So because I have 4 different product types (books, magazines, gifts, food) I can't just put all products in one "products" table without having a bunch of null values. So I decided to break each product up into their own tables but I know this is just wrong (https://c1.staticflickr.com/1/742/23126857873_438655b10f_b.jpg).
I also tried creating an EAV model for this (https://c2.staticflickr.com/6/5734/23479108770_8ae693053a_b.jpg), but I got stuck as I'm not sure how to link the publishers and authors tables.
I know this question has been asked a lot but I don't understand ANY of the answer's I've seen. I think this is because I'm a very visual learner and this makes it hard to understand what's being talked about when not a lot of information is given.
Your model is on the right track, except that the product name should be sufficient you don't need Gift name, book name etc. What you put in those tables is the information that is specific to the type of product that the other products don't need. The Product table contains all the common fields. I would use productid in the child tables rather than renaming it giftID, magazineID etc. It is easier to remember what things are celled when you are consistent in nameing them.
Now to be practical, you put as much as you can into the product table especially if you are going to do calculations. I prefer the child tables in this specific case to have what is mostly display information. So product contains the product name, the cost, the type of product, the units the product is sold in etc. The stuff that generally is needed to calculate the cost of an order or to have a report of what was ordered. There may be one or two fields that can contain nulls, but it simplifies the calculation type queries so much it might be worth it.
The meat of the descriptive details though would go in the child table for the type of product. These would usually only be referenced when displaying the product in the shopping area and only one at a time, so you can use the product type to let you only join to the one child table you need for display. So while the order cares about the product number and name and cost calculations, it probably doesn't need to go line by line describing the book ISBN number or the megapixels in a camera. But the description page of the product does need those things.
This approach is not purely relational, although it mostly is, but it does group the information by the meanings of the data and how they will be used which will make the database easier to understand and query. I am a big fan of relational tables because database just work better when they hit at least the third normal form but sometimes you can go too far for practicality, so the meaning of the data and the way you are grouping to use the data (and not just for the user interface, but for later reporting as well) is almost always one of my considerations in design.
Breaking each product type into its own table is fine - let the child tables use the same id as the parent Product table, and create views for the child tables that join with Product
Your case is a classic case of types and subtypes. This is often called class/subclass in object modeling and generalization/specialization in ER modeling. It's a well understood pattern. There are known techniques for dealing with this pattern.
Visit the following tabs, and read the description under the info tab (presented as "learn more"). Also look over the questions grouped under these tags.
single-table-inheritance class-table-inheritance shared-primary-key
If you want to rean in more depth use these buzzwords to search for articles on the web.
You've already discovered and discarded single table inheritance on your own. Other answers have pointed you at shared primary key. Class table inheritance involves a single table for generalized data as well as the four specialized tables. Shared primary key is generally used in conjunction with class table inheritance.
Currently scoping out a new system. Like many systems, it will be required to store documents and link them to other kinds of item. In this instance a Document object can belong to a Job or it can belong to an Item (which in turn belongs to a Job).
We could do this by having a JobId and an ItemId against a Document and leaving one or the other blank if necessary, but that's going to mean annoying conditional logic in the handling code. So, two link tables seems a better idea.
However, it is likely that we will need to link Documents to other items in the system at some point in the future. There are Company and User objects, for example, and we might want to record Documents against those. There may be more.
That would entail a proliferation of link tables which, while effective, is messy and hard to follow.
This solution is in SQL Server and will be handled in code via Entity Framework.
Are there any design principles that can allow us to hook up Document objects with a variety of other system objects as required in a neater and more flexible way?
You could store two values: the id, and the type of object to which the document is attached. It doesn't allow the use of foreign keys, but is compatible with many application development frameworks.
If you have the partitioning option then you could dedicate different partitions to different object types.
You could also have multiple tables, one for job documents, one for item documents, and get an overview of all of them with a view that UNION ALL's them together. If you need uniqueness in that result set then you could use UUIDs for the primary key, or add an extra column to the view to express from which table the row was read.
I am about to deign my first E-Commerce Database.
What i have find out in most E-Commerce websites is that these sites have Category, then SubCategory and then again SubCategory and so on. And the depth of SubCategory is not fixed means One Category have six nested Sub Category while some other have different
Now All the products have attributes associated with it.
Now my question is are these websites keep on adding tables for nested sub categories and keep on adding columns for the attributes in the database
OR
They apply something called as "EAV" model (if i am right) to solve this problem or they keep on adding columns and or tables and also keep on updated the WebPages as on many sites i have found there is now a new category.
(If they use EAV model then the website performance is impacted isnt it..)
Since this is my first ECommerce project please provide some valuable suggestions of yours.
Thanks,
Any help is appreciated.
What you need is a combination of EAV for product features and nested sets for product categories.
While I certainly agree that EAV is almost always a bad choice, one application where EAV is the perfect choice is for handling product attributes in an online catalog.
Think about how websites show product attributes... The attributes of products are always shown as a vertical list with two columns: "Attribute" | "Value". Sometimes these lists show side-by-side comparisons of multiple products. EAV works perfectly for doing this kind of thing. The things that make EAV meaningless and inefficient for most applications are exactly what makes EAV meaningful and efficient for product attributes in an online catalog.
One of the reasons why everyone always says "EAV is EVIL!" is that the attributes in EAV are "meaningless" insofar as the column name (i.e. meaning of the attribute) is table-driven and is therefore not defined by the schema. The whole point of schemas is to give your model meaning so this point is well taken. However in the case of an online product catalog, the meaning of product attributes is really unimportant to the system, itself. The only reason your catalog system cares about product attributes is to dump them in a list or possibly in a product comparison matrix. Therefore EAV is doesn't happen to be evil in this particular case.
For product categories, you want a nested set model, as I described in the answer to this question. Nested sets give you very quick retrieval along with the ability to traverse multiple levels of an unbalanced hierarchy at the expense of some precalculation effort at edit time.
I'm trying to design a database for a product aggregator. Each product has information about where it comes from, what it costs, what type of thing it is, price, color, etc. Users need to able to search and filter results based on any of those product categories. I also expect to have a large number of users. My initial thought was having one big table with every product in it with a column for each piece of information and an index on anything I need to be able to search by but I think this might be inefficient with a lot of users pounding on this one table. My other thought was to organize the database to promote a tree-like navigation of tables but because you can search by anything I'm not sure how I would organize the tables.
Any thoughts on some good practices?
One table of products - databases are designed to have lots of users pounding on tables.
(from the comments)
You need to model your data. This comes from looking at the all the data you have, determining what is related to what (a table is called a relation because all the attributes in a row are related to a candidate key). You haven't really given enough information about the scope of what data (unstructured?) you have on these products and how it varies. Are you going to have difficulties because Shoes have brand, model, size and color, but Desks only have brand, model and finish? All this is going to inform your data model. Typically you have one products table, and other things link to it.
Some of those attributes will be foreign keys to lookup tables, others (price) would be simple scalars. Appropriate indexing and you'll be fine. For advanced analytics, consider a dimensionally modeled star-schema, but perhaps not for your live transaction system - depends what your data flow/workflow/transactions are. Or consider some benefits of its principles in your transactional database. Ralph Kimball is source of good information on dimensional modeling.
I dont see any need for the tree structure here. You can do with single table.
if you insist on tree structure with hierarchy here is an example to get you started.
For text based search, and ease of startup & design, I strongly recommend Apache SOLR. The SOLR API is easy to use (especially JSON). Databases do text search poorly, and I would instead recommend that you just make sure that they respond to primary/unique key queries properly, and those are the fields you should index.
One table for the products, and another table for the product category hierarchy (you don't specifically say you have this but "tree-like navigation of tables" makes me think you might).
I can see you might be concerned about over-indexing causing problems if you plan to index almost every column. In that case, it might be best to index on the top 5 or 10 columns you think users are likely to search for, unless it's possible for a user to search on ANY column. In that case you might want to look at building a data warehouse. Maybe you'll want to look into data cubes to see if those will help...?
For hierarchical data, you need a PRODUCT_CATEGORY table looking something like this:
ID
PARENT_ID
NAME
Some sample data:
ID PARENT_ID NAME
1 ROOT
2 1 SOCKS
3 1 HELICOPTER PARTS
4 2 ARGYLE
Some SQL engines (such as Oracle) allow you to write recursive queries to traverse the hierarchy in a single query. In this example, the root of the tree has a PARENT_ID of NULL, but if you don't want this column to be nullable, I've also seen -1 used for the same purposes.
This is a scenario I've seen in multiple places over the years; I'm wondering if anyone else has run across a better solution than I have...
My company sells a relatively small number of products, however the products we sell are highly specialized (i.e. in order to select a given product, a significant number of details must be provided about it). The problem is that while the amount of detail required to choose a given product is relatively constant, the kinds of details required vary greatly between products. For instance:
Product X might have identifying characteristics like (hypothetically)
'Color',
'Material'
'Mean Time to Failure'
but Product Y might have characteristics
'Thickness',
'Diameter'
'Power Source'
The problem (one of them, anyway) in creating an order system that utilizes both Product X and Product Y is that an Order Line has to refer, at some point, to what it is "selling". Since Product X and Product Y are defined in two different tables - and denormalization of products using a wide table scheme is not an option (the product definitions are quite deep) - it's difficult to see a clear way to define the Order Line in such a way that order entry, editing and reporting are practical.
Things I've Tried In the Past
Create a parent table called 'Product' with columns common to Product X and Product Y, then using 'Product' as the reference for the OrderLine table, and creating a FK relationship with 'Product' as the primary side between the tables for Product X and Product Y. This basically places the 'Product' table as the parent of both OrderLine and all the disparate product tables (e.g. Products X and Y). It works fine for order entry, but causes problems with order reporting or editing since the 'Product' record has to track what kind of product it is in order to determine how to join 'Product' to its more detailed child, Product X or Product Y. Advantages: key relationships are preserved. Disadvantages: reporting, editing at the order line/product level.
Create 'Product Type' and 'Product Key' columns at the Order Line level, then use some CASE logic or views to determine the customized product to which the line refers. This is similar to item (1), without the common 'Product' table. I consider it a more "quick and dirty" solution, since it completely does away with foreign keys between order lines and their product definitions. Advantages: quick solution. Disadvantages: same as item (1), plus lost RI.
Homogenize the product definitions by creating a common header table and using key/value pairs for the customized attributes (OrderLine [n] <- [1] Product [1] <- [n] ProductAttribute). Advantages: key relationships are preserved; no ambiguity about product definition. Disadvantages: reporting (retrieving a list of products with their attributes, for instance), data typing of attribute values, performance (fetching product attributes, inserting or updating product attributes etc.)
If anyone else has tried a different strategy with more success, I'd sure like to hear about it.
Thank you.
The first solution you describe is the best if you want to maintain data integrity, and if you have relatively few product types and seldom add new product types. This is the design I'd choose in your situation. Reporting is complex only if your reports need the product-specific attributes. If your reports need only the attributes in the common Products table, it's fine.
The second solution you describe is called "Polymorphic Associations" and it's no good. Your "foreign key" isn't a real foreign key, so you can't use a DRI constraint to ensure data integrity. OO polymorphism doesn't have an analog in the relational model.
The third solution you describe, involving storing an attribute name as a string, is a design called "Entity-Attribute-Value" and you can tell this is a painful and expensive solution. There's no way to ensure data integrity, no way to make one attribute NOT NULL, no way to make sure a given product has a certain set of attributes. No way to restrict one attribute against a lookup table. Many types of aggregate queries become impossible to do in SQL, so you have to write lots of application code to do reports. Use the EAV design only if you must, for instance if you have an unlimited number of product types, the list of attributes may be different on every row, and your schema must accommodate new product types frequently, without code or schema changes.
Another solution is "Single-Table Inheritance." This uses an extremely wide table with a column for every attribute of every product. Leave NULLs in columns that are irrelevant to the product on a given row. This effectively means you can't declare an attribute as NOT NULL (unless it's in the group common to all products). Also, most RDBMS products have a limit on the number of columns in a single table, or the overall width in bytes of a row. So you're limited in the number of product types you can represent this way.
Hybrid solutions exist, for instance you can store common attributes normally, in columns, but product-specific attributes in an Entity-Attribute-Value table. Or you could store product-specific attributes in some other structured way, like XML or YAML, in a BLOB column of the Products table. But these hybrid solutions suffer because now some attributes must be fetched in a different way
The ultimate solution for situations like this is to use a semantic data model, using RDF instead of a relational database. This shares some characteristics with EAV but it's much more ambitious. All metadata is stored in the same way as data, so every object is self-describing and you can query the list of attributes for a given product just as you would query data. Special products exist, such as Jena or Sesame, implementing this data model and a special query language that is different than SQL.
There's no magic bullet that you've overlooked.
You have what are sometimes called "disjoint subclasses". There's the superclass (Product) with two subclasses (ProductX) and (ProductY). This is a problem that -- for relational databases -- is Really Hard. [Another hard problem is Bill of Materials. Another hard problem is Graphs of Nodes and Arcs.]
You really want polymorphism, where OrderLine is linked to a subclass of Product, but doesn't know (or care) which specific subclass.
You don't have too many choices for modeling. You've pretty much identified the bad features of each. This is pretty much the whole universe of choices.
Push everything up to the superclass. That's the uni-table approach where you have Product with a discriminator (type="X" and type="Y") and a million columns. The columns of Product are the union of columns in ProductX and ProductY. There will be nulls all over the place because of unused columns.
Push everything down into the subclasses. In this case, you'll need a view which is the union of ProductX and ProductY. That view is what's joined to create a complete order. This is like the first solution, except it's built dynamically and doesn't optimize well.
Join Superclass instance to subclass instance. In this case, the Product table is the intersection of ProductX and ProductY columns. Each Product has a reference to a key either in ProductX or ProductY.
There isn't really a bold new direction. In the relational database world-view, those are the choices.
If, however, you elect to change the way you build application software, you can get out of this trap. If the application is object-oriented, you can do everything with first-class, polymorphic objects. You have to map from the kind-of-clunky relational processing; this happens twice: once when you fetch stuff from the database to create objects and once when you persist objects back to the database.
The advantage is that you can describe your processing succinctly and correctly. As objects, with subclass relationships.
The disadvantage is that your SQL devolves to simplistic bulk fetches, updates and inserts.
This becomes an advantage when the SQL is isolated into an ORM layer and managed as a kind of trivial implementation detail. Java programmers use iBatis (or Hibernate or TopLink or Cocoon), Python programmers use SQLAlchemy or SQLObject. The ORM does the database fetches and saves; your application directly manipulate Orders, Lines and Products.
This might get you started. It will need some refinement
Table Product ( id PK, name, price, units_per_package)
Table Product_Attribs (id FK ref Product, AttribName, AttribValue)
Which would allow you to attach a list of attributes to the products. -- This is essentially your option 3
If you know a max number of attributes, You could go
Table Product (id PK, name, price, units_per_package, attrName_1, attrValue_1 ...)
Which would of course de-normalize the database, but make queries easier.
I prefer the first option because
It supports an arbitrary number of attributes.
Attribute names can be stored in another table, and referential integrity enforced so that those damn Canadians don't stick a "colour" in there and break reporting.
Does your product line ever change?
If it does, then creating a table per product will cost you dearly, and the key/value pairs idea will serve you well. That's the kind of direction down which I am naturally drawn.
I would create tables like this:
Attribute(attribute_id, description, is_listed)
-- contains values like "colour", "width", "power source", etc.
-- "is_listed" tells us if we can get a list of valid values:
AttributeValue(attribute_id, value)
-- lists of valid values for different attributes.
Product (product_id, description)
ProductAttribute (product_id, attribute_id)
-- tells us which attributes apply to which products
Order (order_id, etc)
OrderLine (order_id, order_line_id, product_id)
OrderLineProductAttributeValue (order_line_id, attribute_id, value)
-- tells us things like: order line 999 has "colour" of "blue"
The SQL to pull this together is not trivial, but it's not too complex either... and most of it will be write once and keep (either in stored procedures or your data access layer).
We do similar things with a number of types of entity.
Chris and AJ: Thanks for your responses. The product line may change, but I would not term it "volatile".
The reason I dislike the third option is that it comes at the cost of metadata for the product attribute values. It essentially turns columns into rows, losing most of the advantages of the database column in the process (data type, default value, constraints, foreign key relationships etc.)
I've actually been involved in a past project where the product definition was done in this way. We essentially created a full product/product attribute definition system (data types, min/max occurrences, default values, 'required' flags, usage scenarios etc.) The system worked, ultimately, but came with a significant cost in overhead and performance (e.g. materialized views to visualize products, custom "smart" components to represent and validate data entry UI for product definition, another "smart" component to represent the product instance's customizable attributes on the order line, blahblahblah).
Again, thanks for your replies!