I'm running a model with Ludwig.
Dataset is Adult Census:
Features
workclass has almost 70% instances of Private, the Unknown (?) can be imputed with this value.
native_country, 90% of the instances are United States which can be used to impute for the Unknown (?) values. Same cannot be said about occupation column as the values are more distributed.
capital_gain has 72% instances with zero values for less than 50K and 19% instances with zero values for >50K.
capital_loss has 73% instances with zero values for less than 50K and 21% instances with zero values for >50K.
When I define the model what is the best way to do it for the above cases?
{
"name": "workclass",
"type": "category"
"preprocessing": {
"missing_value_strategy": "fill_with_mean"
}
},
{
"name": "native_country",
"type": "category"
"preprocessing": {
"missing_value_strategy": "fill_with_mean"
}
},
{
"name": "capital_gain",
"type": "numerical"
"preprocessing": {
"missing_value_strategy": "fill_with_mean",
}
},
{
"name": "capital_loss",
"type": "numerical"
"preprocessing": {
"missing_value_strategy": "fill_with_mean"
}
},
Questions:
1) For category features how to define: If you find ?, replace it with X.
2) For numerical features how to define: If you find 0, replace it with mean?
Ludwig currently considers missing values in the CSV file, like with two consecutive commas for it's replacement strategies. In your case I would suggest to do some minimal preprocessing to your dataset by replacing the zeros and ? with missing values or depending on the type of feature. You can easily do it in pandas with something like:
df[df.my_column == <value>].my_column = <new_value>.
The alternative is to perform the replacement already in your code (for instance replacing 0s with averages) so that Ludwig doesn't have to do it and you have full control of the replacement strategy.
Related
I'm pretty new to Acure Data Factory - ADF and have stumbled into somthing I would have solved with a couple lines of code.
Background
Main flow:
Lookup Activity fetchin an array of ID's to process
ForEach Activity looping over input array and uisng a Copy Activity pulling data from a REST API storing it into a database
Step #1 would result in an array containing ID's
{
"count": 10000,
"value": [
{
"id": "799128160"
},
{
"id": "817379102"
},
{
"id": "859061172"
},
... many more...
Step #2 When the lookup returns a lot of ID's - individual REST calls takes a lot of time. The REST API supports batching ID's using a comma spearated input.
The question
How can I convert the array from the input into a new array with comma separated fields? This will reduce the number of Activities and reduce the time to run.
Expecting something like this;
{
"count": 1000,
"value": [
{
"ids": "799128160,817379102,859061172,...."
},
{
"ids": "n,n,n,n,n,n,n,n,n,n,n,n,...."
}
... many more...
EDIT 1 - 19th Des 22
Using "Until Activity" and keeping track of posistions, I managed to use plain ADF. Would be nice if this could have been done using some simple array manipulation in a code snippet.
The ideal response might be we have to do manipulation with Dataflow -
My sample input:
First, I took a Dataflow In that adding a key Generate (Surrogate key) after the source - Say new key field is 'SrcKey'
Data preview of Surrogate key 1
Add an aggregate where you group by mod(SrcKey/3). This will group similar remainders into the same bucket.
Add a collect column in the same aggregator to collect into an array with expression trim(toString(collect(id)),'[]').
Data preview of Aggregate 1
Store output in single file in blob storage.
OUTPUT
I have a problem where I need to convert a JSON payload into SQL tables, while maintaining the relationships established in the payload. This is so that later I have the ability to query the tables and recreate the JSON payload structure in the future.
For example:
{
"batchId": "batch1",
"payees" : [
{
"payeeId": "payee1",
"payments": [
{
"paymentId": "paymentId1",
"amount": 200,
"currency": "USD"
},
{
"paymentId": "paymentId2",
"amount": 200,
"currency": "YEN"
},
{
"paymentId": "paymentId2",
"amount": 200,
"currency": "EURO"
}
]
}
]
}
For the above payload, I have a batch with payments grouped by payees. At its core it all boils down to a batch and its payments. But in that you can have groupings, for example above, it's grouped by payees.
One thing to note is that the payload may not necessarily always follow the above structure. Instead of grouping by payees, it could be by something else like currency for example. Or even no grouping at all, just a root level batch and an array of payments.
I want to know if there are conventions/rules I can follow to approach represent such data into relational tables? Thanks.
edit:
I am primarily looking to use Postgres and have looked into the jsonb feature that it provides for storing json data. However, I'm still struggling to figure out how/where (in terms of which table) to best store the grouping info.
I have some troubles wrapping my head around how to formulate queries and provide proper indices for the following situation. I have customer entities represented in JSON like this (only relevant properties are retained):
{
"id": "50000",
"address": [
{
"line": [
"2nd Main Street",
"123 Harris Plaza"
],
"city": "Boston",
"state": "Massachusetts",
"country": "US",
},
{
"line": [
"1st Av."
],
"city": "Jamestown",
"state": "Massachusetts",
"country": "US",
}
]
}
The customers are stored in the following customer table:
CREATE TABLE Customer (
id BIGSERIAL PRIMARY KEY,
resource JSONB
);
I manage to do simple queries on the resource column, e.g. a projection query like this works (retrieve all lower-case address lines for cities starting with "bo"):
SELECT LOWER(jsonb_array_elements_text(jsonb_array_elements(c.resource#>'{address}') #> '{line}')) FROM Customer c, jsonb_array_elements(c.resource #> '{address}') a WHERE LOWER(a->>'city') LIKE 'bo%';
I have trouble doing the following: my goal is to query all customers that have at least one address line beginning with "12". Case insensitivity is a requirement for my use case. The example customer would match my query, as the first address object has an address line starting with "12". Please note that "line" is an Array of JSON Strings, not complex objects. So far the closest thing I could come up with is this:
SELECT c.resource FROM Customer c, jsonb_array_elements(c.resource #> '{address}') a WHERE a->'line' ?| array['123 Harris Plaza'];
Obviously this is not a case-insensitive LIKE query. Any help/pointers on how to formulate both query and accompanying GIN index are greatly appreciated. My first query already selects all address lines as text, so maybe this could be used in a GIN index?
I'm using Postres 9.5, but am happy to upgrade if this can only be achieved in more recent Postgres versions.
While GIN indexes have machinery to support prefix matching, this machinery is only hooked up for tsvectors. array_ops does not have it hooked up, nor does json_ops or json_path_ops. So unless you want to create new operator class/families (or normalize your data into separate tables) you will have to shoe-horn your data into a tsvector.
Here is a crude way to do that, which doesn't account for the possibility that a address line might contain literal single quotes or perhaps other meaningful characters:
create function addressline_tsvector(jsonb) returns tsvector immutable language SQL as $$
select string_agg('''' || lower(value) || '''', ' ')::tsvector
from jsonb_array_elements($1->'address') a(a),
jsonb_array_elements_text(a->'line')
$$;
create index on customer using gin (addressline_tsvector(resource));
select * from customer where addressline_tsvector(resource) ## lower('''2nd Main'':*')::tsquery;
Given that your example table only has one row, the index will probably not actually be used unless you set enable_seqscan = off first.
Browser type and version: GoogleChrome 67.0.3396.99
We are trying to train our model to identify values from multiple types of tables whom contain different number of rows and columns. A text row was extracted to begin the training, first we configure our system types and then, marked the entities and also the relation “AllInOne”. We are able to train 10 relations in a training set, but when the model is tested, we are only able to see 8 relations even creating other document sets for training and test the model multiple times. Is there another way to associate the column value with the row values in a single relation considering there isn’t a standard for the types of tables we are analyzing with the Discovery service?
We are expecting the discovery service response as the following:
"relations": [
{
"type": "AllInOne",
"sentence": "…",
"arguments": [
{
"entities": [
{
"“text": "””",
"type": "entity1"
}
]
},
{
"entities": [
{
"“text": "””",
"type": "entity2"
}
]
},
{
"entities": [
{
"“text": "””",
"type": "\"entity..n”,"
}
]
},
{ "..." }
]
}
The machine learning model that is trained in Watson Knowledge Studio targets unstructured natural language text. It may not be suitable for (semi-) structured format like table, especially for relations.
We have 60M documents in an index. hosted on 4 nodes cluster.
I want to make sure the configuration is optimised for aggregations on the documents.
This is the sample query:
select * from sources * where (sddocname contains ([{"implicitTransforms": false}]"tweet")) | all(group(n_tA_c) each(output(count() as(count))));
The field n_tA_c contains array of strings. This is the sample document:
{
"fields": {
"add_gsOrd": 63829,
"documentid": "id:firehose:tweet::815347045032742912",
"foC": 467,
"frC": 315,
"g": 0,
"ln": "en",
"m": "ya just wants some fried rice",
"mTp": 2,
"n_c_p": [],
"n_tA_c": [
"fried",
"rice"
],
"n_tA_s": [],
"n_tA_tC": [],
"sN": "long_delaney1",
"sT_dlC": 0,
"sT_fC": 0,
"sT_lAT": 0,
"sT_qC": 0,
"sT_r": 0.0,
"sT_rC": 467,
"sT_rpC": 0,
"sT_rtC": 0,
"sT_vC": 0,
"sddocname": "tweet",
"t": 1483228858608,
"u": 377606303,
"v": "false"
},
"id": "id:firehose:tweet::815347045032742912",
"relevance": 0.0,
"source": "content-root-cluster"
}
The n_tA_c is attribute with mode fast-search
field n_tA_c type array<string> {
indexing: summary | attribute
attribute: fast-search
}
The simple term aggregation query does not come back in 20s. And times-out. What are additional check-list we need to ensure to reduce this latency?
$ curl 'http://localhost:8080/search/?yql=select%20*%20from%20sources%20*%20where%20(sddocname%20contains%20(%5B%7B%22implicitTransforms%22%3A%20false%7D%5D%22tweet%22))%20%7C%20all(group(n_tA_c)%20each(output(count()%20as(count))))%3B' | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 270 100 270 0 0 13 0 0:00:20 0:00:20 --:--:-- 67
{
"root": {
"children": [
{
"continuation": {
"this": ""
},
"id": "group:root:0",
"relevance": 1.0
}
],
"errors": [
{
"code": 12,
"message": "Timeout while waiting for sc0.num0",
"source": "content-root-cluster",
"summary": "Timed out"
}
],
"fields": {
"totalCount": 0
},
"id": "toplevel",
"relevance": 1.0
}
}
These nodes are aws i3.4x large boxes.(16 cores, 120 GB)
I might me missing something silly.
You are asking for every unique value and their count() as your grouping expression does not contain any max(x) limitation, this is a very cpu and network intensive task to compute and limiting number of groups is much faster by e.g
all(group(n_tA_c) max(10) each(output(count() as(count))));
General comments:
With vespa like any other serving engine it's important to have enough memory and e.g swap disabled so you can index and search data without getting into high memory pressure.
How much memory you'll use per document type is dependent on several factors but how many fields defined with attribute and number of documents per node is important. Redundancy and number of searchable copies also plays a major role.
Grouping over the entire corpus is memory intensive (memory bandwidth reading attribute values), cpu intensive and also network intensive when there is a high fan-out (See more on the precision here http://docs.vespa.ai/documentation/grouping.html which can limit number of groups returned per node).
Summarising the checkpoints to take care while making aggregations from the conversation in other answer and more documentation help.
Always add max(x) in the group for size of buckets needed. When data is distributed across multiple content nodes this result can be inaccurate. To increase accuracy we need to use precision(x) as well to tune accuracy as we need.
If you only need aggregation buckets and no hits - pass limit 0 in the yql; this will save the step to load summary to be returned for container.
The attribute fields we are filtering/aggregating to be on mode fast-search; otherwise it is not B-tree like index - and has to be traversed.
Ensure constant score for docs with &ranking=unranked in the query.
Enable groupingSessionCache: http://docs.vespa.ai/documentation/reference/search-api-reference.html#groupingSessionCache
Sizing the content node for tradeoffs of latency vs no. of docs. by max-hits as described: http://docs.vespa.ai/documentation/performance/sizing-search.html
If memory is the bottleneck one can look at attribute flush strategy configuration. http://docs.vespa.ai/documentation/proton.html#proton-maintenance-jobs
If CPU is the bottleneck; increase parallelism. Ensure all cores are used in Searcher. http://docs.vespa.ai/documentation/content/setup-proton-tuning.html#requestthreads-persearch. Changes for that in service.xml:
<persearch>16</persearch>
Threads persearch is by default 1.
Above changes, ensured that query is returned with result before timeout. But learned that Vespa is not made for aggregations with primary goal. The latency for write and search are much less than ES with same scale on identical hardware. But aggregation (specially with multi-valued string fields) is more CPU intensive and more latency compare to ES for the same aggregation query.