have an uncompressed video vid.avi. It is then run through [Some compression algorithm], which is lossy. I want to compare vid.avi and the new, compressed file to determine just how much data was lost in the compression. How can I compare the files and how can I measure the difference between the two, using the original as the reference point? Is it possible at all? I would prefer a generic answer that will work with any language, but I would also gladly accept an answer that's specific to a language.
EDIT: Let me be more specific. I want something that compares two video files in a similar way that the Notepad++ Compare plugin compares text files. I just want to find out how close each individual pixel's colour is to the original file's colour for that pixel.
Thanks in advance, and thank you for taking the time to read this question.
It is generally the change in video quality that people want to measure when comparing compression methods, rather than a loss of data.
If you did want to measure somehow the data loss, you would have to define what you mean by 'data' and how you wanted to measure it. Video compression is quite complex and the approach may even differ frame by frame within a video. Data could mean the colour depth for each pixel, the number of frames per second, whether a frame is encoded based on a delay to other frames etc.
Video quality is subjective so the reduction in quality after compression will not be an absolute value. The usual way to measure the quality is similar to the technique used for audio - Mean Opinion Score: https://en.wikipedia.org/wiki/Mean_opinion_score. Its essentially uses a well defined process to try to apply some objectivity to a test audiences subjective experience.
I'm interested in different algorithms people use to visualise millions of particles in a box. I know you can use Cloud-In-Cell, adaptive mesh, Kernel smoothing, nearest grid point methods etc to reduce the load in memory but there is very little documentation on how to do these things online.
i.e. I have array with:
x,y,z
1,2,3
4,5,6
6,7,8
xi,yi,zi
for i = 100 million for example. I don't want a package like Mayavi/Paraview to do it, I want to code this myself then load the decomposed matrix into Mayavi (rather than on-the-fly rendering) My poor 8Gb Macbook explodes if I try and use the particle positions. Any tutorials would be appreciated.
Analysing and creating visualisations for complex multi-dimensional data is complex. The best visualisation almost always depends on what the data is, and what relationships exists within the data. Of course, you are probably wanting to create visualisation of the data to show and explore relationships. Ultimately, this comes down to trying different posibilities.
My advice is to think about the data, and try to find sensible ways to slice up the dimensions. 3D plots, like surface plots or voxel renderings may be what you want. Personally, I prefer trying to find 2D representations, because they are easier to understand and to communicate to other people. Contour plots are great because they show 3D information in a 2D form. You can show a sequence of contour plots side by side, or in a timelapse to add a fourth dimension. There are also creative ways to use colour to add dimensions, while keeping the visualisation comprehensible -- which is the most important thing.
I see you want to write the code yourself. I understand that. Doing so will take a non-trivial effort, and afterwards, you might not have an effective visualisation. My advice is this: use a tool to help you prototype visualisations first! I've used gnuplot with some success, although I'm sure there are other options.
Once you have a good handle on the data, and how to communicate what it means, then you will be well positioned to code a good visualisation.
UPDATE
I'll offer a suggestion for the data you have described. It sounds as though you want/need a point density map. These are popular in geographical information systems, but have other uses. I haven't used one before, but the basic idea is to use a function to enstimate the density in a 3D space. The density becomes the fourth dimension. Something relatively simple, like the equation below, may be good enough.
The point density map might be easier to slice, summarise and render than the raw particle data.
The data I have analysed has been of a different nature, so I have not used this particular method before. Hopefully it proves helpful.
PS. I've just seen your comment below, and I'm not sure that this information will help you with that. However, I am posting my update anyway, just in case it is useful information.
I have custom control - chart with size, for example, 300x300 pixels and more than one million points (maybe less) in it. And its clear that now he works very slowly. I am searching for algoritm which will show only few points with minimal visual difference.
I have a link to the component which have functionallity exactly what i need
(2 million points demo):
I will be grateful for any matherials, links or thoughts how to realize such functionallity.
If I understand your question correctly, then you are looking to plot a graph of a dataset where you have ~1M points, but the chart's horizontal resolution is much smaller? If so, you can down-sample your dataset to get about the number of available x values. If your data is sorted in equal intervals, you can extract every N'th point and plot it. Choose N such that the number of points is, say, double the resolution (in this case, N=2000 will give you 500 points to display).
If the intervals are very different from eachother (not regularly spaced), you can approximate your graph with a polynomial, or spline or any other method that fits, and then interpolate 300-600 points from that approximation.
EDIT:
Depending on the nature of the data, you may end up with aliasing artifacts when you simply sample every N't point. There are probably better methods for coping with this problem, but again - it depends on what exactly you want to plot.
You could always buy the control - it is for sale!
John-Daniel Trask (Co-founder of Mindscape ;-)
The sensor module in my project consists of a rotating camera, that collects noisy information about moving objects in the surrounding environment.
The information consists of distance, angle and relative change of the moving objects..
The limiting view range of the camera makes it essential to rotate the camera periodically to update environment information...
I was looking for algorithms / ways to model these information, in order to be able to guess / predict / learn motion properties of these object..
My current proposed idea is to store last n snapshots of each object in a queue. I take weighted average of positions and velocities of moving object, but I think it is a poor method...
Can you state some titles that suit this case?
Thanks
Kalman {Extended, unscented, ... } filters and particle filters only after reading about Kalman filters.
Kalman filters learn and predict the correct data from noisy data with a Gaussian assumption, so it may be of use to you. If you need non-Gaussian methods, look at the particle filter.