You are given a list of integers nums of even length. Consider an operation where you pick any number in nums and update it with a value between [1, max(nums)]. Return the number of operations required such that for every i, nums[i] + nums[n - 1 - i] equals to the same number. The problem can be solved greedily.
Note: n is the size of the array and max(nums) is the maximum element in nums.
For example: nums = [1,5,4,5,9,3] the expected operations are 2.
Explanation: The maxnums is 9, so I can change any element of nums to any number between [1, 9] which costs one operation.
Choose 1 at index 0 and change it to 6
Choose 9 at index 4 and change it to 4.
Now this makes the nums[0] + nums[5] = nums[1] + nums[4] = nums[2] + nums[3] = 9. We had changed 2 numbers and it cost us 2 operations which is the minimum for this input.
The approach that I've used is to find the median of the sums and use that to find the number of operations greedily.
Let us find the all the sums of the array based on the given condition.
Sums can be calculated by nums[i] + nums[n-1-i].
Let i = 0, nums[0] + nums[6-1-0] = 4.
i = 1, nums[1] + nums[6-1-1] = 14.
i = 2, nums[2] + nums[6-1-2] = 9.
Store these sums in an array and sort it.
sums = [4,9,14] after sorting. Now find the median from sums which is 9 as it is the middle element.
Now I use this median to equalize the sums and we can find the number of operations. I've also added the code that I use to calculate the number of operations.
int operations = 0;
for(int i=0; i<nums.size()/2; i++) {
if(nums[i] + nums[nums.size()-1-i] == mid)
continue;
if(nums[i] + nums[nums.size()-1-i] > mid) {
if(nums[i] + 1 <= mid || 1 + nums[nums.size()-1-i] <= mid) {
operations++;
} else {
operations += 2;
}
} else if (maxnums + nums[nums.size()-1-i] >= mid || nums[i] + maxnums >= mid) {
operations++;
} else {
operations += 2;
}
}
The total operations for this example is 2 which is correct.
The problem here is that, for some cases choosing the median gives the wrong result. For example, the nums = [10, 7, 2, 9, 4, 1, 7, 3, 10, 8] expects 5 operations but my code gives 6 if the median (16) was chosen.
Is choosing the median not the most optimal approach? Can anyone help provide a better approach?
I think the following should work:
iterate pairs of numbers
for each pair, calculate the sum of that pair, as well as the min and max sum that can be achieved by changing just one of the values
update a dictionary/map with -1 when starting a new "region" requiring one fewer change, and +1 when that region is over
iterate the boundaries in that dictionary and update the total changes needed to find the sum that requires the fewest updates
Example code in Python, giving 9 as the best sum for your example, requiring 5 changes.
from collections import defaultdict
nums = [10, 7, 2, 9, 4, 1, 7, 3, 10, 8]
m = max(nums)
pairs = [(nums[i], nums[-1-i]) for i in range(len(nums)//2)]
print(pairs)
score = defaultdict(int)
for a, b in map(sorted, pairs):
low = a + 1
high = m + b
score[low] -= 1
score[a+b] -= 1
score[a+b+1] += 1
score[high+1] += 1
print(sorted(score.items()))
cur = best = len(nums)
num = None
for i in sorted(score):
cur += score[i]
print(i, cur)
if cur < best:
best, num = cur, i
print(best, num)
The total complexity of this should be O(nlogn), needing O(n) to create the dictionary, O(nlogn) for sorting, and O(n) for iterating the sorted values in that dictionary. (Do not use an array or the complexity could be much higher if max(nums) >> len(nums))
(UPDATED receiving additional information)
The optimal sum must be one of the following:
a sum of a pair -> because you can keep both numbers of that pair
the min value of a pair + 1 -> because it is the smallest possible sum you only need to change 1 of the numbers for that pair
the max value of a pair + the max overall value -> because it is the largest possible sum you only need to change 1 of the numbers for that pair
Hence, there are order N possible sums.
The total number of operations for this optimal sum can be calculated in various ways.
The O(NĀ²) is quite trivial. And you can implement it quite easily if you want to confirm other solutions work.
Making it O(N log N)
getting all possible optimal sums O(N)
for each possible sum you can calculate occ the number of pairs having that exact sum and thus don't require any manipulation. O(N)
For all other pairs you just need to know if it requires 1 or 2 operations to get to that sum. Which is 2 when it is either impossible if the smallest of the pair is too big to reach sum with the smallest possible number or when the largest of the pair is too small to reach the sum with the largest possible number. Many data structures could be used for that (BIT, Tree, ..). I just used a sorted list and applied binary search (not exhaustively tested though). O(N log N)
Example solution in java:
int[] nums = new int[] {10, 7, 2, 9, 4, 1, 7, 3, 10, 8};
// preprocess pairs: O(N)
int min = 1
, max = nums[0];
List<Integer> minList = new ArrayList<>();
List<Integer> maxList = new ArrayList<>();
Map<Integer, Integer> occ = new HashMap<>();
for (int i=0;i<nums.length/2;i++) {
int curMin = Math.min(nums[i], nums[nums.length-1-i]);
int curMax = Math.max(nums[i], nums[nums.length-1-i]);
min = Math.min(min, curMin);
max = Math.max(max, curMax);
minList.add(curMin);
maxList.add(curMax);
// create all pair sums
int pairSum = nums[i] + nums[nums.length-1-i];
int currentOccurences = occ.getOrDefault(pairSum, 0);
occ.put(pairSum, currentOccurences + 1);
}
// sorting 0(N log N)
Collections.sort(minList);
Collections.sort(maxList);
// border cases
for (int a : minList) {
occ.putIfAbsent(a + max, 0);
}
for (int a : maxList) {
occ.putIfAbsent(a + min, 0);
}
// loop over all condidates O(N log N)
int best = (nums.length-2);
int med = max + min;
for (Map.Entry<Integer, Integer> entry : occ.entrySet()) {
int sum = entry.getKey();
int count = entry.getValue();
int requiredChanges = (nums.length / 2) - count;
if (sum > med) {
// border case where max of pair is too small to be changed to pair of sum
requiredChanges += countSmaller(maxList, sum - max);
} else if (sum < med) {
// border case where having a min of pair is too big to be changed to pair of sum
requiredChanges += countGreater(minList, sum - min);
}
System.out.println(sum + " -> " + requiredChanges);
best = Math.min(best, requiredChanges);
}
System.out.println("Result: " + best);
}
// O(log N)
private static int countGreater(List<Integer> list, int key) {
int low=0, high=list.size();
while(low < high) {
int mid = (low + high) / 2;
if (list.get(mid) <= key) {
low = mid + 1;
} else {
high = mid;
}
}
return list.size() - low;
}
// O(log N)
private static int countSmaller(List<Integer> list, int key) {
int low=0, high=list.size();
while(low < high) {
int mid = (low + high) / 2;
if (list.get(mid) < key) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
Just to offer some theory -- we can easily show that the upper bound for needed changes is n / 2, where n is the number of elements. This is because each pair can be made in one change to anything between 1 + C and max(nums) + C, where C is any of the two elements in a pair. For the smallest C, we can bind max(nums) + 1 at the highest; and for the largest C, we can bind 1 + max(nums) at the lowest.
Since those two bounds at the worst cases are equal, we are guaranteed there is some solution with at most N / 2 changes that leaves at least one C (array element) unchanged.
From that we conclude that an optimal solution either (1) has at least one pair where neither element is changed and the rest require only one change per pair, or (2) our optimal solution has n / 2 changes as discussed above.
We can therefore proceed to test each existing pair's single or zero change possibilities as candidates. We can iterate over a sorted list of two to three possibilities per pair, labeled with each cost and index. (Other authors on this page have offered similar ways and code.)
I want to find the length smallest subarray whose sum is equal to k.
Input: arr[] = {2, 4, 6, 10, 2, 1}, K = 12
Output: 2
Explanation:
All possible subarrays with sum 12 are {2, 4, 6} and {10, 2}.
Input: arr[] = { 1, 2, 4, 3, 2, 4, 1 }, K = 7
Output: 2
Here's a solution using JavaScript.
It could be made more efficient, for sure, but I've coded it to work.
function lengthOfShortestSubArrayOfSumK(array, k) {
var combos=[];
for(var i=0; i<Math.pow(2, array.length); i++) {
var bin=("0".repeat(array.length)+i.toString(2)).slice(-array.length).split("");
var ones=bin.reduce((count, digit)=>{count+=digit=="1";return count;},0);
var sum=bin.reduce((sum, digit, index)=>{sum+=digit=="1"?array[index]:0;return sum;},0);
combos.push([bin, ones, sum]);
};
return combos.filter(combo=>combo[2]==k).sort((a, b)=>a[1]-b[1])[0][1];
}
var arraysAndKs=[
{array:[2, 4, 6, 10, 2, 1], k:12},
{array:[1, 2, 4, 3, 2, 4, 1], k:7}
];
for(arrayAndK of arraysAndKs)
console.log("Length of shortest sub array of ["+arrayAndK.array.join(", ")+"] with sum "+arrayAndK.k+" is : "+lengthOfShortestSubArrayOfSumK(arrayAndK.array, arrayAndK.k));
The Binary number between 0 and array.length squared will give us a representation of included array items in the sum.
We count how many "ones" are in that Binary number.
We sum array items masked by those "one"s.
We save into combos array an array of the Binary number, "one"s count, and sum.
We filter combos for sum k, sort by count of "one"s, and retrun the first's "one"s count.
I'm sure this can be translated to any programming language.
You can use an algorithm that finds a subset in size K, and save another variable that stores the number of members that make up such a subarray.
The algorithm for finding a K subarray is:
initialize an array of size K, Each place (idx) indicates whether there is a subarray that amounts to idx (I used a dictionary)
Go over any number (i) in the array, and any sum (j) we can reach in the previous iteration now we can reach j + i.
If in the K place it is marked TRUE, then there is a subarray that amounts to K.
Here's the solution in Python
def foo(arr,k):
dynamic = {0:0}
for i in arr:
temp = {}
for j, l in dynamic.items():
if i + j <= k: # if not it's not interesting us
# choose the smallest subarray
temp[i+j] = min(l+1,dynamic.get(i+j,len(arr)))
dynamic.update(temp)
return dynamic.get(k,-1)
the complexity is O(N*K).
I assumed that the subarray refers to any possible combinations of original array.
Here is a Python code that solves the problem under the condition that the subset must be contiguous:
in O(N) complexity
def shortest_contiguous_subarray(arr,k):
if k in arr:
return 1
n = len(arr)
sub_length = float('inf')
sub = arr[(i:=0)]
j = 1
while j < n:
while sub < k and j < n:
sub += arr[j]
j += 1
while sub > k:
sub -= arr[i]
i += 1
if sub == k:
# print(arr[i:j],j-i)
sub_length = min(sub_length,j-i)
sub -= arr[i]
i += 1
return sub_length if sub_length <= n else -1
This answer works for any array of positive numbers, and can be modified to work with arrays that have zero or negative elements if an O(n) pre-processing pass is performed (1. find the minimum element m, m <= 0, 2. make the whole array positive by adding -m+1 to all elements, 3. solve for sum + n*(1-m))
function search(input, goal) {
let queue = [ { avail: input.slice(), used: [], sum: 0 } ]; // initial state
for (let qi = 0; qi < queue.length; qi ++) {
let s = queue[qi]; // like a pop, but without using O(n) shift
for (let i = 0; i < s.avail.length; i++) {
let e = s.avail[i];
if (s.sum + e > goal) continue; // dead end
if (s.sum + e == goal) return [...s.used, e]; // eureka!!
queue.push({ // keep digging
avail: [...s.avail.slice(0, i), ...s.avail.slice(i+1)],
used: [...s.used, e],
sum: s.sum + e
});
}
}
return undefined; // no subset of input adds up to goal
}
console.log(search([2, 4, 6, 10, 2, 1], 12))
This is a classic breadth-first-search that does a little bit of pruning when it detects that we are already over the target sum. It can be further optimized to avoid exploring the same branch several times (for example, [4,2] is equivalent to [2,4]) - but this would require extra memory to keep a set of "visited" states. Additionally, you could add heuristics to explore more promising branches first.
I have done this by using unordered_map in c++. Hope this helps .
`
/* smallest subarray of sum k*/
#include<bits/stdc++.h>
using namespace std;
int main()
{
vector <int> v = {2,4,6,10,2,12};
int k=12;
unordered_map<int,int>m;
int start=0,end=-1;
int len=0,mini=INT_MAX;
int currsum=0;
for(int i=0;i<v.size();i++){
currsum+=v[i];
if(currsum==k){
start=0,end=i;
len=end-start+1;
mini=min(mini,len);
}
if(v[i]==k){
mini=min(mini,1);
}
if(m.find(currsum-k)!=m.end()){
end=i;
start=m[(currsum-k)]+1;
len=end-start+1;
mini=min(mini,len);
}
m[currsum]=i;
}
cout<<mini;
return 0;
}`
class Solution
{
static int findSubArraySum(int arr[], int N, int k)
{
// code here
// i use prefix sum and hashmap approach
HashMap<Integer, Integer> map = new HashMap<>();
map.put(0,1);
// this is bcoz when 1st element is valid one
int count=0;
int sum=0;
for(int i=0;i<N;i++){
sum += arr[i];
// prefix sum
if(map.containsKey(sum-k)){
count += map.get(sum-k);
}
map.put(sum, map.getOrDefault(sum,0)+1);
}
return count;
}
}
// this approach even for -ve numbers
// i came to dis solution by prefix sum approach
This version finds the entire optimal sub-array, not only its length. It's based on a recursion. It will test each number of the array against the optimal sub-array of the rest.
const bestSum = (targetSum, numbers) => {
var shortestCombination = null
for (var i = 0; i < numbers.length; i++) {
var current = numbers[i];
if (current == 0) {
continue
}
if (current == targetSum) {
return [current]
}
if (current > targetSum) {
continue;
}
// "remove" current from array
numbers[i] = 0;
// now the recursion:
var rest = bestSum(targetSum - current, numbers)
if (rest && (!shortestCombination || rest.length + 1 < shortestCombination.length)) {
shortestCombination = [current].concat(rest);
}
// restore current to array
numbers[i] = current
}
return shortestCombination
}
console.log(bestSum(7, [5, 3, 4, 7])) // Should be 7, not [3, 4]
This is my code in Python 3. I used the same idea of find the longest subarray with a sum equal to K. But in the below code for every prefix sum I am storing the recent index.
def smallestSubArraySumLength(a, n, k):
d=defaultdict(lambda:-1)
d[0]=-1
psum=0
maxl=float('inf')
for i in range(n):
psum+=a[I]
if psum-k in d:
maxl=min(maxl, i-d[psum-k])
d[psum]=i
return maxl
I want to write a function that takes an array of letters as an argument and a number of those letters to select.
Say you provide an array of 8 letters and want to select 3 letters from that. Then you should get:
8! / ((8 - 3)! * 3!) = 56
Arrays (or words) in return consisting of 3 letters each.
Art of Computer Programming Volume 4: Fascicle 3 has a ton of these that might fit your particular situation better than how I describe.
Gray Codes
An issue that you will come across is of course memory and pretty quickly, you'll have problems by 20 elements in your set -- 20C3 = 1140. And if you want to iterate over the set it's best to use a modified gray code algorithm so you aren't holding all of them in memory. These generate the next combination from the previous and avoid repetitions. There are many of these for different uses. Do we want to maximize the differences between successive combinations? minimize? et cetera.
Some of the original papers describing gray codes:
Some Hamilton Paths and a Minimal Change Algorithm
Adjacent Interchange Combination Generation Algorithm
Here are some other papers covering the topic:
An Efficient Implementation of the Eades, Hickey, Read Adjacent Interchange Combination Generation Algorithm (PDF, with code in Pascal)
Combination Generators
Survey of Combinatorial Gray Codes (PostScript)
An Algorithm for Gray Codes
Chase's Twiddle (algorithm)
Phillip J Chase, `Algorithm 382: Combinations of M out of N Objects' (1970)
The algorithm in C...
Index of Combinations in Lexicographical Order (Buckles Algorithm 515)
You can also reference a combination by its index (in lexicographical order). Realizing that the index should be some amount of change from right to left based on the index we can construct something that should recover a combination.
So, we have a set {1,2,3,4,5,6}... and we want three elements. Let's say {1,2,3} we can say that the difference between the elements is one and in order and minimal. {1,2,4} has one change and is lexicographically number 2. So the number of 'changes' in the last place accounts for one change in the lexicographical ordering. The second place, with one change {1,3,4} has one change but accounts for more change since it's in the second place (proportional to the number of elements in the original set).
The method I've described is a deconstruction, as it seems, from set to the index, we need to do the reverse ā which is much trickier. This is how Buckles solves the problem. I wrote some C to compute them, with minor changes ā I used the index of the sets rather than a number range to represent the set, so we are always working from 0...n.
Note:
Since combinations are unordered, {1,3,2} = {1,2,3} --we order them to be lexicographical.
This method has an implicit 0 to start the set for the first difference.
Index of Combinations in Lexicographical Order (McCaffrey)
There is another way:, its concept is easier to grasp and program but it's without the optimizations of Buckles. Fortunately, it also does not produce duplicate combinations:
The set that maximizes , where .
For an example: 27 = C(6,4) + C(5,3) + C(2,2) + C(1,1). So, the 27th lexicographical combination of four things is: {1,2,5,6}, those are the indexes of whatever set you want to look at. Example below (OCaml), requires choose function, left to reader:
(* this will find the [x] combination of a [set] list when taking [k] elements *)
let combination_maccaffery set k x =
(* maximize function -- maximize a that is aCb *)
(* return largest c where c < i and choose(c,i) <= z *)
let rec maximize a b x =
if (choose a b ) <= x then a else maximize (a-1) b x
in
let rec iterate n x i = match i with
| 0 -> []
| i ->
let max = maximize n i x in
max :: iterate n (x - (choose max i)) (i-1)
in
if x < 0 then failwith "errors" else
let idxs = iterate (List.length set) x k in
List.map (List.nth set) (List.sort (-) idxs)
A small and simple combinations iterator
The following two algorithms are provided for didactic purposes. They implement an iterator and (a more general) folder overall combinations.
They are as fast as possible, having the complexity O(nCk). The memory consumption is bound by k.
We will start with the iterator, which will call a user provided function for each combination
let iter_combs n k f =
let rec iter v s j =
if j = k then f v
else for i = s to n - 1 do iter (i::v) (i+1) (j+1) done in
iter [] 0 0
A more general version will call the user provided function along with the state variable, starting from the initial state. Since we need to pass the state between different states we won't use the for-loop, but instead, use recursion,
let fold_combs n k f x =
let rec loop i s c x =
if i < n then
loop (i+1) s c ##
let c = i::c and s = s + 1 and i = i + 1 in
if s < k then loop i s c x else f c x
else x in
loop 0 0 [] x
In C#:
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
return k == 0 ? new[] { new T[0] } :
elements.SelectMany((e, i) =>
elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}
Usage:
var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);
Result:
123
124
125
134
135
145
234
235
245
345
Short java solution:
import java.util.Arrays;
public class Combination {
public static void main(String[] args){
String[] arr = {"A","B","C","D","E","F"};
combinations2(arr, 3, 0, new String[3]);
}
static void combinations2(String[] arr, int len, int startPosition, String[] result){
if (len == 0){
System.out.println(Arrays.toString(result));
return;
}
for (int i = startPosition; i <= arr.length-len; i++){
result[result.length - len] = arr[i];
combinations2(arr, len-1, i+1, result);
}
}
}
Result will be
[A, B, C]
[A, B, D]
[A, B, E]
[A, B, F]
[A, C, D]
[A, C, E]
[A, C, F]
[A, D, E]
[A, D, F]
[A, E, F]
[B, C, D]
[B, C, E]
[B, C, F]
[B, D, E]
[B, D, F]
[B, E, F]
[C, D, E]
[C, D, F]
[C, E, F]
[D, E, F]
May I present my recursive Python solution to this problem?
def choose_iter(elements, length):
for i in xrange(len(elements)):
if length == 1:
yield (elements[i],)
else:
for next in choose_iter(elements[i+1:], length-1):
yield (elements[i],) + next
def choose(l, k):
return list(choose_iter(l, k))
Example usage:
>>> len(list(choose_iter("abcdefgh",3)))
56
I like it for its simplicity.
Lets say your array of letters looks like this: "ABCDEFGH". You have three indices (i, j, k) indicating which letters you are going to use for the current word, You start with:
A B C D E F G H
^ ^ ^
i j k
First you vary k, so the next step looks like that:
A B C D E F G H
^ ^ ^
i j k
If you reached the end you go on and vary j and then k again.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
Once you j reached G you start also to vary i.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
...
Written in code this look something like that
void print_combinations(const char *string)
{
int i, j, k;
int len = strlen(string);
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
printf("%c%c%c\n", string[i], string[j], string[k]);
}
}
}
The following recursive algorithm picks all of the k-element combinations from an ordered set:
choose the first element i of your combination
combine i with each of the combinations of k-1 elements chosen recursively from the set of elements larger than i.
Iterate the above for each i in the set.
It is essential that you pick the rest of the elements as larger than i, to avoid repetition. This way [3,5] will be picked only once, as [3] combined with [5], instead of twice (the condition eliminates [5] + [3]). Without this condition you get variations instead of combinations.
Short example in Python:
def comb(sofar, rest, n):
if n == 0:
print sofar
else:
for i in range(len(rest)):
comb(sofar + rest[i], rest[i+1:], n-1)
>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde
For explanation, the recursive method is described with the following example:
Example: A B C D E
All combinations of 3 would be:
A with all combinations of 2 from the rest (B C D E)
B with all combinations of 2 from the rest (C D E)
C with all combinations of 2 from the rest (D E)
I found this thread useful and thought I would add a Javascript solution that you can pop into Firebug. Depending on your JS engine, it could take a little time if the starting string is large.
function string_recurse(active, rest) {
if (rest.length == 0) {
console.log(active);
} else {
string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
string_recurse(active, rest.substring(1, rest.length));
}
}
string_recurse("", "abc");
The output should be as follows:
abc
ab
ac
a
bc
b
c
In C++ the following routine will produce all combinations of length distance(first,k) between the range [first,last):
#include <algorithm>
template <typename Iterator>
bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
/* Credits: Mark Nelson http://marknelson.us */
if ((first == last) || (first == k) || (last == k))
return false;
Iterator i1 = first;
Iterator i2 = last;
++i1;
if (last == i1)
return false;
i1 = last;
--i1;
i1 = k;
--i2;
while (first != i1)
{
if (*--i1 < *i2)
{
Iterator j = k;
while (!(*i1 < *j)) ++j;
std::iter_swap(i1,j);
++i1;
++j;
i2 = k;
std::rotate(i1,j,last);
while (last != j)
{
++j;
++i2;
}
std::rotate(k,i2,last);
return true;
}
}
std::rotate(first,k,last);
return false;
}
It can be used like this:
#include <string>
#include <iostream>
int main()
{
std::string s = "12345";
std::size_t comb_size = 3;
do
{
std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl;
} while (next_combination(s.begin(), s.begin() + comb_size, s.end()));
return 0;
}
This will print the following:
123
124
125
134
135
145
234
235
245
345
static IEnumerable<string> Combinations(List<string> characters, int length)
{
for (int i = 0; i < characters.Count; i++)
{
// only want 1 character, just return this one
if (length == 1)
yield return characters[i];
// want more than one character, return this one plus all combinations one shorter
// only use characters after the current one for the rest of the combinations
else
foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1))
yield return characters[i] + next;
}
}
Simple recursive algorithm in Haskell
import Data.List
combinations 0 lst = [[]]
combinations n lst = do
(x:xs) <- tails lst
rest <- combinations (n-1) xs
return $ x : rest
We first define the special case, i.e. selecting zero elements. It produces a single result, which is an empty list (i.e. a list that contains an empty list).
For n > 0, x goes through every element of the list and xs is every element after x.
rest picks n - 1 elements from xs using a recursive call to combinations. The final result of the function is a list where each element is x : rest (i.e. a list which has x as head and rest as tail) for every different value of x and rest.
> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]
And of course, since Haskell is lazy, the list is gradually generated as needed, so you can partially evaluate exponentially large combinations.
> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
"abcdefgo","abcdefgp","abcdefgq"]
And here comes granddaddy COBOL, the much maligned language.
Let's assume an array of 34 elements of 8 bytes each (purely arbitrary selection.) The idea is to enumerate all possible 4-element combinations and load them into an array.
We use 4 indices, one each for each position in the group of 4
The array is processed like this:
idx1 = 1
idx2 = 2
idx3 = 3
idx4 = 4
We vary idx4 from 4 to the end. For each idx4 we get a unique combination
of groups of four. When idx4 comes to the end of the array, we increment idx3 by 1 and set idx4 to idx3+1. Then we run idx4 to the end again. We proceed in this manner, augmenting idx3,idx2, and idx1 respectively until the position of idx1 is less than 4 from the end of the array. That finishes the algorithm.
1 --- pos.1
2 --- pos 2
3 --- pos 3
4 --- pos 4
5
6
7
etc.
First iterations:
1234
1235
1236
1237
1245
1246
1247
1256
1257
1267
etc.
A COBOL example:
01 DATA_ARAY.
05 FILLER PIC X(8) VALUE "VALUE_01".
05 FILLER PIC X(8) VALUE "VALUE_02".
etc.
01 ARAY_DATA OCCURS 34.
05 ARAY_ITEM PIC X(8).
01 OUTPUT_ARAY OCCURS 50000 PIC X(32).
01 MAX_NUM PIC 99 COMP VALUE 34.
01 INDEXXES COMP.
05 IDX1 PIC 99.
05 IDX2 PIC 99.
05 IDX3 PIC 99.
05 IDX4 PIC 99.
05 OUT_IDX PIC 9(9).
01 WHERE_TO_STOP_SEARCH PIC 99 COMP.
* Stop the search when IDX1 is on the third last array element:
COMPUTE WHERE_TO_STOP_SEARCH = MAX_VALUE - 3
MOVE 1 TO IDX1
PERFORM UNTIL IDX1 > WHERE_TO_STOP_SEARCH
COMPUTE IDX2 = IDX1 + 1
PERFORM UNTIL IDX2 > MAX_NUM
COMPUTE IDX3 = IDX2 + 1
PERFORM UNTIL IDX3 > MAX_NUM
COMPUTE IDX4 = IDX3 + 1
PERFORM UNTIL IDX4 > MAX_NUM
ADD 1 TO OUT_IDX
STRING ARAY_ITEM(IDX1)
ARAY_ITEM(IDX2)
ARAY_ITEM(IDX3)
ARAY_ITEM(IDX4)
INTO OUTPUT_ARAY(OUT_IDX)
ADD 1 TO IDX4
END-PERFORM
ADD 1 TO IDX3
END-PERFORM
ADD 1 TO IDX2
END_PERFORM
ADD 1 TO IDX1
END-PERFORM.
Another C# version with lazy generation of the combination indices. This version maintains a single array of indices to define a mapping between the list of all values and the values for the current combination, i.e. constantly uses O(k) additional space during the entire runtime. The code generates individual combinations, including the first one, in O(k) time.
public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
if (k < 0 || values.Length < k)
yield break; // invalid parameters, no combinations possible
// generate the initial combination indices
var combIndices = new int[k];
for (var i = 0; i < k; i++)
{
combIndices[i] = i;
}
while (true)
{
// return next combination
var combination = new T[k];
for (var i = 0; i < k; i++)
{
combination[i] = values[combIndices[i]];
}
yield return combination;
// find first index to update
var indexToUpdate = k - 1;
while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
{
indexToUpdate--;
}
if (indexToUpdate < 0)
yield break; // done
// update combination indices
for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
{
combIndices[indexToUpdate] = combIndex;
}
}
}
Test code:
foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
System.Console.WriteLine(String.Join(" ", combination));
}
Output:
a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e
Here is an elegant, generic implementation in Scala, as described on 99 Scala Problems.
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist#(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
If you can use SQL syntax - say, if you're using LINQ to access fields of an structure or array, or directly accessing a database that has a table called "Alphabet" with just one char field "Letter", you can adapt following code:
SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter
This will return all combinations of 3 letters, notwithstanding how many letters you have in table "Alphabet" (it can be 3, 8, 10, 27, etc.).
If what you want is all permutations, rather than combinations (i.e. you want "ACB" and "ABC" to count as different, rather than appear just once) just delete the last line (the AND one) and it's done.
Post-Edit: After re-reading the question, I realise what's needed is the general algorithm, not just a specific one for the case of selecting 3 items. Adam Hughes' answer is the complete one, unfortunately I cannot vote it up (yet). This answer's simple but works only for when you want exactly 3 items.
I had a permutation algorithm I used for project euler, in python:
def missing(miss,src):
"Returns the list of items in src not present in miss"
return [i for i in src if i not in miss]
def permutation_gen(n,l):
"Generates all the permutations of n items of the l list"
for i in l:
if n<=1: yield [i]
r = [i]
for j in permutation_gen(n-1,missing([i],l)): yield r+j
If
n<len(l)
you should have all combination you need without repetition, do you need it?
It is a generator, so you use it in something like this:
for comb in permutation_gen(3,list("ABCDEFGH")):
print comb
https://gist.github.com/3118596
There is an implementation for JavaScript. It has functions to get k-combinations and all combinations of an array of any objects. Examples:
k_combinations([1,2,3], 2)
-> [[1,2], [1,3], [2,3]]
combinations([1,2,3])
-> [[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]
Lets say your array of letters looks like this: "ABCDEFGH". You have three indices (i, j, k) indicating which letters you are going to use for the current word, You start with:
A B C D E F G H
^ ^ ^
i j k
First you vary k, so the next step looks like that:
A B C D E F G H
^ ^ ^
i j k
If you reached the end you go on and vary j and then k again.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
Once you j reached G you start also to vary i.
A B C D E F G H
^ ^ ^
i j k
A B C D E F G H
^ ^ ^
i j k
...
function initializePointers($cnt) {
$pointers = [];
for($i=0; $i<$cnt; $i++) {
$pointers[] = $i;
}
return $pointers;
}
function incrementPointers(&$pointers, &$arrLength) {
for($i=0; $i<count($pointers); $i++) {
$currentPointerIndex = count($pointers) - $i - 1;
$currentPointer = $pointers[$currentPointerIndex];
if($currentPointer < $arrLength - $i - 1) {
++$pointers[$currentPointerIndex];
for($j=1; ($currentPointerIndex+$j)<count($pointers); $j++) {
$pointers[$currentPointerIndex+$j] = $pointers[$currentPointerIndex]+$j;
}
return true;
}
}
return false;
}
function getDataByPointers(&$arr, &$pointers) {
$data = [];
for($i=0; $i<count($pointers); $i++) {
$data[] = $arr[$pointers[$i]];
}
return $data;
}
function getCombinations($arr, $cnt)
{
$len = count($arr);
$result = [];
$pointers = initializePointers($cnt);
do {
$result[] = getDataByPointers($arr, $pointers);
} while(incrementPointers($pointers, count($arr)));
return $result;
}
$result = getCombinations([0, 1, 2, 3, 4, 5], 3);
print_r($result);
Based on https://stackoverflow.com/a/127898/2628125, but more abstract, for any size of pointers.
Here you have a lazy evaluated version of that algorithm coded in C#:
static bool nextCombination(int[] num, int n, int k)
{
bool finished, changed;
changed = finished = false;
if (k > 0)
{
for (int i = k - 1; !finished && !changed; i--)
{
if (num[i] < (n - 1) - (k - 1) + i)
{
num[i]++;
if (i < k - 1)
{
for (int j = i + 1; j < k; j++)
{
num[j] = num[j - 1] + 1;
}
}
changed = true;
}
finished = (i == 0);
}
}
return changed;
}
static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
{
T[] elem = elements.ToArray();
int size = elem.Length;
if (k <= size)
{
int[] numbers = new int[k];
for (int i = 0; i < k; i++)
{
numbers[i] = i;
}
do
{
yield return numbers.Select(n => elem[n]);
}
while (nextCombination(numbers, size, k));
}
}
And test part:
static void Main(string[] args)
{
int k = 3;
var t = new[] { "dog", "cat", "mouse", "zebra"};
foreach (IEnumerable<string> i in Combinations(t, k))
{
Console.WriteLine(string.Join(",", i));
}
}
Hope this help you!
Another version, that forces all the first k to appear firstly, then all the first k+1 combinations, then all the first k+2 etc.. It means that if you have sorted array, the most important on the top, it would take them and expand gradually to the next ones - only when it is must do so.
private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
return true;
if (num[k - 1] + 1 == n)
return false;
++num[k - 1];
for (int i = 0; i < k - 1; ++i)
num[i] = i;
return true;
}
For instance, if you run the first method ("nextCombination") on k=3, n=5 you'll get:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
But if you'll run
int[] nums = new int[k];
for (int i = 0; i < k; ++i)
nums[i] = i;
do
{
Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));
You'll get this (I added empty lines for clarity):
0 1 2
0 1 3
0 2 3
1 2 3
0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4
It's adding "4" only when must to, and also after "4" was added it adds "3" again only when it must to (after doing 01, 02, 12).
Array.prototype.combs = function(num) {
var str = this,
length = str.length,
of = Math.pow(2, length) - 1,
out, combinations = [];
while(of) {
out = [];
for(var i = 0, y; i < length; i++) {
y = (1 << i);
if(y & of && (y !== of))
out.push(str[i]);
}
if (out.length >= num) {
combinations.push(out);
}
of--;
}
return combinations;
}
Clojure version:
(defn comb [k l]
(if (= 1 k) (map vector l)
(apply concat
(map-indexed
#(map (fn [x] (conj x %2))
(comb (dec k) (drop (inc %1) l)))
l))))
Algorithm:
Count from 1 to 2^n.
Convert each digit to its binary representation.
Translate each 'on' bit to elements of your set, based on position.
In C#:
void Main()
{
var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };
var kElement = 2;
for(var i = 1; i < Math.Pow(2, set.Length); i++) {
var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
var cnt = Regex.Matches(Regex.Escape(result), "1").Count;
if (cnt == kElement) {
for(int j = 0; j < set.Length; j++)
if ( Char.GetNumericValue(result[j]) == 1)
Console.Write(set[j]);
Console.WriteLine();
}
}
}
Why does it work?
There is a bijection between the subsets of an n-element set and n-bit sequences.
That means we can figure out how many subsets there are by counting sequences.
e.g., the four element set below can be represented by {0,1} X {0, 1} X {0, 1} X {0, 1} (or 2^4) different sequences.
So - all we have to do is count from 1 to 2^n to find all the combinations. (We ignore the empty set.) Next, translate the digits to their binary representation. Then substitute elements of your set for 'on' bits.
If you want only k element results, only print when k bits are 'on'.
(If you want all subsets instead of k length subsets, remove the cnt/kElement part.)
(For proof, see MIT free courseware Mathematics for Computer Science, Lehman et al, section 11.2.2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/ )
short python code, yielding index positions
def yield_combos(n,k):
# n is set size, k is combo size
i = 0
a = [0]*k
while i > -1:
for j in range(i+1, k):
a[j] = a[j-1]+1
i=j
yield a
while a[i] == i + n - k:
i -= 1
a[i] += 1
All said and and done here comes the O'caml code for that.
Algorithm is evident from the code..
let combi n lst =
let rec comb l c =
if( List.length c = n) then [c] else
match l with
[] -> []
| (h::t) -> (combi t (h::c))#(combi t c)
in
combi lst []
;;
Here is a method which gives you all combinations of specified size from a random length string. Similar to quinmars' solution, but works for varied input and k.
The code can be changed to wrap around, ie 'dab' from input 'abcd' w k=3.
public void run(String data, int howMany){
choose(data, howMany, new StringBuffer(), 0);
}
//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
if (result.length()==k){
System.out.println(result.toString());
return;
}
for (int i=startIndex; i<data.length(); i++){
result.append(data.charAt(i));
choose(data,k,result, i+1);
result.setLength(result.length()-1);
}
}
Output for "abcde":
abc abd abe acd ace ade bcd bce bde cde
Short javascript version (ES 5)
let combine = (list, n) =>
n == 0 ?
[[]] :
list.flatMap((e, i) =>
combine(
list.slice(i + 1),
n - 1
).map(c => [e].concat(c))
);
let res = combine([1,2,3,4], 3);
res.forEach(e => console.log(e.join()));
Another python recusive solution.
def combination_indicies(n, k, j = 0, stack = []):
if len(stack) == k:
yield list(stack)
return
for i in range(j, n):
stack.append(i)
for x in combination_indicies(n, k, i + 1, stack):
yield x
stack.pop()
list(combination_indicies(5, 3))
Output:
[[0, 1, 2],
[0, 1, 3],
[0, 1, 4],
[0, 2, 3],
[0, 2, 4],
[0, 3, 4],
[1, 2, 3],
[1, 2, 4],
[1, 3, 4],
[2, 3, 4]]
I created a solution in SQL Server 2005 for this, and posted it on my website: http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
Here is an example to show usage:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
results:
Word
----
AB
AC
AD
BC
BD
CD
(6 row(s) affected)
Here is my proposition in C++
I tried to impose as little restriction on the iterator type as i could so this solution assumes just forward iterator, and it can be a const_iterator. This should work with any standard container. In cases where arguments don't make sense it throws std::invalid_argumnent
#include <vector>
#include <stdexcept>
template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
if(begin == end && combination_size > 0u)
throw std::invalid_argument("empty set and positive combination size!");
std::vector<std::vector<Fci> > result; // empty set of combinations
if(combination_size == 0u) return result; // there is exactly one combination of
// size 0 - emty set
std::vector<Fci> current_combination;
current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
// in my vector to store
// the end sentinel there.
// The code is cleaner thanks to that
for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
{
current_combination.push_back(begin); // Construction of the first combination
}
// Since I assume the itarators support only incrementing, I have to iterate over
// the set to get its size, which is expensive. Here I had to itrate anyway to
// produce the first cobination, so I use the loop to also check the size.
if(current_combination.size() < combination_size)
throw std::invalid_argument("combination size > set size!");
result.push_back(current_combination); // Store the first combination in the results set
current_combination.push_back(end); // Here I add mentioned earlier sentinel to
// simplyfy rest of the code. If I did it
// earlier, previous statement would get ugly.
while(true)
{
unsigned int i = combination_size;
Fci tmp; // Thanks to the sentinel I can find first
do // iterator to change, simply by scaning
{ // from right to left and looking for the
tmp = current_combination[--i]; // first "bubble". The fact, that it's
++tmp; // a forward iterator makes it ugly but I
} // can't help it.
while(i > 0u && tmp == current_combination[i + 1u]);
// Here is probably my most obfuscated expression.
// Loop above looks for a "bubble". If there is no "bubble", that means, that
// current_combination is the last combination, Expression in the if statement
// below evaluates to true and the function exits returning result.
// If the "bubble" is found however, the ststement below has a sideeffect of
// incrementing the first iterator to the left of the "bubble".
if(++current_combination[i] == current_combination[i + 1u])
return result;
// Rest of the code sets posiotons of the rest of the iterstors
// (if there are any), that are to the right of the incremented one,
// to form next combination
while(++i < combination_size)
{
current_combination[i] = current_combination[i - 1u];
++current_combination[i];
}
// Below is the ugly side of using the sentinel. Well it had to haave some
// disadvantage. Try without it.
result.push_back(std::vector<Fci>(current_combination.begin(),
current_combination.end() - 1));
}
}
Here is a code I recently wrote in Java, which calculates and returns all the combination of "num" elements from "outOf" elements.
// author: Sourabh Bhat (heySourabh#gmail.com)
public class Testing
{
public static void main(String[] args)
{
// Test case num = 5, outOf = 8.
int num = 5;
int outOf = 8;
int[][] combinations = getCombinations(num, outOf);
for (int i = 0; i < combinations.length; i++)
{
for (int j = 0; j < combinations[i].length; j++)
{
System.out.print(combinations[i][j] + " ");
}
System.out.println();
}
}
private static int[][] getCombinations(int num, int outOf)
{
int possibilities = get_nCr(outOf, num);
int[][] combinations = new int[possibilities][num];
int arrayPointer = 0;
int[] counter = new int[num];
for (int i = 0; i < num; i++)
{
counter[i] = i;
}
breakLoop: while (true)
{
// Initializing part
for (int i = 1; i < num; i++)
{
if (counter[i] >= outOf - (num - 1 - i))
counter[i] = counter[i - 1] + 1;
}
// Testing part
for (int i = 0; i < num; i++)
{
if (counter[i] < outOf)
{
continue;
} else
{
break breakLoop;
}
}
// Innermost part
combinations[arrayPointer] = counter.clone();
arrayPointer++;
// Incrementing part
counter[num - 1]++;
for (int i = num - 1; i >= 1; i--)
{
if (counter[i] >= outOf - (num - 1 - i))
counter[i - 1]++;
}
}
return combinations;
}
private static int get_nCr(int n, int r)
{
if(r > n)
{
throw new ArithmeticException("r is greater then n");
}
long numerator = 1;
long denominator = 1;
for (int i = n; i >= r + 1; i--)
{
numerator *= i;
}
for (int i = 2; i <= n - r; i++)
{
denominator *= i;
}
return (int) (numerator / denominator);
}
}