considering the code below, can we consider it parallel even if there are no loops?
#include <omp.h>
int main(void) {
#pragma omp parallel
{
int a = 1;
a = 0;
}
return 0;
}
Direct Answer:
Yes, here, the section of your code,
int a = 1;
a = 0;
Runs in parallel, P times, where P is the number of cores on your machine.
For example on a four core machine, the following code (with the relevant imports),
int main(void) {
#pragma omp parallel
{
printf("Thread number %d", omp_get_thread_num());
}
return 0;
}
would output:
Thread number 0
Thread number 1
Thread number 2
Thread number 3
Note that when running in parallel, there is no guarantee on the order of the output, so the output could just as likely be something like:
Thread number 1
Thread number 2
Thread number 0
Thread number 3
Additionally, if you wanted to specify the number of threads used in the parallel region, instead of #pragma omp parallel you could write, #pragma omp parallel num_threads(4).
Further Explanation:
If you are still confused, it may be helpful to better understand the difference between parallel for loops and parallel code regions.
#pragma omp parallel tells the compiler that the following code block may be executed in parallel. It guarantees that all code within the parallel region will have finished execution before continuing to subsequent code.
In the following (toy) example, the programmer is guaranteed that after the parallel region, the array will have all entries set to zero.
int *arr = malloc(sizeof(int) * 128);
const int P = omp_get_max_threads();
#pragma omp parallel num_threads(P)
{
int local_start = omp_get_thread_num();
int local_end = local_start + (100 / P);
for (int i = local_start; i < local_end; ++i) {
arr[i] = 0;
}
}
// any code from here onward is guaranteed that arr contains all zeros!
Ignoring differences in scheduling, this task could equivalently be accomplished using a parallel for loop as follows:
int *arr = malloc(sizeof(int) * 128);
const int P = omp_get_max_threads();
#pragma omp parallel num_threads(P) for
for (int i = 0; i < 128; ++i) {
arr[i] = 0;
}
// any code from here onward is guaranteed that arr contains all zeros!
Essentially, #pragma omp parallel enables you to describe regions of code that can execute in parallel - this can be much more flexible than a parallel for loop. In contrast, #pragma omp parallel for should generally be used to parallelize loops with independent iterations.
I can further elaborate on the differences in performance, if you would like.
Related
I'd like to run a for loop in openmp with dynamic schedule.
#pragma omp for schedule(dynamic,chunk) private(i) nowait
for(i=0;i<n;i++){
//loop code here
}
and I'd like to have each thread executing ordered chunks such that
e.g. thread 1 -> iterations 0 to k
thread2 -> iterations k+1->k+chunk
etc..
Static schedule partly does what I want but I'd like to dynamically load balance the iterations.
Neither ordered clause, if I understood correctly what it does.
My question is how to make sure that the chunks assigned are ordered chunks?
I am using openmp 3.1 with gcc
You can implement this yourself without resorting to omp for, which is considered a convenience function by expert OpenMP programmers.
The following roughly illustrates what you might do. Please check the arithmetic carefully.
#pragma omp parallel
{
int me = omp_get_thread_num();
int nt = omp_get_num_threads();
int chunk = /* divide n by nt appropriately */
int start = me * chunk;
int end = (me+1) * chunk;
if (end > n) end = n;
for (int i = start; i < end; i++) {
/* do work */
}
} /* end parallel */
This does not do any dynamic load-balancing. You can do that yourself by assigning loop iterations unevenly to threads if you know the cost function a priori. You might read up on the inspector-executor model (e.g. 1).
I have the function
void collatz(int startNumber, int endNumber, int* iter, int nThreads)
{
int i, n, counter;
int isodd; /* 1 if n is odd, 0 if even */
#pragma omp parallel for
for (i = startNumber; i <= endNumber; i++)
{
counter = 0;
n = i;
omp_set_num_threads(nThreads);
while (n > 1)
{
isodd = n%2;
if (isodd)
n = 3*n+1;
else
n/=2;
counter++;
}
iter[i - startNumber] = counter;
}
}
It works as I wish when running serial (i.e. compiling without OpenMP or commenting out #pragma omp parallel for and omp_set_num_threads(nThreads);). However, the parallel version produces the wrong result and I think it is because the counter variable need to be set to zero at the beginning of each for loop and perhaps another thread can work with the non-zeroed counter value. But even if I use #pragma omp parallel for private(counter), the problem still occurs. What am I missing?
I compile the program as C89.
Inside your OpenMP parallel region, you are assigning values to the counter, n and isodd scalar variables. These cannot therefore be just shared as they are by default. You need to pay extra attention to them.
A quick analysis shows that as their values is only meaningful inside the parallel region and only for the current thread, so it becomes clear that they need to be declared private.
Adding a private( counter, n, isodd ) clause to your #pragma omp parallel directive should fix the issue.
Given n partial sums it's possible to sum all the partial sums in log2 parallel steps. For example assume there are eight threads with eight partial sums: s0, s1, s2, s3, s4, s5, s6, s7. This could be reduced in log2(8) = 3 sequential steps like this;
thread0 thread1 thread2 thread4
s0 += s1 s2 += s3 s4 += s5 s6 +=s7
s0 += s2 s4 += s6
s0 += s4
I would like to do this with OpenMP but I don't want to use OpenMP's reduction clause. I have come up with a solution but I think a better solution can be found maybe using OpenMP's task clause.
This is more general than scalar addition. Let me choose a more useful case: an array reduction (see here, here, and here for more about array reductions).
Let's say I want to do an array reduction on an array a. Here is some code which fills private arrays in parallel for each thread.
int bins = 20;
int a[bins];
int **at; // array of pointers to arrays
for(int i = 0; i<bins; i++) a[i] = 0;
#pragma omp parallel
{
#pragma omp single
at = (int**)malloc(sizeof *at * omp_get_num_threads());
at[omp_get_thread_num()] = (int*)malloc(sizeof **at * bins);
int a_private[bins];
//arbitrary function to fill the arrays for each thread
for(int i = 0; i<bins; i++) at[omp_get_thread_num()][i] = i + omp_get_thread_num();
}
At this point I have have an array of pointers to arrays for each thread. Now I want to add all these arrays together and write the final sum to a. Here is the solution I came up with.
#pragma omp parallel
{
int n = omp_get_num_threads();
for(int m=1; n>1; m*=2) {
int c = n%2;
n/=2;
#pragma omp for
for(int i = 0; i<n; i++) {
int *p1 = at[2*i*m], *p2 = at[2*i*m+m];
for(int j = 0; j<bins; j++) p1[j] += p2[j];
}
n+=c;
}
#pragma omp single
memcpy(a, at[0], sizeof *a*bins);
free(at[omp_get_thread_num()]);
#pragma omp single
free(at);
}
Let me try and explain what this code does. Let's assume there are eight threads. Let's define the += operator to mean to sum over the array. e.g. s0 += s1 is
for(int i=0; i<bins; i++) s0[i] += s1[i]
then this code would do
n thread0 thread1 thread2 thread4
4 s0 += s1 s2 += s3 s4 += s5 s6 +=s7
2 s0 += s2 s4 += s6
1 s0 += s4
But this code is not ideal as I would like it.
One problem is that there are a few implicit barriers which require all the threads to sync. These barriers should not be necessary. The first barrier is between filling the arrays and doing the reduction. The second barrier is in the #pragma omp for declaration in the reduction. But I can't use the nowait clause with this method to remove the barrier.
Another problem is that there are several threads that don't need to be used. For example with eight threads. The first step in the reduction only needs four threads, the second step two threads, and the last step only one thread. However, this method would involve all eight threads in the reduction. Although, the other threads don't do much anyway and should go right to the barrier and wait so it's probably not much of an issue.
My instinct is that a better method can be found using the omp task clause. Unfortunately I have little experience with the task clause and all my efforts so far with it do a reduction better than what I have now have failed.
Can someone suggest a better solution to do the reduction in logarithmic time using e.g. OpenMP's task clause?
I found a method which solves the barrier problem. This reduces asynchronously. The only remaining problem is that it still puts threads which don't participate in the reduction into a busy loop. This method uses something like a stack to push pointers to the stack (but never pops them) in critical sections (this was one of the keys as critical sections don't have implicit barriers. The stack is operated on serially but the reduction in parallel.
Here is a working example.
#include <stdio.h>
#include <omp.h>
#include <stdlib.h>
#include <string.h>
void foo6() {
int nthreads = 13;
omp_set_num_threads(nthreads);
int bins= 21;
int a[bins];
int **at;
int m = 0;
int nsums = 0;
for(int i = 0; i<bins; i++) a[i] = 0;
#pragma omp parallel
{
int n = omp_get_num_threads();
int ithread = omp_get_thread_num();
#pragma omp single
at = (int**)malloc(sizeof *at * n * 2);
int* a_private = (int*)malloc(sizeof *a_private * bins);
//arbitrary fill function
for(int i = 0; i<bins; i++) a_private[i] = i + omp_get_thread_num();
#pragma omp critical (stack_section)
at[nsums++] = a_private;
while(nsums<2*n-2) {
int *p1, *p2;
char pop = 0;
#pragma omp critical (stack_section)
if((nsums-m)>1) p1 = at[m], p2 = at[m+1], m +=2, pop = 1;
if(pop) {
for(int i = 0; i<bins; i++) p1[i] += p2[i];
#pragma omp critical (stack_section)
at[nsums++] = p1;
}
}
#pragma omp barrier
#pragma omp single
memcpy(a, at[2*n-2], sizeof **at *bins);
free(a_private);
#pragma omp single
free(at);
}
for(int i = 0; i<bins; i++) printf("%d ", a[i]); puts("");
for(int i = 0; i<bins; i++) printf("%d ", (nthreads-1)*nthreads/2 +nthreads*i); puts("");
}
int main(void) {
foo6();
}
I sill feel a better method may be found using tasks which does not put the threads not being used in a busy loop.
Actually, it is quite simple to implement that cleanly with tasks using a recursive divide-and-conquer approach. This is almost textbook code.
void operation(int* p1, int* p2, size_t bins)
{
for (int i = 0; i < bins; i++)
p1[i] += p2[i];
}
void reduce(int** arrs, size_t bins, int begin, int end)
{
assert(begin < end);
if (end - begin == 1) {
return;
}
int pivot = (begin + end) / 2;
/* Moving the termination condition here will avoid very short tasks,
* but make the code less nice. */
#pragma omp task
reduce(arrs, bins, begin, pivot);
#pragma omp task
reduce(arrs, bins, pivot, end);
#pragma omp taskwait
/* now begin and pivot contain the partial sums. */
operation(arrs[begin], arrs[pivot], bins);
}
/* call this within a parallel region */
#pragma omp single
reduce(at, bins, 0, n);
As far as i can tell, there are no unnecessary synchronizations and there is no weird polling on critical sections. It also works naturally with a data size different than your number of ranks. I find it very clean and easy to understand. So I do indeed think this is better than both of your solutions.
But let's look at how it performs in practice*. For that we can use Score-p and Vampir:
*bins=10000 so the reduction actually takes a little bit of time. Executed on a 24-core Haswell system w/o turbo. gcc 4.8.4, -O3. I added some buffer around the actual execution to hide initialization/post-processing
The picture reveals what is happening at any thread within the application on a horizontal time-axis. The tree implementations from top to bottom:
omp for loop
omp critical kind of tasking.
omp task
This shows nicely how the specific implementations actually execute. Now it seems that the for loop is actually the fastest, despite the unnecessary synchronizations. But there are still a number of flaws in this performance analysis. For example, I didn't pin the threads. In practice NUMA (non-uniform memory access) matters a lot: Does the core does have this data in it's own cache / memory of it's own socket? This is where the task solution becomes non-deterministic. The very significant variance among repetitions is not considered in the simple comparison.
If the reduction operation becomes variable in runtime, then the task solution will become better than thy synchronized for loop.
The critical solution has some interesting aspect, the passive threads are not continuously waiting, so they will more likely consume CPU resources. This can be bad for performance e.g. in case of turbo mode.
Remember that the task solution has more optimization potential by avoiding spawning tasks that immediately return. How these solutions perform also highly depends on the specific OpenMP runtime. Intel's runtime seems to do much worse for tasks.
My recommendation is:
Implement the most maintainable solution with optimal algorithmic
complexity
Measure which parts of the code actually matter for run-time
Analyze based on actual measurements what is the bottleneck. In my experience it is more about NUMA and scheduling rather than some unnecessary barrier.
Perform the micro-optimization based on your actual measurements
Linear solution
Here is the timeline for the linear proccess_data_v1 from this question.
OpenMP 4 Reduction
So I thought about OpenMP reduction. The tricky part seems to be getting the data from the at array inside the loop without a copy. I do initialize the worker array with NULL and simply move the pointer the first time:
void meta_op(int** pp1, int* p2, size_t bins)
{
if (*pp1 == NULL) {
*pp1 = p2;
return;
}
operation(*pp1, p2, bins);
}
// ...
// declare before parallel region as global
int* awork = NULL;
#pragma omp declare reduction(merge : int* : meta_op(&omp_out, omp_in, 100000)) initializer (omp_priv=NULL)
#pragma omp for reduction(merge : awork)
for (int t = 0; t < n; t++) {
meta_op(&awork, at[t], bins);
}
Surprisingly, this doesn't look too good:
top is icc 16.0.2, bottom is gcc 5.3.0, both with -O3.
Both seem to implement the reduction serialized. I tried to look into gcc / libgomp, but it's not immediately apparent to me what is happening. From intermediate code / disassembly, they seem to be wrapping the final merge in a GOMP_atomic_start/end - and that seems to be a global mutex. Similarly icc wraps the call to the operation in a kmpc_critical. I suppose there wasn't much optimization going into costly custom reduction operations. A traditional reduction can be done with a hardware-supported atomic operation.
Notice how each operation is faster because the input is cached locally, but due to the serialization it is overall slower. Again this is not a perfect comparison due to high variances, and earlier screenshots were with different gcc version. But the trend is clear, and I also have data on the cache effects.
Prerequisites:
parallel engine: OpenMP 3.1+ (can be OpenMP 4.0 if needed)
parallel constructs: OpenMP tasks
compiler: gcc 4.9.x (supports OpenMP 4.0)
Input:
C code with loops
loop have cross-iteration data dependency(ies): “i+1“ iteration needs data from “i” iteration (only such kind of dependency, nothing else)
loop body can be partially dependent
loop cannot be split in two loops; loop body should remain solid
anything reasonable can be added to loop or loop body function definition
Code sample:
(Here conf/config/configData variables are used for illustration purposes only, the main interest is within value/valueData variables.)
void loopFunc(const char* config, int* value)
{
int conf;
conf = prepare(config); // independent, does not change “config”
*value = process(conf, *value); // dependent, takes prev., produce next
return;
}
int main()
{
int N = 100;
char* configData; // never changes
int valueData = 0; // initial value
…
for (int i = 0; i < N; i++)
{
loopFunc(configData, &valueData);
}
…
}
Need to:
parallelise loop using omp tasks (omp for / omp sections cannot be used)
“prepare” functions should be executed in parallel with other “prepare” or “process” functions
“process” functions should be ordered according to data dependency
What have been proposed and implemented:
define integer flag
assign to it a number of first iteration
every iteration when it needs data waits for flag to be equal to it’s iteration
update flag value when data for next iteration is ready
Like this:
(I reminds that conf/config/configData variables are used for illustration purposes only, the main interest is within value/valueData variables.)
void loopFunc(const char* config, int* value, volatile int *parSync, int iteration)
{
int conf;
conf = prepare(config); // independent, do not change “config”
while (*parSync != iteration) // wait for previous to be ready
{
#pragma omp taskyield
}
*value = process(conf, *value); // dependent, takes prev., produce next
*parSync = iteration + 1; // inform next about readiness
return;
}
int main()
{
int N = 100;
char* configData; // never changes
int valueData = 0; // initial value
volatile int parallelSync = 0;
…
omp_set_num_threads(5);
#pragma omp parallel
#pragma omp single
for (int i = 0; i < N; i++)
{
#pragma omp task shared(configData, valueData, parallelSync) firstprivate(i)
loopFunc(configData, &valueData, ¶llelSync, i);
}
#pragma omp taskwait
…
}
What happened:
It fails. :)
The reason was that openmp task occupies openmp thread.
For example, if we define 5 openmp threads (as in the code above).
“For” loop generates 100 tasks.
OpenMP runtime assign 5 arbitrary tasks to 5 threads and starts these tasks.
If there will be no task with i=0 among started tasks (it happens time to time), executing tasks wait forever, occupy threads forever and the task with i=0 never being started.
What's next?
I have no other ideas how to implement the required mode of computation.
Current solution
Thanks for the idea to #parallelgeek below
int main()
{
int N = 10;
char* configData; // never changes
int valueData = 0; // initial value
volatile int parallelSync = 0;
int workers;
volatile int workingTasks = 0;
...
omp_set_num_threads(5);
#pragma omp parallel
#pragma omp single
{
workers = omp_get_num_threads()-1; // reserve 1 thread for task generation
for (int i = 0; i < N; i++)
{
while (workingTasks >= workers)
{
#pragma omp taskyield
}
#pragma omp atomic update
workingTasks++;
#pragma omp task shared(configData, valueData, parallelSync, workingTasks) firstprivate(i)
{
loopFunc(configData, &valueData, ¶llelSync, i);
#pragma omp atomic update
workingTasks--;
}
}
#pragma omp taskwait
}
}
AFAIK volatiles don't prevent hardware reordering, that's why you
could end up with a mess in memory, because data is not written yet,
while flag is already seen by the consuming thread as true.
That's why little piece of advise: use C11 atomics instead in order to ensure visibility of data. As I can see, gcc 4.9 supports c11 C11Status in GCC
You could try to divide generated tasks to groups by K tasks, where K == ThreadNum and start generating subsequent task (after the tasks in the first group are generated) only after any of running tasks is finished. Thus you have an invariant that each time you have only K tasks running and scheduled on K threads.
Intertask dependencies could also be met by using atomic flags from C11.
I'm trying to use OpenMP to split a for loop computation to multiple threads. Additionally, I'm trying to instruct the compiler to vectorize each chunk assigned to each thread. The code is the following:
#pragma omp for private(i)
__pragma(loop(ivdep))
for (i = 0; i < 4096; i++)
vC[i] = vA[i] + SCALAR * vB[i];
The problem is that both pragmas expect the for loop right after.
Is there any smart construct to make this work?
Some might argue that due to the for loop splitting with OpenMP, the vectorization of the loop won't work. However I read that the #pragma omp for divides the loop into a number of contiguous chunks equal to the thread count. Is thitt?
What about using #pragma omp for simd private(i) instead of the pragma + __pragma() ?
Edit: since OpenMP 4 doesn't seem to be an option for you, you can manually split your loop to get rid of the #pragma omp for by just computing the index limits by hand using omp_get_num_threads() and omp_get_thread_num(), and then keep the ivdep for the per-thread loop.
Edit 2: since I'm a nice guy and since this is boilerplate (more common when programming in MPI, but still) but quite annoying to get right when you do it for the first time, here is a possible solution:
#pragma omp parallel
{
int n = 4096;
int tid = omp_get_thread_num();
int nth = omp_get_num_threads();
int chunk = n / nth;
int beg = tid * chunk + min( tid, n % nth );
int end = ( tid + 1 ) * chunk + min( tid + 1, n % nth );
#pragma ivdep
for ( int i = beg; i < end; i++ ) {
vC[i] = vA[i] + SCALAR * vB[i];
}
}