I have been reading Flink docs and I needed few clarification. Hopefully someone can help me out here.
State Backend - This basically refers to the location where the data for my operations will be stored, for example if I'm doing an aggregation on a 2 hr window, where will this data buffered will be stored. As pointed out in the docs, for a large state we should use RocksDB.
The RocksDBStateBackend holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data directories
Does in-flight data here refers to the incoming data say from kafka stream that has not been yet checkpointed ?
Upon checkpointing, the whole RocksDB database will be checkpointed into the configured file system and directory. Minimal metadata is stored in the JobManager’s memory
When using RocksDb when a checkpoint is created, the entire buffered data is stored in stored in disk. Then say when the window is to be triggered at end of 2 hr, this state which was stored in disk will be de-serialised and used for the operation ?
Note that the amount of state that you can keep is only limited by the amount of disk space available
Does this mean that I could run an analytical query on potentially high throughout stream with very limited resources. Suppose my Kafka Stream has a rate of 50k messages /sec, then I could run it on a single core on my EMR cluster and the tradeoff will be that Flink won't be able to catch up with the incoming rate and have a lag but given enough disk space it won't have a OOM error ?
When a checkpoint is completed, I assume that the completed aggregated checkpoint metadata (like the HDFS or S3 path from each TM) from all the TM will be sent to the JM ?. In case of TM failure, the JM will spin up a new JM and restore the state from the last checkpoint.
The default setting for JM in flink-conf.yaml - jobmanager.heap.size: 1024m.
My confusion here is why does JM needs 1Gb of heap memory. What all does a JM handles apart from synchronisation among TMs. How do I actually decide how much of memory should be configured for JM on production.
Can someone verify that my understanding is correct or not and point me in the correct direction. Thanks in advance!
Overall your understanding appears to be correct. One point: in the case of a TM failure, the JM will spin up a new TM and restore the state from the last checkpoint (rather than spinning up a new JM).
But to be a bit more precise, in the last few releases of Flink, what used to be a monolithic job manager has been refactored into separate components: a dispatcher that receives jobs from clients and starts new job managers as needed; a job manager that only is concerned with providing services to a single job; and a resource manager that starts up new TMs as needed. The resource manager is the only component that is cluster framework specific -- e.g., there is a YARN resource manager.
The job manager has other roles as well -- it is the checkpoint coordinator and the API endpoint for the web UI and metrics.
How much heap the JM needs is somewhat variable. The defaults were chosen to try to cover more than a narrow set of situations, and to work out of the box. Also, by default, checkpoints go to the JM heap, so it needs some space for that. If you have a small cluster and are checkpointing to a distributed filesystem, you should be able to get by with less than 1GB.
Related
I am using state for processing the data using Flink.
I used the rocksDB because the data size to be stored is relatively large compared to the memory size.
I set up the rocksdb configuration and running my flink app during several hours.
I expected that the job runs normally without any errors, but I found the job manager did not take the heartbeat from the task manager.
When I monitored the memory metrics, the off-heap in task manager is growing and the job is died.
I know that rocksdb is best choice for storing large objects in stream processing, but in my case it was not achieved.
For these reasons, I would like to know that the precise time when the flink flush the data into disk level in rocks db. And also, I would appreciate it if you could give any guidance for configuration setup for rocksDb.
For my case, I configured the below setups regarding rocksdb and others are default value.
state.backend: rocksdb
state.backend.incremental: true
state.backend.rocksdb.memory.fixed-per-slot: 924m
state.backend.rocksdb.memory.managed: false
state.checkpoints.dir: s3://nxflow-bucket/checkpoints
state.checkpoints.num-retained: 1
state.savepoints.dir: s3://nxflow-bucket/savepoints
And you can see that the off heap memory is growing as shown in a figure below.
Is there any setup for flushing time for disk level in rocksdb?
And also, my job is really using the disk for statebackend? If true, why my job is died?
Thanks.
I am new to flink and i deployed my flink application which basically perform simple pattern matching. It is deployed in Kubernetes cluster with 1 JM and 6 TM. I am sending messages of size 4.4k and 200k messages every 10 min to eventhub topic and performing load testing. I added restart strategy and checking pointing as below and i am not explicitly using any states in my code as there is no requirement for it
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// start a checkpoint every 1000 ms
env.enableCheckpointing(interval, CheckpointingMode.EXACTLY_ONCE);
// advanced options:
// make sure 500 ms of progress happen between checkpoints
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000);
// checkpoints have to complete within one minute, or are discarded
env.getCheckpointConfig().setCheckpointTimeout(120000);
// allow only one checkpoint to be in progress at the same time
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// enable externalized checkpoints which are retained after job cancellation
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// allow job recovery fallback to checkpoint when there is a more recent savepoint
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
5, // number of restart attempts
Time.of(5, TimeUnit.MINUTES) // delay
));
Initially i was facing Netty server issue with network buffer and i followed this link https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#taskmanager-network-memory-floating-buffers-per-gate flink network and heap memory optimizations and applied below settings and everything is working fine
taskmanager.network.memory.min: 256mb
taskmanager.network.memory.max: 1024mb
taskmanager.network.memory.buffers-per-channel: 8
taskmanager.memory.segment-size: 2mb
taskmanager.network.memory.floating-buffers-per-gate: 16
cluster.evenly-spread-out-slots: true
taskmanager.heap.size: 1024m
taskmanager.memory.framework.heap.size: 64mb
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.framework.off-heap.size: 64mb
taskmanager.memory.network.fraction: 0.4
taskmanager.memory.jvm-overhead.min: 256mb
taskmanager.memory.jvm-overhead.max: 1gb
taskmanager.memory.jvm-overhead.fraction: 0.4
But i have two below questions
If any task manager restarts because of any failures the task manager is restarting successfully and getting registered with job manager but after the restarted task manager don't perform any processing of data it will sit idle. Is this normal flink behavior or do i need to add any setting to make task manager to start processing again.
Sorry and correct me if my understanding is wrong, flink has a restart strategy in my code i made limit 5 attempts of restart. What will happen if my flink job is not successfully overcomes the task failure entire flink job will be remained in idle state and i have to restart job manually or is there any mechanism i can add to restart my job even after it crossed the limit of restart job attempts.
Is there any document to calculate the number of cores and memory i should assign to flink job cluster based on data size and rate at which my system receives the data ?
Is there any documentation on flink CEP optimization techniques?
This is the error stack trace i am seeing in job manager
I am seeing the below errors in my job manager logs before the pattern matching
Caused by: org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException: Connection unexpectedly closed by remote task manager '/10.244.9.163:46377'. This might indicate that the remote task manager was lost.
at org.apache.flink.runtime.io.network.netty.CreditBasedPartitionRequestClientHandler.channelInactive(CreditBasedPartitionRequestClientHandler.java:136)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:236)
at org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInputClosed(ByteToMessageDecoder.java:393)
at org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInactive(ByteToMessageDecoder.java:358)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:236)
at org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline$HeadContext.channelInactive(DefaultChannelPipeline.java:1416)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline.fireChannelInactive(DefaultChannelPipeline.java:912)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannel$AbstractUnsafe$8.run(AbstractChannel.java:816)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:416)
at org.apache.flink.shaded.netty4.io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:515)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
at org.apache.flink.shaded.netty4.io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
at java.lang.Thread.run(Thread.java:748)
Thanks in advance, please help me in resolving my doubts
Various points:
If your patterns involve matching temporal sequences (e.g., "A followed by B"), then you need state to do this. Most of Flink's sources and sinks also use state internally to record offsets, etc., and this state needs to be checkpointed if you care about exactly-once guarantees. If the patterns are being streamed in dynamically, then you'll want to store the patterns in Flink state as well.
Some of the comments in the code don't match the configuration parameters: e.g., "500 ms of progress" vs. 1000, "checkpoints have to complete within one minute" vs 120000. Also, keep in mind that the section of the documentation that you copied these settings from is not recommending best practices, but is instead illustrating how to make changes. In particular, env.getCheckpointConfig().setPreferCheckpointForRecovery(true); is a bad idea, and that config option should probably not exist.
Some of your entries in config.yaml are concerning. taskmanager.memory.managed.fraction is rather large (0.7) -- this only makes sense if you are using RocksDB, since managed memory has no other purpose for streaming. And taskmanager.memory.network.fraction and taskmanager.memory.jvm-overhead.fraction are both very large, and the sum of these three fractions is 1.5, which doesn't make sense.
In general the default network configuration works well across a wide range of deployment scenarios, and it is unusual to need to tune these settings, except in large clusters (which is not the case here). What sort of problems did you encounter?
As for your questions:
After a TM failure and recovery, the TMs should automatically resume processing from the most recent checkpoint. To diagnose why this isn't happening, we'll need more information. To gain experience with a deployment that handles this correctly, you can experiment with the Flink Operations Playground.
Once the configured restart strategy has played itself out, the job will FAIL, and Flink will no longer try to recover that job. You can, of course, build your own automation on top of Flink's REST API, if you want something more sophisticated.
Documentation on capacity planning? No, not really. This is generally figured out through trial and error. Different applications tend to have different requirements in ways that are difficult to anticipate. Things like your choice of serializer, state backend, number of keyBys, the sources and sinks, key skew, watermarking, and so on can all have significant impacts.
Documentation on optimizing CEP? No, sorry. The main points are
do everything you can to constrain the matches; avoid patterns that must keep state indefinitely
getEventsForPattern can be expensive
I know I can set the state backend both in the flink's configuration file(flink-conf.yaml) globally
or set in the per-job scope.
val env = StreamExecutionEnvironment.getExecutionEnvironment()
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"))
I have one question here:
Where are the state data that belongs to the TasManager saved in TaskManager while the flink job keeps running? I mean that when one checkpoint is done,the checkpointed data will be saved in HDFS(chk-XXX) or RocksDB, but while the flink job keeps running, the taskManager will accumulate more and more states belonging to this task manager, are they always saved in memory?
If they are kept in memory, then the checkpoint data can't be too large,or else OOM may occur.
Can I use RocksDB in TaskManager process to save the TM's states data? Thanks!
With the FsStateBackend, the working state for each task manager is in memory (on the JVM heap), and state backups (checkpoints) go to a distributed file system, e.g., HDFS.
With the RocksDBStateBackend, the working state for each task manager is in a local RocksDB instance, i.e., on the local disk, and again, the state backups (checkpoints) go to a distributed file system, e.g., HDFS.
Flink never stores checkpoint data in RocksDB. That's not the role it plays. RocksDB is used as an ephemeral, embedded data store whose contents can be lost in the event that a task manager fails. This is an alternative to keeping the working state in memory (where it can also be lost when a task manager fails).
I am newbie in Flink, planning to deploy Flink session cluster on EKS with 1 job manager and 5 task managers (each task managers with 4 slots). Different jobs will be submitted through UI for different usecase.
Let's say I have submitted a stateful job (job has simple counter logic using RichFlatMapFunction) backed by RocksDBStateBackend with S3 checkpointDataUri and DbStoragePath pointed to local file path and this job utilises 8 slot totally which is spreaded across two task managers and running fine without any issues for a day. Now following are my question,
1) My understanding about checkpointDataUri and DbStoragePath in RocksDBStateBackend is, checkpointDataUri stores the processed offset information in S3 (since I configured the checkpointDataUri with S3 prefix) and DbStoragePath contains all the state information which is used in RichFlatMapFunction. So all the stateful information are stored in checkpointDataUri which is available in local only. Please correct me If it is wrong.
2) Lets say my Ec2 instance was restarted (the one where the 4 slots was utilised) for some reason and it took around 30 minutes to come online, in this case, EKS will make the new Ec2 instance as TaskManager to match the replicas, however whether Flink job manager will try to reschedule the 4 slots to a different task manager now? If yes, how the state which was stored in Ec2 local instance has to be recovered?
3) Is there is any document/video for Flink EKS failure recovery related things. I saw the official documentation which specifies how to deploy Flink session cluster in EKS. But I don't find anything related to failure recovery in EKS mode. Could someone please point me in the right direction on this?
All of the state you are concerned about, namely the processed offsets and the state used in the RichFlatMapFunction (and any other state Flink is managing for your job) is stored both on the local disk (DbStoragePath) and in S3 (checkpointDataUri).
Flink always keeps a working copy of all of the state local to each task manager (for high throughput and low latency), and in the background makes complete copies of this state to a distributed file system (like S3) for reliability.
In other words, what you said in point (1) of your question was incorrect. And the answer to point (2) is that the state to be recovered can always be recovered from S3 if it's not available locally. As for point (3), there's nothing special about failure recovery on EKS compared to any other Flink deployment model.
We are using Flink Kinesis Consumer to consume data from Kinesis stream into our Flink application.
KCL library uses a DynamoDB table to store last successfully processed Kinesis stream sequence nos. so that the next time application starts, it resumes from where it left off.
But, it seems that Flink Kinesis Consumer does not maintain any such sequence nos. in any persistent store. As a result, we need to rely upon ShardIteratortype (trim_horizen, latest, etc) to decide where to resume Flink application processing upon application restart.
A possible solution to this could be to rely on Flink checkpointing mechanism, but that only works when application resumes upon failure, and not when the application has been deliberately cancelled and is needed to be restarted from the last successfully consumed Kinesis stream sequence no.
Do we need to store these last successfully consumed sequence nos ourselves ?
Best practice with Flink is to use checkpoints and savepoints, as these create consistent snapshots that contain offsets into your message queues (in this case, Kinesis stream sequence numbers) together with all of the state throughout the rest of the job graph that resulted from having consumed the data up to those offsets. This makes it possible to recover or restart without any loss or duplication of data.
Flink's checkpoints are snapshots taken automatically by Flink itself for the purpose of recovery from failures, and are in a format optimized for rapid restoration. Savepoints use the same underlying snapshot mechanism, but are triggered manually, and their format is more concerned about operational flexibility than performance.
Savepoints are what you are looking for. In particular, cancel with savepoint and resume from savepoint are very useful.
Another option is to use retained checkpoints with ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION.
To add to David's response, I'd like to explain the reasoning behind not storing sequence numbers.
Any kind of offsets committing into the source system would limit the checkpointing/savepointing feature only to fault tolerance. That is, only the latest checkpoint/savepoint would be able to recover.
However, Flink actually supports to jump back to a previous checkpoint/savepoint. Consider an application upgrade. You make a savepoint before, upgrade and let it run for a couple of minutes where it creates a few checkpoints. Then, you discover a critical bug. You would like to rollback to the savepoint that you have taken and discard all checkpoints.
Now if Flink commits the source offsets only to the source systems, we would not be able to replay the data between now and the restored savepoint. So, Flink needs to store the offsets in the savepoint itself as David pointed out. At this point, additionally committing to source system does not yield any benefit and is confusing while restoring to a previous savepoint/checkpoint.
Do you see any benefit in storing the offsets additionally?