I have a n x m array (could be any size array but it will not be a 1 x m) and I want to rotate / shift each square loop individually no matter the array size.
How can I alternate the rotation / shift each square loop no matter the size of the array.
Please note: I'm not trying to calculate the values in the array but shift the values.
My thought process was to get the values of each "square loop" and place them into one row and do a circshift then place them back into another array.
I ran into problems trying to get the values back into the original n x m array size and I wasn't sure how I could loop through the process for different n x m arrays.
The pink highlighted section, left of the arrows is the starting position of the array and it's "loops" and the green highlighted section, right of the arrows is the type of rotation / shift of the values that I'm trying to create. The array could have more than 3 "loops" this is just an example.
Code below:
I=[1:5;6:10;11:15;16:20;21:25;26:30]
[rw,col] = size(I);
outer_1=[I(1,:),I(2:end-1,end).',I(end,end:-1:1),I(end-1:-1:2,1).'] %get values in one row (so I can shift values)
outer_1_shift=circshift(outer_1,[0 1]) %shift values
new_array=zeros(rw,col);
Ps: I'm using Octave 4.2.2 Ubuntu 18.04
Edit: The circshift function was changed for Octave 5.0, the last edit made it compatible with previous versions
1;
function r = rndtrip (n, m, v)
rv = #(x) x - 2 * (v - 1);
r = [v * ones(1,rv(m)-1) v:n-v+1 (n-v+1)*ones(1,rv(m)-2)];
if (rv(m) > 1)
r = [r n-v+1:-1:v+1];
endif
endfunction
function idx = ring (n, m , v)
if (2*(v-1) > min (n, m))
r = [];
else
r = rndtrip (n, m, v);
c = circshift (rndtrip (m, n, v)(:), - n + 2 * v - 1).';
idx = sub2ind ([n m], r, c);
endif
endfunction
# your I
I = reshape (1:30, 5, 6).';
# positive is clockwise, negative ccw
r = [1 -1 1];
for k = 1:numel(r)
idx = ring (rows(I), columns(I), k);
I(idx) = I(circshift(idx(:), r(k)));
endfor
I
gives
I =
6 1 2 3 4
11 8 9 14 5
16 7 18 19 10
21 12 13 24 15
26 17 22 23 20
27 28 29 30 25
run it on tio
So, I had the same idea as in Andy's comment. Nevertheless, since I was already preparing some code, here is my suggestion:
% Input.
I = reshape(1:30, 5, 6).'
[m, n] = size(I);
% Determine number of loops.
nLoops = min(ceil([m, n] / 2));
% Iterate loops.
for iLoop = 1:nLoops
% Determine number of repetitions per row / column.
row = n - 2 * (iLoop - 1);
col = m - 2 * (iLoop - 1);
% Initialize indices.
idx = [];
% Add top row indices.
idx = [idx, [repelem(iLoop, row).']; iLoop:(n-(iLoop-1))];
% Add right column indices.
idx = [idx, [[iLoop+1:(m-(iLoop-1))]; repelem(n-(iLoop-1), col-1).']];
if (iLoop != m-(iLoop-1))
% Add bottom row indices.
idx = [idx, [repelem(m-(iLoop-1), row-1).'; (n-(iLoop-1)-1:-1:iLoop)]]
end
if (iLoop != n-(iLoop-1))
% Add left column indices.
idx = [idx, [[(m-(iLoop-1))-1:-1:iLoop+1]; repelem(iLoop, col-2).']]
end
% Convert subscript indices to linear indices.
idx = sub2ind(size(I), idx(1, :), idx(2, :));
% Determine direction for circular shift operation.
if (mod(iLoop, 2) == 1)
direction = [0 1];
else
direction = [0 -1];
end
% Replace values in I.
I(idx) = circshift(I(idx), direction);
end
% Output.
I
Unfortunately, I couldn't think of a smarter way to generate the indices, since you need to maintain the right order and avoid double indices. As you can see, I obtain subscript indices with respect to I, since this can be done quite easy using the matrix dimensions and number of loops. Nevertheless, for the circshift operation and later replacing of the values in I, linear indices are more handy, so that's why the sub2ind operation.
Input and output look like this:
I =
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
I =
6 1 2 3 4
11 8 9 14 5
16 7 18 19 10
21 12 13 24 15
26 17 22 23 20
27 28 29 30 25
I was right, that the "shift direction" changes with every loop?
Hope that helps!
Caution: I haven't tested for generality, yet. So, please report any errors you might come across.
Related
I have 3d matrix A that has my data. At multiple locations defined by row and column indcies as shown by matrix row_col_idx I want to extract all data along the third dimension as shown below:
A = cat(3,[1:3;4:6], [7:9;10:12],[13:15;16:18],[19:21;22:24]) %matrix(2,3,4)
row_col_idx=[1 1;1 2; 2 3];
idx = sub2ind(size(A(:,:,1)), row_col_idx(:,1),row_col_idx(:,2));
out=nan(size(A,3),size(row_col_idx,1));
for k=1:size(A,3)
temp=A(:,:,k);
out(k,:)=temp(idx);
end
out
The output of this code is as follows:
A(:,:,1) =
1 2 3
4 5 6
A(:,:,2) =
7 8 9
10 11 12
A(:,:,3) =
13 14 15
16 17 18
A(:,:,4) =
19 20 21
22 23 24
out =
1 2 6
7 8 12
13 14 18
19 20 24
The output is as expected. However, the actual A and row_col_idx are huge, so this code is computationally expensive. Is there away to vertorize this code to avoid the loop and the temp matrix?
This can be vectorized using linear indexing and implicit expansion:
out = A( row_col_idx(:,1) + ...
(row_col_idx(:,2)-1)*size(A,1) + ...
(0:size(A,1)*size(A,2):numel(A)-1) ).';
The above builds an indexing matrix as large as the output. If this is unacceptable due to memory limiations, it can be avoided by reshaping A:
sz = size(A); % store size A
A = reshape(A, [], sz(3)); % collapse first two dimensions
out = A(row_col_idx(:,1) + (row_col_idx(:,2)-1)*sz(1),:).'; % linear indexing along
% first two dims of A
A = reshape(A, sz); % reshape back A, if needed
A more efficient method is using the entries of the row_col_idx vector for selecting the elements from A. I have compared the two methods for a large matrix, and as you can see the calculation is much faster.
For the A given in the question, it gives the same output
A = rand([2,3,10000000]);
row_col_idx=[1 1;1 2; 2 3];
idx = sub2ind(size(A(:,:,1)), row_col_idx(:,1),row_col_idx(:,2));
out=nan(size(A,3),size(row_col_idx,1));
tic;
for k=1:size(A,3)
temp=A(:,:,k);
out(k,:)=temp(idx);
end
time1 = toc;
%% More efficient method:
out2 = nan(size(A,3),size(row_col_idx,1));
tic;
for jj = 1:size(row_col_idx,1)
out2(:,jj) = [A(row_col_idx(jj,1),row_col_idx(jj,2),:)];
end
time2 = toc;
fprintf('Time calculation 1: %d\n',time1);
fprintf('Time calculation 2: %d\n',time2);
Gives as output:
Time calculation 1: 1.954714e+01
Time calculation 2: 2.998120e-01
I'm getting an error: sub2ind: all subscripts must be of the same size. The line that seems to be the issue is idx = sub2ind ([n m], r, c)
If I try and make the array certain sizes I get that error (see some of the values below that cause the issue)
%values that cause the error
array_rows=3; %3,3,7,7
array_cols=6; %6,5,3,5
How can I get it to work with these values and others that cause this error (I'm sure there are more values that cause this error)?
The Original question: was answered and solved by Andy here
See code below:
function r = rndtrip (n, m, v)
rv = #(x) x - 2 * (v - 1);
r = [v * ones(1,rv(m)-1) v:n-v+1 (n-v+1)*ones(1,rv(m)-2)];
if (rv(m) > 1)
r = [r n-v+1:-1:v+1];
endif
endfunction
function idx = ring (n, m , v)
if (2*(v-1) > min (n, m))
r = [];
else
r = rndtrip (n, m, v);
c = circshift (rndtrip (m, n, v)(:), - n + 2 * v - 1).';
idx = sub2ind ([n m], r, c)
endif
endfunction
# your array
array_rows=3; %3,3,7,7
array_cols=6; %6,5,3,5
I_orig = reshape (1:array_rows*array_cols, array_cols, array_rows).' %reshape array %I_orig = reshape (1:30, 5, 6).'
[rw_orig col_orig]=size(I_orig);
I_new=I_orig; %where the new rotated values will be stored
min_rows_cols=min(rw_orig,col_orig); %get min number of row - columns used to calc number of rings
r=(-1).^(1:ceil(min_rows_cols/2)) % (toggles beween -1 1)
%r = [1 -1] %used to have ring rotate CCW or CW can be done manually
for k = 1:numel(r)
idx = ring (rows(I_new), columns(I_new), k);
I_new(idx) = I_new(circshift(idx(:), r(k)));
endfor
I_new
I_orig =
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
r =
-1 1
idx =
1 4 7 10 13 16 17 18 15 12 9 6 3 2
error: sub2ind: all subscripts must be of the same size
error: called from ring at line 16 column 9
Values that Work with the Code run on TIO
Values that don't work with the Code run on TIO
Ps: I'm using Ubuntu 18.04 Octave 4.2.2
I have the following time-series:
b = [2 5 110 113 55 115 80 90 120 35 123];
Each number in b is one data point at a time instant. I computed the duration values from b. Duration is represented by all numbers within b larger or equal to 100 and arranged consecutively (all other numbers are discarded). A maximum gap of one number smaller than 100 is allowed. This is how the code for duration looks like:
N = 2; % maximum allowed gap
duration = cellfun(#numel, regexp(char((b>=100)+'0'), [repmat('0',1,N) '+'], 'split'));
giving the following duration values for b:
duration = [4 3];
I want to find the positions (time-lines) within b for each value in duration. Next, I want to replace the other positions located outside duration with zeros. The result would look like this:
result = [0 0 3 4 5 6 0 0 9 10 11];
If anyone could help, it would be great.
Answer to original question: pattern with at most one value below 100
Here's an approach using a regular expression to detect the desired pattern. I'm assuming that one value <100 is allowed only between (not after) values >=100. So the pattern is: one or more values >=100 with a possible value <100 in between .
b = [2 5 110 113 55 115 80 90 120 35 123]; %// data
B = char((b>=100)+'0'); %// convert to string of '0' and '1'
[s, e] = regexp(B, '1+(.1+|)', 'start', 'end'); %// find pattern
y = 1:numel(B);
c = any(bsxfun(#ge, y, s(:)) & bsxfun(#le, y, e(:))); %// filter by locations of pattern
y = y.*c; %// result
This gives
y =
0 0 3 4 5 6 0 0 9 10 11
Answer to edited question: pattern with at most n values in a row below 100
The regexp needs to be modified, and it has to be dynamically built as a function of n:
b = [2 5 110 113 55 115 80 90 120 35 123]; %// data
n = 2;
B = char((b>=100)+'0'); %// convert to string of '0' and '1'
r = sprintf('1+(.{1,%i}1+)*', n); %// build the regular expression from n
[s, e] = regexp(B, r, 'start', 'end'); %// find pattern
y = 1:numel(B);
c = any(bsxfun(#ge, y, s(:)) & bsxfun(#le, y, e(:))); %// filter by locations of pattern
y = y.*c; %// result
Here is another solution, not using regexp. It naturally generalizes to arbitrary gap sizes and thresholds. Not sure whether there is a better way to fill the gaps. Explanation in comments:
% maximum step size and threshold
N = 2;
threshold = 100;
% data
b = [2 5 110 113 55 115 80 90 120 35 123];
% find valid data
B = b >= threshold;
B_ind = find(B);
% find lengths of gaps
step_size = diff(B_ind);
% find acceptable steps (and ignore step size 1)
permissible_steps = 1 < step_size & step_size <= N;
% find beginning and end of runs
good_begin = B_ind([permissible_steps, false]);
good_end = good_begin + step_size(permissible_steps);
% fill gaps in B
for ii = 1:numel(good_begin)
B(good_begin(ii):good_end(ii)) = true;
end
% find durations of runs in B. This finds points where we switch from 0 to
% 1 and vice versa. Due to padding the first match is always a start of a
% run, the last one always an end. There will be an even number of matches,
% so we can reshape and diff and thus fidn the durations
durations = diff(reshape(find(diff([false, B, false])), 2, []));
% get positions of 'good' data
outpos = zeros(size(b));
outpos(B) = find(B);
I have a 3D-cell array designated as A{s,i,h}, serving as a store for large amounts of numerical data during a nested-loop portion of my script. Some of the cell entries will be blank [ ], whilst the rest consist of numbers - either singular or in arrays (1 x 10 double etc.):
I want to convert this cell array to a set of 2D matrices.
Specifically, one separate matrix for each value of h (h is always equal 1:3) and one column in each matrix for every value of s. Each column will contain all the numerical data combined - it does not need to be separated by i.
How can I go about this? I ordinarily deal with 3D-cell arrays in this form to produce separate matrices (one for each value of h) using something like this:
lens = sum(cellfun('length',reshape(A,[],size(A,3))),1);
max_length = max(lens);
mat = zeros(max_length,numel(lens));
mask = bsxfun(#le,[1:max_length]',lens);
mat(mask) = [A{:}];
mat(mat==0) = NaN;
mat = sort(mat*100);
Matrix1 = mat(~isnan(mat(:,1)),1);
Matrix2 = mat(~isnan(mat(:,2)),2);
Matrix3 = mat(~isnan(mat(:,3)),3);
However in this instance, each matrix had only a single column. I'm have trouble adding multiple columns to each output matrix.
1. Result in the form of a cell array of matrices (as requested)
Here's one possible approach. I had to use one for loop. However, the loop can be easily avoided if you accept a 3D-array result instead of a cell array of 2D-arrays. See second part of the answer.
If you follow the comments in the code and inspect the result of each step, it's straightforward to see how it works.
%// Example data
A(:,:,1) = { 1:2, 3:5, 6:9; 10 11:12 13:15 };
A(:,:,2) = { 16:18, 19:22, 23; 24:28, [], 29:30 };
%// Let's go
[S, I, H] = size(A);
B = permute(A, [2 1 3]); %// permute rows and columns
B = squeeze(mat2cell(B, I, ones(1, S), ones(1, H))); %// group each col of B into a cell...
B = cellfun(#(x) [x{:}], B, 'uniformoutput', false); %// ...containing a single vector
t = cellfun(#numel, B); %// lengths of all columns of result
result = cell(1,H); %// preallocate
for h = 1:H
mask = bsxfun(#le, (1:max(t(:,h))), t(:,h)).'; %'// values of result{h} to be used
result{h} = NaN(size(mask)); %// unused values will be NaN
result{h}(mask) = [B{:,h}]; %// fill values for matrix result{h}
end
Result in this example:
A{1,1,1} =
1 2
A{2,1,1} =
10
A{1,2,1} =
3 4 5
A{2,2,1} =
11 12
A{1,3,1} =
6 7 8 9
A{2,3,1} =
13 14 15
A{1,1,2} =
16 17 18
A{2,1,2} =
24 25 26 27 28
A{1,2,2} =
19 20 21 22
A{2,2,2} =
[]
A{1,3,2} =
23
A{2,3,2} =
29 30
result{1} =
1 10
2 11
3 12
4 13
5 14
6 15
7 NaN
8 NaN
9 NaN
result{2} =
16 24
17 25
18 26
19 27
20 28
21 29
22 30
23 NaN
2. Result in the form of 3D array
As indicated above, using a 3D array to store the result permits avoiding loops. In the code below, the last three lines replace the loop used in the first part of the answer. The rest of the code is the same.
%// Example data
A(:,:,1) = { 1:2, 3:5, 6:9; 10 11:12 13:15 };
A(:,:,2) = { 16:18, 19:22, 23; 24:28, [], 29:30 };
%// Let's go
[S, I, H] = size(A);
B = permute(A, [2 1 3]); %// permute rows and columns
B = squeeze(mat2cell(B, I, ones(1, S), ones(1, H))); %// group each col of B into a cell...
B = cellfun(#(x) [x{:}], B, 'uniformoutput', false); %// ...containing a single vector
t = cellfun(#numel, B); %// lengths of all columns of result
mask = bsxfun(#le, (1:max(t(:))).', permute(t, [3 1 2])); %'// values of result to be used
result = NaN(size(mask)); %// unused values will be NaN
result(mask) = [B{:}]; %// fill values
This gives (compare with result of the first part):
>> result
result(:,:,1) =
1 10
2 11
3 12
4 13
5 14
6 15
7 NaN
8 NaN
9 NaN
result(:,:,2) =
16 24
17 25
18 26
19 27
20 28
21 29
22 30
23 NaN
NaN NaN
Brute force approach:
[num_s, num_i, num_h] = size(A);
cellofmat = cell(num_h,1);
for matrix = 1:num_h
sizemat = max(cellfun(#numel, A(:,1,matrix)));
cellofmat{matrix} = nan(sizemat, num_s);
for column = 1:num_s
lengthcol = length(A{column, 1, matrix});
cellofmat{matrix}(1:lengthcol, column) = A{column, 1,matrix};
end
end
Matrix1 = cellofmat{1};
Matrix2 = cellofmat{2};
Matrix3 = cellofmat{3};
I don't know what your actual structure looks like but this works for A that is setup using the following steps.
A = cell(20,1,3);
for x = 1:3
for y = 1:20
len = ceil(rand(1,1) * 10);
A{y,1,x} = rand(len, 1);
end
end
I need help with my code. The code is used to find the minumin of a square-distance problem. I am providing my code through an example, I believe this will be the easiest way to explain what I need.
clear all
clc
x=10.8; % is a fixed value
y=34; % is a fixed value
z=12; % is a fixed value
A = [11 14 1; 5 8 18; 10 8 19; 13 20 16]; % a (4x3) matrix
B = [2 3 10; 6 15 16; 7 3 15; 14 14 19]; % a (4x3) matrix
I create a new matrix C which is composed in this following way:
C1 = bsxfun(#minus, A(:,1)',B(:,1));
C1=C1(:); % this is the first column of the new matrix C
C2 = bsxfun(#minus, A(:,2)',B(:,2));
C2=C2(:); % this is the second column of the new matrix C
C3 = bsxfun(#minus, A(:,3)',B(:,3));
C3=C3(:); % this is the third column of the new matrix C
C = [C1 C2 C3]; % the new matrix C of size (16x3)
C has to be formed in this way! And this is what I meant when I wrote in my title a composed-matrix
Then:
[d,p] = min((C(:,1)-x).^2 + (C(:,2)-y).^2 + (C(:,3)-z).^2);
d = sqrt(d);
outputs:
d = 18.0289;
p = 13;
Gives me the distance (d) and position (p) which satisfies this min problem.
MY PROBLEM:
I need to find which combinations of A and B has given my this p value, in other words I need the index from ´A,B´ which gives me this optimal C1,C2,C3:
C1 = bsxfun(#minus, A(?,1)',B(?,1));
C2 = bsxfun(#minus, A(?,2)',B(?,2));
C3 = bsxfun(#minus, A(?,3)',B(?,3));
The ? is the index position I need, in this case the index position of the matrix A and the index position of B.
Calculated by hand I have the following illustration:
I know that:
C = [9 11 -9
5 -1 -15
4 11 -14
-3 0 -18
3 5 8
-1 -7 2
-2 5 3
-9 -6 -1
8 5 9
4 -7 3
3 5 4
-4 -6 0
11 17 6
7 5 0
6 17 1
-1 6 -3]
And I know that my optimal index is given in the position 13th. This index positions goes back to:
[13-2 20-3 16-10]
Which is A(4,:) - B(1,:)
I need a code which can help me to find this indexes from A and B
Thanks in advance!
PS. I am using the code in parameter estimation problems of ODEs.
First case: vector-matrix case
subvals = bsxfun(#minus,A,[x y z])
[distance,index] = min(sqrt(sum(subvals.^2,2)))
Second case: Two matrices case
subvals = bsxfun(#minus,A,permute(B,[3 2 1]));
[distances,indices] = min(sqrt(sum(subvals.^2,2)),[],3)
Testing for second case:
%%// Get some random data into A and B
A = randi(20,8,3)
B = randi(20,4,3)
%%// Just to test out out code for correctness,
%%// let us make any one one row of B, say 3rd row equal to
%%// any one row of A, say the 6th row -
B(3,:) = A(6,:)
%%// Use the earlier code
subvals = bsxfun(#minus,A,permute(B,[3 2 1]));
[distances,indices] = min(sqrt(sum(subvals.^2,2)),[],3)
%%// Get the minimum row index for A and B
[~,min_rowA] = min(distances)
min_rowB = indices(min_rowA)
Verification
min_rowA =
6
min_rowB =
3
Edit 1 [Response to simple example posted in question]:
The title says you are interested in finding the difference of two matrices and then find the shortest distance between it to a vector [x y z]. So I am hoping this is what you need -
x=10.8;
y=34;
z=12;
A = [11 14 1; 5 8 18; 10 8 19; 13 20 16];
B = [2 3 10; 6 15 16; 7 3 15; 14 14 19];
C = A -B; %%// Distance of two vectors as posted in title
subvals = bsxfun(#minus,C,[x y z])
[distance,index] = min(sqrt(sum(subvals.^2,2)))
Output
distance =
31.0780
index =
3
Edit 2: After you have done this -
[d,p] = min((C(:,1)-x).^2 + (C(:,2)-y).^2 + (C(:,3)-z).^2);
If you are looking to find the corresponding indices of A and B , you may do this -
[minindex_alongB,minindex_alongA] = ind2sub(size(A),p)