Related
I'm going through the question below.
The sequence [0, 1, ..., N] has been jumbled, and the only clue you have for its order is an array representing whether each number is larger or smaller than the last. Given this information, reconstruct an array that is consistent with it.
For example, given [None, +, +, -, +], you could return [1, 2, 3, 0, 4].
I went through the solution on this post but still unable to understand it as to why this solution works. I don't think I would be able to come up with the solution if I had this in front of me during an interview. Can anyone explain the intuition behind it? Thanks in advance!
This answer tries to give a general strategy to find an algorithm to tackle this type of problems. It is not trying to prove why the given solution is correct, but lying out a route towards such a solution.
A tried and tested way to tackle this kind of problem (actually a wide range of problems), is to start with small examples and work your way up. This works for puzzles, but even so for problems encountered in reality.
First, note that the question is formulated deliberately to not point you in the right direction too easily. It makes you think there is some magic involved. How can you reconstruct a list of N numbers given only the list of plusses and minuses?
Well, you can't. For 10 numbers, there are 10! = 3628800 possible permutations. And there are only 2⁹ = 512 possible lists of signs. It's a very huge difference. Most original lists will be completely different after reconstruction.
Here's an overview of how to approach the problem:
Start with very simple examples
Try to work your way up, adding a bit of complexity
If you see something that seems a dead end, try increasing complexity in another way; don't spend too much time with situations where you don't see progress
While exploring alternatives, revisit old dead ends, as you might have gained new insights
Try whether recursion could work:
given a solution for N, can we easily construct a solution for N+1?
or even better: given a solution for N, can we easily construct a solution for 2N?
Given a recursive solution, can it be converted to an iterative solution?
Does the algorithm do some repetitive work that can be postponed to the end?
....
So, let's start simple (writing 0 for the None at the start):
very short lists are easy to guess:
'0++' → 0 1 2 → clearly only one solution
'0--' → 2 1 0 → only one solution
'0-+' → 1 0 2 or 2 0 1 → hey, there is no unique outcome, though the question only asks for one of the possible outcomes
lists with only plusses:
'0++++++' → 0 1 2 3 4 5 6 → only possibility
lists with only minuses:
'0-------'→ 7 6 5 4 3 2 1 0 → only possibility
lists with one minus, the rest plusses:
'0-++++' → 1 0 2 3 4 5 or 5 0 1 2 3 4 or ...
'0+-+++' → 0 2 1 3 4 5 or 5 0 1 2 3 4 or ...
→ no very obvious pattern seem to emerge
maybe some recursion could help?
given a solution for N, appending one sign more?
appending a plus is easy: just repeat the solution and append the largest plus 1
appending a minus, after some thought: increase all the numbers by 1 and append a zero
→ hey, we have a working solution, but maybe not the most efficient one
the algorithm just appends to an existing list, no need to really write it recursively (although the idea is expressed recursively)
appending a plus can be improved, by storing the largest number in a variable so it doesn't need to be searched at every step; no further improvements seem necessary
appending a minus is more troublesome: the list needs to be traversed with each append
what if instead of appending a zero, we append -1, and do the adding at the end?
this clearly works when there is only one minus
when two minus signs are encountered, the first time append -1, the second time -2
→ hey, this works for any number of minuses encountered, just store its counter in a variable and sum with it at the end of the algorithm
This is in bird's eye view one possible route towards coming up with a solution. Many routes lead to Rome. Introducing negative numbers might seem tricky, but it is a logical conclusion after contemplating the recursive algorithm for a while.
It works because all changes are sequential, either adding one or subtracting one, starting both the increasing and the decreasing sequences from the same place. That guarantees we have a sequential list overall. For example, given the arbitrary
[None, +, -, +, +, -]
turned vertically for convenience, we can see
None 0
+ 1
- -1
+ 2
+ 3
- -2
Now just shift them up by two (to account for -2):
2 3 1 4 5 0
+ - + + -
Let's look at first to a solution which (I think) is easier to understand, formalize and demonstrate for correctness (but I will only explain it and not demonstrate in a formal way):
We name A[0..N] our input array (where A[k] is None if k = 0 and is + or - otherwise) and B[0..N] our output array (where B[k] is in the range [0, N] and all values are unique)
At first we see that our problem (find B such that B[k] > B[k-1] if A[k] == + and B[k] < B[k-1] if A[k] == -) is only a special case of another problem:
Find B such that B[k] == max(B[0..k]) if A[k] == + and B[k] == min(B[0..k]) if A[k] == -.
Which generalize from "A value must larger or smaller than the last" to "A value must be larger or smaller than everyone before it"
So a solution to this problem is a solution to the original one as well.
Now how do we approach this problem?
A greedy solution will be sufficient, indeed is easy to demonstrate that the value associated with the last + will be the biggest number in absolute (which is N), the one associated with the second last + will be the second biggest number in absolute (which is N-1) ecc...
And in the same time the value associated with the last - will be the smallest number in absolute (which is 0), the one associated with the second last - will be the second smallest (which is 1) ecc...
So we can start filling B from right to left remembering how many + we have seen (let's call this value X), how many - we have seen (let's call this value Y) and looking at what is the current symbol, if it is a + in B we put N-X and we increase X by 1 and if it is a - in B we put 0+Y and we increase Y by 1.
In the end we'll need to fill B[0] with the only remaining value which is equal to Y+1 and to N-X-1.
An interesting property of this solution is that if we look to only the values associated with a - they will be all the values from 0 to Y (where in this case Y is the total number of -) sorted in reverse order; if we look to only the values associated with a + they will be all the values from N-X to N (where in this case X is the total number of +) sorted and if we look at B[0] it will always be Y+1 and N-X-1 (which are equal).
So the - will have all the values strictly smaller than B[0] and reverse sorted and the + will have all the values strictly bigger than B[0] and sorted.
This property is the key to understand why the solution proposed here works:
It consider B[0] equals to 0 and than it fills B following the property, this isn't a solution because the values are not in the range [0, N], but it is possible with a simple translation to move the range and arriving to [0, N]
The idea is to produce a permutation of [0,1...N] which will follow the pattern of [+,-...]. There are many permutations which will be applicable, it isn't a single one. For instance, look the the example provided:
[None, +, +, -, +], you could return [1, 2, 3, 0, 4].
But you also could have returned other solutions, just as valid: [2,3,4,0,1], [0,3,4,1,2] are also solutions. The only concern is that you need to have the first number having at least two numbers above it for positions [1],[2], and leave one number in the end which is lower then the one before and after it.
So the question isn't finding the one and only pattern which is scrambled, but to produce any permutation which will work with these rules.
This algorithm answers two questions for the next member of the list: get a number who’s both higher/lower from previous - and get a number who hasn’t been used yet. It takes a starting point number and essentially create two lists: an ascending list for the ‘+’ and a descending list for the ‘-‘. This way we guarantee that the next member is higher/lower than the previous one (because it’s in fact higher/lower than all previous members, a stricter condition than the one required) and for the same reason we know this number wasn’t used before.
So the intuition of the referenced algorithm is to start with a referenced number and work your way through. Let's assume we start from 0. The first place we put 0+1, which is 1. we keep 0 as our lowest, 1 as the highest.
l[0] h[1] list[1]
the next symbol is '+' so we take the highest number and raise it by one to 2, and update both the list with a new member and the highest number.
l[0] h[2] list [1,2]
The next symbol is '+' again, and so:
l[0] h[3] list [1,2,3]
The next symbol is '-' and so we have to put in our 0. Note that if the next symbol will be - we will have to stop, since we have no lower to produce.
l[0] h[3] list [1,2,3,0]
Luckily for us, we've chosen well and the last symbol is '+', so we can put our 4 and call is a day.
l[0] h[4] list [1,2,3,0,4]
This is not necessarily the smartest solution, as it can never know if the original number will solve the sequence, and always progresses by 1. That means that for some patterns [+,-...] it will not be able to find a solution. But for the pattern provided it works well with 0 as the initial starting point. If we chose the number 1 is would also work and produce [2,3,4,0,1], but for 2 and above it will fail. It will never produce the solution [0,3,4,1,2].
I hope this helps understanding the approach.
This is not an explanation for the question put forward by OP.
Just want to share a possible approach.
Given: N = 7
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Go from 0 to N
[1] fill all '-' starting from right going left.
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Answer: 2 1 0
[2] fill all the vacant places i.e [X & +] starting from left going right.
Index: 0 1 2 3 4 5 6 7
Pattern: X + - + - + - + //X = None
Answer: 3 4 5 6 7
Final:
Pattern: X + - + - + - + //X = None
Answer: 3 4 2 5 1 6 0 7
My answer definitely is too late for your problem but if you need a simple proof, you probably would like to read it:
+min_last or min_so_far is a decreasing value starting from 0.
+max_last or max_so_far is an increasing value starting from 0.
In the input, each value is either "+" or "-" and for each increase the value of max_so_far or decrease the value of min_so_far by one respectively, excluding the first one which is None. So, abs(min_so_far, max_so_far) is exactly equal to N, right? But because you need the range [0, n] but max_so_far and min_so_far now are equal to the number of "+"s and "-"s with the intersection part with the range [0, n] being [0, max_so_far], what you need to do is to pad it the value equal to min_so_far for the final solution (because min_so_far <= 0 so you need to take each value of the current answer to subtract by min_so_far or add by abs(min_so_far)).
I have to interleave a given array of the form
{a1,a2,....,an,b1,b2,...,bn}
as
{a1,b1,a2,b2,a3,b3}
in O(n) time and O(1) space.
Example:
Input - {1,2,3,4,5,6}
Output- {1,4,2,5,3,6}
This is the arrangement of elements by indices:
Initial Index Final Index
0 0
1 2
2 4
3 1
4 3
5 5
By observation after taking some examples, I found that ai (i<n/2) goes from index (i) to index (2i) & bi (i>=n/2) goes from index (i) to index (((i-n/2)*2)+1). You can verify this yourselves. Correct me if I am wrong.
However, I am not able to correctly apply this logic in code.
My pseudo code:
for (i = 0 ; i < n ; i++)
if(i < n/2)
swap(arr[i],arr[2*i]);
else
swap(arr[i],arr[((i-n/2)*2)+1]);
It's not working.
How can I write an algorithm to solve this problem?
Element bn is in the correct position already, so lets forget about it and only worry about the other N = 2n-1 elements. Notice that N is always odd.
Now the problem can be restated as "move the element at each position i to position 2i % N"
The item at position 0 doesn't move, so lets start at position 1.
If you start at position 1 and move it to position 2%N, you have to remember the item at position 2%N before you replace it. The the one from position 2%N goes to position 4%N, the one from 4%N goes to 8%N, etc., until you get back to position 1, where you can put the remaining item into the slot you left.
You are guaranteed to return to slot 1, because N is odd and multiplying by 2 mod an odd number is invertible. You are not guaranteed to cover all positions before you get back, though. The whole permutation will break into some number of cycles.
If you can start this process at one element from each cycle, then you will do the whole job. The trouble is figuring out which ones are done and which ones aren't, so you don't cover any cycle twice.
I don't think you can do this for arbitrary N in a way that meets your time and space constraints... BUT if N = 2x-1 for some x, then this problem is much easier, because each cycle includes exactly the cyclic shifts of some bit pattern. You can generate single representatives for each cycle (called cycle leaders) in constant time per index. (I'll describe the procedure in an appendix at the end)
Now we have the basis for a recursive algorithm that meets your constraints.
Given [a1...an,b1...bn]:
Find the largest x such that 2x <= 2n
Rotate the middle elements to create [a1...ax,b1...bx,ax+1...an,bx+1...bn]
Interleave the first part of the array in linear time using the above-described procedure, since it will have modulus 2x-1
Recurse to interleave the last part of the array.
Since the last part of the array we recurse on is guaranteed to be at most half the size of the original, we have this recurrence for the time complexity:
T(N) = O(N) + T(N/2)
= O(N)
And note that the recursion is a tail call, so you can do this in constant space.
Appendix: Generating cycle leaders for shifts mod 2x-1
A simple algorithm for doing this is given in a paper called "An algorithm for generating necklaces of beads in 2 colors" by Fredricksen and Kessler. You can get a PDF here: https://core.ac.uk/download/pdf/82148295.pdf
The implementation is easy. Start with x 0s, and repeatedly:
Set the lowest order 0 bit to 1. Let this be bit y
Copy the lower order bits starting from the top
The result is a cycle leader if x-y divides x
Repeat until you have all x 1s
For example, if x=8 and we're at 10011111, the lowest 0 is bit 5. We switch it to 1 and then copy the remainder from the top to give 10110110. 8-5=3, though, and 3 does not divide 8, so this one is not a cycle leader and we continue to the next.
The algorithm I'm going to propose is probably not o(n).
It's not based on swapping elements but on moving elements which probably could be O(1) if you have a list and not an array.
Given 2N elements, at each iteration (i) you take the element in position N/2 + i and move it to position 2*i
a1,a2,a3,...,an,b1,b2,b3,...,bn
| |
a1,b1,a2,a3,...,an,b2,b3,...,bn
| |
a1,b1,a2,b2,a3,...,an,b3,...,bn
| |
a1,b1,a2,b2,a3,b3,...,an,...,bn
and so on.
example with N = 4
1,2,3,4,5,6,7,8
1,5,2,3,4,6,7,8
1,5,2,6,3,4,7,8
1,5,2,6,3,7,4,8
One idea which is a little complex is supposing each location has the following value:
1, 3, 5, ..., 2n-1 | 2, 4, 6, ..., 2n
a1,a2, ..., an | b1, b2, ..., bn
Then using inline merging of two sorted arrays as explained in this article in O(n) time an O(1) space complexity. However, we need to manage this indexing during the process.
There is a practical linear time* in-place algorithm described in this question. Pseudocode and C code are included.
It involves swapping the first 1/2 of the items into the correct place, then unscrambling the permutation of the 1/4 of the items that got moved, then repeating for the remaining 1/2 array.
Unscrambling the permutation uses the fact that left items move into the right side with an alternating "add to end, swap oldest" pattern. We can find the i'th index in this permutation with this this rule:
For even i, the end was at i/2.
For odd i, the oldest was added to the end at step (i-1)/2
*The number of data moves is definitely O(N). The question asks for the time complexity of the unscramble index calculation. I believe it is no worse than O(lg lg N).
There is an array where all but one of the cells are 0, and we want to find the index of that single non-zero cell. The problem is, every time that you check for a cell in this array, that non-zero element will do one of the following:
move forward by 1
move backward by 1
stay where it is.
For example, if that element is currently at position 10, and I check what is in arr[5], then the element may be at position 9, 10 or 11 after I checked arr[5].
We only need to find the position where the element is currently at, not where it started at (which is impossible).
The hard part is, if we write a for loop, there really is no way to know if the element is currently in front of you, or behind you.
Some more context if it helps:
The interviewer did give a hint which is maybe I should move my pointer back after checking x-number of cells. The problem is, when should I move back, and by how many slots?
While "thinking out loud", I started saying a bunch of common approaches hoping that something would hit. When I said recursion, the interviewer did say "recursion is a good start". I don't know recursion really is the right approach, because I don't see how I can do recursion and #1 at the same time.
The interviewer said this problem can't be solved in O(n^2). So we are looking at at least O(n^3), or maybe even exponential.
Tl;dr: Your best bet is to keep checking each even index in the array in turn, wrapping around as many times as necessary until you find your target. On average you will stumble upon your target in the middle of your second pass.
First off, as many have already said, it is indeed impossible to ensure you will find your target element in any given amount of time. If the element knows where your next sample will be, it can always place itself somewhere else just in time. The best you can do is to sample the array in a way that minimizes the expected number of accesses - and because after each sample you learn nothing except if you were successful or not and a success means you stop sampling, an optimal strategy can be described simply as a sequence of indexes that should be checked, dependent only on the size of the array you're looking through. We can test each strategy in turn via automated means to see how well they perform. The results will depend on the specifics of the problem, so let's make some assumptions:
The question doesn't specify the starting position our target. Let us assume that the starting position is chosen uniformly from across the entire array.
The question doesn't specify the probability our target moves. For simplicity let's say it's independent on parameters such as the current position in the array, time passed and the history of samples. Using the probability 1/3 for each option gives us the least information, so let's use that.
Let us test our algorithms on an array of 100 101 elements. Also, let us test each algorithm one million times, just to be reasonably sure about its average case behavior.
The algorithms I've tested are:
Random sampling: after each attempt we forget where we were looking and choose an entirely new index at random. Each sample has an independent 1/n chance of succeeding, so we expect to take n samples on average. This is our control.
Sweep: try each position in sequence until our target is found. If our target wasn't moving, this would take n/2 samples on average. Our target is moving, however, so we may miss it on our first sweep.
Slow sweep: the same, except we test each position several times before moving on. Proposed by Patrick Trentin with a slowdown factor of 30x, tested with a slowdown factor of 2x.
Fast sweep: the opposite of slow sweep. After the first sample we skip (k-1) cells before testing the next one. The first pass starts at ary[0], the next at ary[1] and so on. Tested with each speed up factor (k) from 2 to 5.
Left-right sweep: First we check each index in turn from left to right, then each index from right to left. This algorithm would be guaranteed to find our target if it was always moving (which it isn't).
Smart greedy: Proposed by Aziuth. The idea behind this algorithm is that we track each cell probability of holding our target, then always sampling the cell with the highest probability. On one hand, this algorithm is relatively complex, on the other hand it sounds like it should give us the optimal results.
Results:
The results are shown as [average] ± [standard derivation].
Random sampling: 100.889145 ± 100.318212
At this point I have realised a fencepost error in my code. Good thing we have a control sample. This also establishes that we have in the ballpark of two or three digits of useful precision (sqrt #samples), which is in line with other tests of this type.
Sweep: 100.327030 ± 91.210692
The chance of our target squeezing through the net well counteracts the effect of the target taking n/2 time on average to reach the net. The algorithm doesn't really fare any better than a random sample on average, but it's more consistent in its performance and it isn't hard to implement either.
slow sweep (x0.5): 128.272588 ± 99.003681
While the slow movement of our net means our target will probably get caught in the net during the first sweep and won't need a second sweep, it also means the first sweep takes twice as long. All in all, relying on the target moving onto us seems a little inefficient.
fast sweep x2: 75.981733 ± 72.620600
fast sweep x3: 84.576265 ± 83.117648
fast sweep x4: 88.811068 ± 87.676049
fast sweep x5: 91.264716 ± 90.337139
That's... a little surprising at first. While skipping every other step means we complete each lap in twice as many turns, each lap also has a reduced chance of actually encountering the target. A nicer view is to compare Sweep and FastSweep in broom-space: rotate each sample so that the index being sampled is always at 0 and the target drifts towards the left a bit faster. In Sweep, the target moves at 0, 1 or 2 speed each step. A quick parallel with the Fibonacci base tells us that the target should hit the broom/net around 62% of the time. If it misses, it takes another 100 turns to come back. In FastSweep, the target moves at 1, 2 or 3 speed each step meaning it misses more often, but it also takes half as much time to retry. Since the retry time drops more than the hit rate, it is advantageous to use FastSweep over Sweep.
Left-right sweep: 100.572156 ± 91.503060
Mostly acts like an ordinary sweep, and its score and standard derivation reflect that. Not too surprising a result.
Aziuth's smart greedy: 87.982552 ± 85.649941
At this point I have to admit a fault in my code: this algorithm is heavily dependent on its initial behavior (which is unspecified by Aziuth and was chosen to be randomised in my tests). But performance concerns meant that this algorithm will always choose the same randomized order each time. The results are then characteristic of that randomisation rather than of the algorithm as a whole.
Always picking the most likely spot should find our target as fast as possible, right? Unfortunately, this complex algorithm barely competes with Sweep 3x. Why? I realise this is just speculation, but let us peek at the sequence Smart Greedy actually generates: During the first pass, each cell has equal probability of containing the target, so the algorithm has to choose. If it chooses randomly, it could pick up in the ballpark of 20% of cells before the dips in probability reach all of them. Afterwards the landscape is mostly smooth where the array hasn't been sampled recently, so the algorithm eventually stops sweeping and starts jumping around randomly. The real problem is that the algorithm is too greedy and doesn't really care about herding the target so it could pick at the target more easily.
Nevertheless, this complex algorithm does fare better than both simple Sweep and a random sampler. it still can't, however, compete with the simplicity and surprising efficiency of FastSweep. Repeated tests have shown that the initial randomisation could swing the efficiency anywhere between 80% run time (20% speedup) and 90% run time (10% speedup).
Finally, here's the code that was used to generate the results:
class WalkSim
attr_reader :limit, :current, :time, :p_stay
def initialize limit, p_stay
#p_stay = p_stay
#limit = limit
#current = rand (limit + 1)
#time = 0
end
def poke n
r = n == #current
#current += (rand(2) == 1 ? 1 : -1) if rand > #p_stay
#current = [0, #current, #limit].sort[1]
#time += 1
r
end
def WalkSim.bench limit, p_stay, runs
histogram = Hash.new{0}
runs.times do
sim = WalkSim.new limit, p_stay
gen = yield
nil until sim.poke gen.next
histogram[sim.time] += 1
end
histogram.to_a.sort
end
end
class Array; def sum; reduce 0, :+; end; end
def stats histogram
count = histogram.map{|k,v|v}.sum.to_f
avg = histogram.map{|k,v|k*v}.sum / count
variance = histogram.map{|k,v|(k-avg)**2*v}.sum / (count - 1)
{avg: avg, stddev: variance ** 0.5}
end
RUNS = 1_000_000
PSTAY = 1.0/3
LIMIT = 100
puts "random sampling"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {
Enumerator.new {|y|loop{y.yield rand (LIMIT + 1)}}
}
puts "sweep"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {
Enumerator.new {|y|loop{0.upto(LIMIT){|i|y.yield i}}}
}
puts "x0.5 speed sweep"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {
Enumerator.new {|y|loop{0.upto(LIMIT){|i|2.times{y.yield i}}}}
}
(2..5).each do |speed|
puts "x#{speed} speed sweep"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {
Enumerator.new {|y|loop{speed.times{|off|off.step(LIMIT, speed){|i|y.yield i}}}}
}
end
puts "sweep LR"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {
Enumerator.new {|y|loop{
0.upto(LIMIT){|i|y.yield i}
LIMIT.downto(0){|i|y.yield i}
}}
}
$sg_gen = Enumerator.new do |y|
probs = Array.new(LIMIT + 1){1.0 / (LIMIT + 1)}
loop do
ix = probs.each_with_index.map{|v,i|[v,rand,i]}.max.last
probs[ix] = 0
probs = [probs[0] * (1 + PSTAY)/2 + probs[1] * (1 - PSTAY)/2,
*probs.each_cons(3).map{|a, b, c| (a + c) / 2 * (1 - PSTAY) + b * PSTAY},
probs[-1] * (1 + PSTAY)/2 + probs[-2] * (1 - PSTAY)/2]
y.yield ix
end
end
$sg_cache = []
def sg_enum; Enumerator.new{|y| $sg_cache.each{|n| y.yield n}; $sg_gen.each{|n| $sg_cache.push n; y.yield n}}; end
puts "smart greedy"
p stats WalkSim.bench(LIMIT, PSTAY, RUNS) {sg_enum}
no forget everything about loops.
copy this array to another array and then check what cells are now non-zero. for example if your main array is mainArray[] you can use:
int temp[sizeOfMainArray]
int counter = 0;
while(counter < sizeOfArray)
{
temp[counter] == mainArray[counter];
}
//then check what is non-zero in copied array
counter = 0;
while(counter < sizeOfArray)
{
if(temp[counter] != 0)
{
std::cout<<"I Found It!!!";
}
}//end of while
One approach perhaps :
i - Have four index variables f,f1,l,l1. f is pointing at 0,f1 at 1, l is pointing at n-1 (end of the array) and l1 at n-2 (second last element)
ii - Check the elements at f1 and l1 - are any of them non zero ? If so stop. If not, check elements at f and l (to see if the element has jumped back 1).
iii - If f and l are still zero, increment the indexes and repeat step ii. Stop when f1 > l1
Iff an equality check against an array index makes the non-zero element jump.
Why not think of a way where we don't really require an equality check with an array index?
int check = 0;
for(int i = 0 ; i < arr.length ; i++) {
check |= arr[i];
if(check != 0)
break;
}
Orrr. Maybe you can keep reading arr[mid]. The non-zero element will end up there. Some day. Reasoning: Patrick Trentin seems to have put it in his answer (somewhat, its not really that, but you'll get an idea).
If you have some information about the array, maybe we can come up with a niftier approach.
Ignoring the trivial case where the 1 is in the first cell of the array if you iterate through the array testing each element in turn you must eventually get to the position i where the 1 is in cell i+2. So when you read cell i+1 one of three things is going to happen.
The 1 stays where it is, you're going to find it next time you look
The 1 moves away from you, your back to the starting position with the 1 at i+2 next time
The 1 moves to cell you've just checked, it dodged your scan
Re-reading the i+1 cell will find the 1 in case 3 but just give it another chance to move in cases 1 and 2 so a strategy based on re-reading won't work.
My option would therefore to adopt a brute force approach, if I keep scanning the array then I'm going to hit case 1 at some point and find the elusive 1.
Assumptions:
The array is no true array. This is obvious given the problem. We got some class that behaves somewhat like an array.
The array is mostly hidden. The only public operations are [] and size().
The array is obfuscated. We cannot get any information by retrieving it's address and then analyze the memory at that position. Even if we iterate through the whole memory of our system, we can't do tricks due to some advanced cryptographic means.
Every field of the array has the same probability to be the first field that hosts the one.
We know the probabilities of how the one changes it's position when triggered.
Probability controlled algorithm:
Introduce another array of same size, the probability array (over double).
This array is initialized with all fields to be 1/size.
Every time we use [] on the base array, the probability array changes in this way:
The accessed position is set to zero (did not contain the one)
An entry becomes the sum of it's neighbors times the probability of that neighbor to jump to the entries position. (prob_array_next_it[i] = prob_array_last_it[i-1]*prob_jump_to_right + prob_array_last_it[i+1]*prob_jump_to_left + prob_array_last_it[i]*prob_dont_jump, different for i=0 and i=size-1 of course)
The probability array is normalized (setting one entry to zero set the sum of the probabilities to below one)
The algorithm accesses the field with the highest probability (chooses amongst those that have)
It might be able to optimize this by controlling the flow of probabilities, but that needs to be based on the wandering event and might require some research.
No algorithm that tries to solve this problem is guaranteed to terminate after some time. For a complexity, we would analyze the average case.
Example:
Jump probabilities are 1/3, nothing happens if trying to jump out of bounds
Initialize:
Hidden array: 0 0 1 0 0 0 0 0
Probability array: 1/8 1/8 1/8 1/8 1/8
1/8 1/8 1/8
First iteration: try [0] -> failure
Hidden array: 0 0 1 0 0 0 0 0 (no jump)
Probability array step 1: 0
1/8 1/8 1/8 1/8 1/8 1/8 1/8
Probability array step 2: 1/24 2/24 1/8
1/8 1/8 1/8 1/8 1/8
Probability array step 2: same normalized (whole array * 8/7):
1/21 2/21 1/7
1/7 1/7 1/7 1/7 1/7
Second iteration: try [2] as 1/7 is the maximum and this is the first field with 1/7 -> success (example should be clear by now, of course this might not work so fast on another example, had no interest of doing this for a lot of iterations since the probabilities would get cumbersome to compute by hand, would need to implement it. Note that if the one jumped to the left, we wouldn't have checked it so fast, even if it remained there for some time)
There is an integer array, for eg.
{3,1,2,7,5,6}
One can move forward through the array either each element at a time or can jump a few elements based on the value at that index. For e.g., one can go from 3 to 1 or 3 to 7, then one can go from 1 to 2 or 1 to 2(no jumping possible here), then one can go 2 to 7 or 2 to 5, then one can go 7 to 5 only coz index of 7 is 3 and adding 7 to 3 = 10 and there is no tenth element.
I have to only count the number of possible paths to reach the end of the array from start index.
I could only do it recursively and naively which runs in exponential time.
Somebody plz help.
My recommendation: use dynamic programming.
If this key word is sufficient and you want the challenge to find a possible solution on your own, dont read any further!
Here a possible DP-algorithm on the example input {3,1,2,7,5,6}. It will be your job to adjust on the general problem.
create array sol length 6 with just zeros in it. the array will hold the number of ways.
sol[5] = 1;
for (i = 4; i>=0;i--) {
sol[i] = sol[i+1];
if (i+input[i] < 6 && input[i] != 1)
sol[i] += sol[i+input[i]];
}
return sol[0];
runtime O(n)
As for the directed graph solution hinted in the comments :
Each cell in the array represents a node. Make an directed edge from each node to the node accessable. Basically you can then count more easily the number of ways by just looking at the outdegrees on the nodes (since there is no directed cycle) however it is a lot of boiler plate to actual program it.
Adjusting the recursive solution
another solution would be to pruning. This is basically equivalent to the DP-algorithm. The exponentiel time comes from the fact, that you calculate values several times. Eg function is recfunc(index). The initial call recFunc(0) calls recFunc(1) and recFunc(3) and so on. However recFunc(3) is bound to be called somewhen again, which leads to a repeated recursive calculation. To prune this you add a Map to hold all already calculated values. If you make a call recFunc(x) you lookup in the map if x was already calculated. If yes, return the stored value. If not, calculate, store and return it. This way you get a O(n) too.
there is an array of numbers an this array is irregular and we should find a maximum number (n) that at least n number is bigger than it (this number may be in array and may not be in array )
for example if we give 2 5 7 6 9 number 4 is maximum number that at least 4 number (or more than it ) is bigger than 4 (5 6 7 9 are bigger)
i solve this problem but i think it gives time limit in big array of numbers so i want to resolve this problem in another way
so i use merge sort for sorting that because it take nlog(n) and then i use a counter an it counts from 1 to k if we have k number more than k we count again for example we count from 1 to 4 then in 5 we don't have 5 number more than 5 so we give k-1 = 4 and this is our n .
it's good or it maybe gives time limit ? does anybody have another idea ?
thanks
In c++ there is a function called std::nth_element and it can find the nth element of an array in linear time. Using this function you should find the N - n- th element (where N is the total number of elements in the array) and subtract 1 from it.
As you seek a solution in C you can not make use of this function, but you can implement your solution similarly. nth_element performs something quite similar to qsort, but it only performs partition on the part of the array where the n-th element is.
Now let's assume you have nth_element implemented. We will perform something like combination of binary search and nth_element. First we assume that the answer of the question is the middle element of the array (i.e. the N/2-th element). We use nth_element and we find the N/2th element. If it is more than N/2 we know the answer to your problem is at least N/2, otherwise it will be less. Either way in order to find the answer we will only continue with one of the two partitions created by the N/2th element. If this partition is the right one(elements bigger than N/2) we continue solving the same problem, otherwise we start searching for the max element M on the left of the N/2th element that has at least x bigger elements such that x + N/2 > M. The two subproblems will have the same complexity. You continue performing this operation until the interval you are interested in is of length 1.
Now let's prove the complexity of the above algorithm is linear. First nth_element is linear performing operations in the order of N, second nth_element that only considers one half of the array will perform operations in the order of N/2 the third - in the order of N/4 and so on. All in all you will perform operations in the order of N + N/2 + N/4 + ... + 1. This sum is less than 2 * N thus your complexity is still linear.
Your solution is asymptotically slower than what I propose above as it has a complexity O(n*log(n)), while my solution has complexity of O(n).
I would use a modified variant of a sorting algorithm that uses pivot values.
The reason is that you want to sort as few elements as possible.
So I would use qsort as my base algorithm and let the pivot element control which partition to sort (you will only need to sort one).