The Goal
(Forgive me for length of this, it's mostly background and detail.)
I'm contributing to a TOML encoder/decoder for MATLAB and I'm working with numerical arrays right now. I want to input (and then be able to write out) the numerical array in the same format. This format is the nested square-bracket format that is used by numpy.array. For example, to make multi-dimensional arrays in numpy:
The following is in python, just to be clear. It is a useful example though my work is in MATLAB.
2D arrays
>> x = np.array([1,2])
>> x
array([1, 2])
>> x = np.array([[1],[2]])
>> x
array([[1],
[2]])
3D array
>> x = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
>> x
array([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
4D array
>> x = np.array([[[[1,2],[3,4]],[[5,6],[7,8]]],[[[9,10],[11,12]],[[13,14],[15,16]]]])
>> x
array([[[[ 1, 2],
[ 3, 4]],
[[ 5, 6],
[ 7, 8]]],
[[[ 9, 10],
[11, 12]],
[[13, 14],
[15, 16]]]])
The input is a logical construction of the dimensions by nested brackets. Turns out this works pretty well with the TOML array structure. I can already successfully parse and decode any size/any dimension numeric array with this format from TOML to MATLAB numerical array data type.
Now, I want to encode that MATLAB numerical array back into this char/string structure to write back out to TOML (or whatever string).
So I have the following 4D array in MATLAB (same 4D array as with numpy):
>> x = permute(reshape([1:16],2,2,2,2),[2,1,3,4])
x(:,:,1,1) =
1 2
3 4
x(:,:,2,1) =
5 6
7 8
x(:,:,1,2) =
9 10
11 12
x(:,:,2,2) =
13 14
15 16
And I want to turn that into a string that has the same format as the 4D numpy input (with some function named bracketarray or something):
>> str = bracketarray(x)
str =
'[[[[1,2],[3,4]],[[5,6],[7,8]]],[[[9,10],[11,12]],[[13,14],[15,16]]]]'
I can then write out the string to a file.
EDIT: I should add, that the function numpy.array2string() basically does exactly what I want, though it adds some other whitespace characters. But I can't use that as part of the solution, though it is basically the functionality I'm looking for.
The Problem
Here's my problem. I have successfully solved this problem for up to 3 dimensions using the following function, but I cannot for the life of me figure out how to extend it to N-dimensions. I feel like it's an issue of the right kind of counting for each dimension, making sure to not skip any and to nest the brackets correctly.
Current bracketarray.m that works up to 3D
function out = bracketarray(in, internal)
in_size = size(in);
in_dims = ndims(in);
% if array has only 2 dimensions, create the string
if in_dims == 2
storage = cell(in_size(1), 1);
for jj = 1:in_size(1)
storage{jj} = strcat('[', strjoin(split(num2str(in(jj, :)))', ','), ']');
end
if exist('internal', 'var') || in_size(1) > 1 || (in_size(1) == 1 && in_dims >= 3)
out = {strcat('[', strjoin(storage, ','), ']')};
else
out = storage;
end
return
% if array has more than 2 dimensions, recursively send planes of 2 dimensions for encoding
else
out = cell(in_size(end), 1);
for ii = 1:in_size(end) %<--- this doesn't track dimensions or counts of them
out(ii) = bracketarray(in(:,:,ii), 'internal'); %<--- this is limited to 3 dimensions atm. and out(indexing) need help
end
end
% bracket the final bit together
if in_size(1) > 1 || (in_size(1) == 1 && in_dims >= 3)
out = {strcat('[', strjoin(out, ','), ']')};
end
end
Help me Obi-wan Kenobis, y'all are my only hope!
EDIT 2: Added test suite below and modified current code a bit.
Test Suite
Here is a test suite to use to see if the output is what it should be. Basically just copy and paste it into the MATLAB command window. For my current posted code, they all return true except the ones more than 3D. My current code outputs as a cell. If your solution output differently (like a string), then you'll have to remove the curly brackets from the test suite.
isequal(bracketarray(ones(1,1)), {'[1]'})
isequal(bracketarray(ones(2,1)), {'[[1],[1]]'})
isequal(bracketarray(ones(1,2)), {'[1,1]'})
isequal(bracketarray(ones(2,2)), {'[[1,1],[1,1]]'})
isequal(bracketarray(ones(3,2)), {'[[1,1],[1,1],[1,1]]'})
isequal(bracketarray(ones(2,3)), {'[[1,1,1],[1,1,1]]'})
isequal(bracketarray(ones(1,1,2)), {'[[[1]],[[1]]]'})
isequal(bracketarray(ones(2,1,2)), {'[[[1],[1]],[[1],[1]]]'})
isequal(bracketarray(ones(1,2,2)), {'[[[1,1]],[[1,1]]]'})
isequal(bracketarray(ones(2,2,2)), {'[[[1,1],[1,1]],[[1,1],[1,1]]]'})
isequal(bracketarray(ones(1,1,1,2)), {'[[[[1]]],[[[1]]]]'})
isequal(bracketarray(ones(2,1,1,2)), {'[[[[1],[1]]],[[[1],[1]]]]'})
isequal(bracketarray(ones(1,2,1,2)), {'[[[[1,1]]],[[[1,1]]]]'})
isequal(bracketarray(ones(1,1,2,2)), {'[[[[1]],[[1]]],[[[1]],[[1]]]]'})
isequal(bracketarray(ones(2,1,2,2)), {'[[[[1],[1]],[[1],[1]]],[[[1],[1]],[[1],[1]]]]'})
isequal(bracketarray(ones(1,2,2,2)), {'[[[[1,1]],[[1,1]]],[[[1,1]],[[1,1]]]]'})
isequal(bracketarray(ones(2,2,2,2)), {'[[[[1,1],[1,1]],[[1,1],[1,1]]],[[[1,1],[1,1]],[[1,1],[1,1]]]]'})
isequal(bracketarray(permute(reshape([1:16],2,2,2,2),[2,1,3,4])), {'[[[[1,2],[3,4]],[[5,6],[7,8]]],[[[9,10],[11,12]],[[13,14],[15,16]]]]'})
isequal(bracketarray(ones(1,1,1,1,2)), {'[[[[[1]]]],[[[[1]]]]]'})
I think it would be easier to just loop and use join. Your test cases pass.
function out = bracketarray_matlabbit(in)
out = permute(in, [2 1 3:ndims(in)]);
out = string(out);
dimsToCat = ndims(out);
if iscolumn(out)
dimsToCat = dimsToCat-1;
end
for i = 1:dimsToCat
out = "[" + join(out, ",", i) + "]";
end
end
This also seems to be faster than the route you were pursing:
>> x = permute(reshape([1:16],2,2,2,2),[2,1,3,4]);
>> tic; for i = 1:1e4; bracketarray_matlabbit(x); end; toc
Elapsed time is 0.187955 seconds.
>> tic; for i = 1:1e4; bracketarray_cris_luengo(x); end; toc
Elapsed time is 5.859952 seconds.
The recursive function is almost complete. What is missing is a way to index the last dimension. There are several ways to do this, the neatest, I find, is as follows:
n = ndims(x);
index = cell(n-1, 1);
index(:) = {':'};
y = x(index{:}, ii);
It's a little tricky at first, but this is what happens: index is a set of n-1 strings ':'. index{:} is a comma-separated list of these strings. When we index x(index{:},ii) we actually do x(:,:,:,ii) (if n is 4).
The completed recursive function is:
function out = bracketarray(in)
n = ndims(in);
if n == 2
% Fill in your n==2 code here
else
% if array has more than 2 dimensions, recursively send planes of 2 dimensions for encoding
index = cell(n-1, 1);
index(:) = {':'};
storage = cell(size(in, n), 1);
for ii = 1:size(in, n)
storage(ii) = bracketarray(in(index{:}, ii)); % last dimension automatically removed
end
end
out = { strcat('[', strjoin(storage, ','), ']') };
Note that I have preallocated the storage cell array, to prevent it from being resized in every loop iteration. You should do the same in your 2D case code. Preallocating is important in MATLAB for performance reasons, and the MATLAB Editor should warm you about this too.
As a simplified example, suppose I have a dataset composed of 40 sorted values. The values of this example are all integers, though this is not necessarily the case for the actual dataset.
import numpy as np
data = np.linspace(1,40,40)
I am trying to find the maximum value inside the dataset for certain window sizes. The formula to compute the window sizes yields a pattern that is best executed with arrays (in my opinion). For simplicity sake, let's say the indices denoting the window sizes are a list [1,2,3,4,5]; this corresponds to window sizes of [2,4,8,16,32] (the pattern is 2**index).
## this code looks long because I've provided docstrings
## just in case the explanation was unclear
def shapeshifter(num_col, my_array=data):
"""
This function reshapes an array to have 'num_col' columns, where
'num_col' corresponds to index.
"""
return my_array.reshape(-1, num_col)
def looper(num_col, my_array=data):
"""
This function calls 'shapeshifter' and returns a list of the
MAXimum values of each row in 'my_array' for 'num_col' columns.
The length of each row (or the number of columns per row if you
prefer) denotes the size of each window.
EX:
num_col = 2
==> window_size = 2
==> check max( data[1], data[2] ),
max( data[3], data[4] ),
max( data[5], data[6] ),
.
.
.
max( data[39], data[40] )
for k rows, where k = len(my_array)//num_col
"""
my_array = shapeshifter(num_col=num_col, my_array=data)
rows = [my_array[index] for index in range(len(my_array))]
res = []
for index in range(len(rows)):
res.append( max(rows[index]) )
return res
So far, the code is fine. I checked it with the following:
check1 = looper(2)
check2 = looper(4)
print(check1)
>> [2.0, 4.0, ..., 38.0, 40.0]
print(len(check1))
>> 20
print(check2)
>> [4.0, 8.0, ..., 36.0, 40.0]
print(len(check2))
>> 10
So far so good. Now here is my problem.
def metalooper(col_ls, my_array=data):
"""
This function calls 'looper' - which calls
'shapeshifter' - for every 'col' in 'col_ls'.
EX:
j_list = [1,2,3,4,5]
==> col_ls = [2,4,8,16,32]
==> looper(2), looper(4),
looper(8), ..., looper(32)
==> shapeshifter(2), shapeshifter(4),
shapeshifter(8), ..., shapeshifter(32)
such that looper(2^j) ==> shapeshifter(2^j)
for j in j_list
"""
res = []
for col in col_ls:
res.append(looper(num_col=col))
return res
j_list = [2,4,8,16,32]
check3 = metalooper(j_list)
Running the code above provides this error:
ValueError: total size of new array must be unchanged
With 40 data points, the array can be reshaped into 2 columns of 20 rows, or 4 columns of 10 rows, or 8 columns of 5 rows, BUT at 16 columns, the array cannot be reshaped without clipping data since 40/16 ≠ integer. I believe this is the problem with my code, but I do not know how to fix it.
I am hoping there is a way to cutoff the last values in each row that do not fit in each window. If this is not possible, I am hoping I can append zeroes to fill the entries that maintain the size of the original array, so that I can remove the zeroes after. Or maybe even some complicated if - try - break block. What are some ways around this problem?
I think this will give you what you want in one step:
def windowFunc(a, window, f = np.max):
return np.array([f(i) for i in np.split(a, range(window, a.size, window))])
with default f, that will give you a array of maximums for your windows.
Generally, using np.split and range, this will let you split into a (possibly ragged) list of arrays:
def shapeshifter(num_col, my_array=data):
return np.split(my_array, range(num_col, my_array.size, num_col))
You need a list of arrays because a 2D array can't be ragged (every row needs the same number of columns)
If you really want to pad with zeros, you can use np.lib.pad:
def shapeshifter(num_col, my_array=data):
return np.lib.pad(my_array, (0, num_col - my.array.size % num_col), 'constant', constant_values = 0).reshape(-1, num_col)
Warning:
It is also technically possible to use, for example, a.resize(32,2) which will create an ndArray padded with zeros (as you requested). But there are some big caveats:
You would need to calculate the second axis because -1 tricks don't work with resize.
If the original array a is referenced by anything else, a.resize will fail with the following error:
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
The resize function (i.e. np.resize(a)) is not equivalent to a.resize, as instead of padding with zeros it will loop back to the beginning.
Since you seem to want to reference a by a number of windows, a.resize isn't very useful. But it's a rabbit hole that's easy to fall into.
EDIT:
Looping through a list is slow. If your input is long and windows are small, the windowFunc above will bog down in the for loops. This should be more efficient:
def windowFunc2(a, window, f = np.max):
tail = - (a.size % window)
if tail == 0:
return f(a.reshape(-1, window), axis = -1)
else:
body = a[:tail].reshape(-1, window)
return np.r_[f(body, axis = -1), f(a[tail:])]
Here's a generalized way to reshape with truncation:
def reshape_and_truncate(arr, shape):
desired_size_factor = np.prod([n for n in shape if n != -1])
if -1 in shape: # implicit array size
desired_size = arr.size // desired_size_factor * desired_size_factor
else:
desired_size = desired_size_factor
return arr.flat[:desired_size].reshape(shape)
Which your shapeshifter could use in place of reshape
I am trying to do some numpy matrix math because I need to replicate the repmat function from MATLAB. I know there are a thousand examples online, but I cannot seem to get any of them working.
The following is the code I am trying to run:
def getDMap(image, mapSize):
newSize = (float(mapSize[0]) / float(image.shape[1]), float(mapSize[1]) / float(image.shape[0]))
sm = cv.resize(image, (0,0), fx=newSize[0], fy=newSize[1])
for j in range(0, sm.shape[1]):
for i in range(0, sm.shape[0]):
dmap = sm[:,:,:]-np.array([np.tile(sm[j,i,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
return dmap
The function getDMap(image, mapSize) expects an OpenCV2 HSV image as its image argument, which is a numpy array with 3 dimensions: [:,:,:]. It also expects a tuple with 2 elements as its imSize argument, of course making sure the function passing the arguments takes into account that in numpy arrays the rows and colums are swapped (not: x, y, but: y, x).
newSize then contains a tuple containing fracions that are used to resize the input image to a specific scale, and sm becomes a resized version of the input image. This all works fine.
This is my goal:
The following line:
np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))]),
should function equivalent to the MATLAB expression:
repmat(sm(j,i,:),[size(sm,1) size(sm,2)]),
This is my problem:
Testing this, an OpenCV2 image with dimensions 800x479x3 is passed as the image argument, and (64, 48) (a tuple) is passed as the imSize argument.
However when testing this, I get the following ValueError:
dmap = sm[:,:,:]-np.array([np.tile(sm[i,j,:], (len(sm[0]),
len(sm[1]))) for k in xrange(len(sm[2]))])
ValueError: operands could not be broadcast together with
shapes (48,64,3) (64,64,192)
So it seems that the array dimensions do not match and numpy has a problem with that. But my question is what? And how do I get this working?
These 2 calculations match:
octave:26> sm=reshape(1:12,2,2,3)
octave:27> x=repmat(sm(1,2,:),[size(sm,1) size(sm,2)])
octave:28> x(:,:,2)
7 7
7 7
In [45]: sm=np.arange(1,13).reshape(2,2,3,order='F')
In [46]: x=np.tile(sm[0,1,:],[sm.shape[0],sm.shape[1],1])
In [47]: x[:,:,1]
Out[47]:
array([[7, 7],
[7, 7]])
This runs:
sm[:,:,:]-np.array([np.tile(sm[0,1,:], (2,2,1)) for k in xrange(3)])
But it produces a (3,2,2,3) array, with replication on the 1st dimension. I don't think you want that k loop.
What's the intent with?
for i in ...:
for j in ...:
data = ...
You'll only get results from the last iteration. Did you want data += ...? If so, this might work (for a (N,M,K) shaped sm)
np.sum(np.array([sm-np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
z = np.array([np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
np.sum(sm - z, axis=0) # let numpy broadcast sm
Actually I don't even need the tile. Let broadcasting do the work:
np.sum(np.array([sm-sm[i,j,:] for i in xrange(N) for j in xrange(M)]),axis=0)
I can get rid of the loops with repeat.
sm1 = sm.reshape(N*M,L) # combine 1st 2 dim to simplify repeat
z1 = np.repeat(sm1, N*M, axis=0).reshape(N*M,N*M,L)
x1 = np.sum(sm1 - z1, axis=0).reshape(N,M,L)
I can also apply broadcasting to the last case
x4 = np.sum(sm1-sm1[:,None,:], 0).reshape(N,M,L)
# = np.sum(sm1[None,:,:]-sm1[:,None,:], 0).reshape(N,M,L)
With sm I have to expand (and sum) 2 dimensions:
x5 = np.sum(np.sum(sm[None,:,None,:,:]-sm[:,None,:,None,:],0),1)
len(sm[0]) and len(sm[1]) are not the sizes of the first and second dimensions of sm. They are the lengths of the first and second row of sm, and should both return the same value. You probably want to replace them with sm.shape[0] and sm.shape[1], which are equivalent to your Matlab code, although I am not sure that it will work as you expect it to.