Why is my binary output different than the expected output? - c

I am having issue with my code giving me the correct output. For example, I am trying to do binary subtraction. The first test case is suppose to test 0x00CD - 0x00AB and the correct output is 0000000000100010 (0x0022). I am getting output of 0000000001100110 (0x0066), which is a few digits off. Can someone help me debug my problem?
#include <stdio.h>
int main(void)
{
int borrow, i, j;
int x[16] = {0}, y[16] = {0}, difference[16] = {0};
int n= 16;
unsigned int hex1, hex2;
scanf("%x %x", &hex1, &hex2);
i = 0;
while (hex1 != 0)
{
x[i] = hex1 % 2;
hex1 = hex1 / 2;
i = i + 1;
}
i = 0;
while (hex2 != 0)
{
y[i] = hex2 % 2;
hex2 = hex2 / 2;
i = i + 1;
}
borrow = 0;
for (i = 15; i >= 0; i--)
{
if(y[i] <= x[i])
{
difference[i] = (x[i] - y[i]);
}
else if (i == n - 1)
{
borrow = 1;
x[i] = x[i] + 2;
difference[i] = (x[i] - y[i]);
}
else
{
j = i + 1;
while (x[j] == 0)
{
j = j + 1;
}
x[j] = x[j] - 1;
j = j - 1;
while (j > i)
{
x[j] = x[j] + 2 - 1;
j = j - 1;
}
difference[i] = (2 + x[i] - y[i]);
}
}
for (i = 15; i >= 0; i--)
printf("%d", difference[i]);
return 0;
}

The logic for your borrow code is broken. When x[i] is greater than y[i] and i is not n-1, you go into this code that looks for a non-zero x[j] to borrow from. But the higher-indexed x[j] were already operated on (because i runs from 15 to 0). You should not be borrowing from them.
Usually subtraction proceeds from the low digits to the high digits (i from 0 to 15). Then, if we need to borrow, we calculate the current digit as if we borrowed, set a counter or flag to remember that we borrowed, and go on to the next digit, incorporating the borrow into the calculations for it.
Alternately, if working from high to low, then, when a borrow is needed, we need to take it from the previously calculated digits (in difference), not from the minuend (x). (And the code for that would have to be alert for running off the high end.)

Related

I am trying to improve the performance speed of my cross-correlation algorithm. What things can I do to make my C code run faster?

I created a cross-correlation algorithm, and I am trying to maximize its performance by reducing the time it takes for it to run. First of all, I reduced the number of function calls within the "crossCorrelationV2" function. Second, I created several macros at the top of the program for constants. Third, I reduced the number of loops that are inside the "crossCorrelationV2" function. The code that you see is the most recent code that I have.
Are there any other methods I can use to try and reduce the processing time of my code?
Let's assume that I am only focused on the functions "crossCorrelationV2" and "createAnalyzingWave".
I would be glad for any advice, whether in general about programming or pertaining to those two specific functions; I am a beginner programmer. Thanks.
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE 4096
#define PULSESNUMBER 16
#define DATAFREQ 1300
// Print the contents of the array onto the console.
void printArray(double array[], int size){
int k;
for (k = 0; k < size; k++){
printf("%lf ", array[k]);
}
printf("\n");
}
// Creates analyzing square wave. This square wave has unity (1) magnitude.
// The number of high values in each period is determined by high values = (analyzingT/2) / time increment
void createAnalyzingWave(double analyzingFreq, double wave[]){
int highValues = (1 / analyzingFreq) * 0.5 / ((PULSESNUMBER * (1 / DATAFREQ) / ARRAYSIZE));
int counter = 0;
int p;
for(p = 1; p <= ARRAYSIZE; p++){
if ((counter % 2) == 0){
wave[p - 1] = 1;
} else{
wave[p - 1] = 0;
}
if (p % highValues == 0){
counter++;
}
}
}
// Creates data square wave (for testing purposes, for the real implementation actual ADC data will be used). This
// square wave has unity magnitude.
// The number of high values in each period is determined by high values = array size / (2 * number of pulses)
void createDataWave(double wave[]){
int highValues = ARRAYSIZE / (2 * PULSESNUMBER);
int counter = 0;
int p;
for(p = 0; p < ARRAYSIZE; p++){
if ((counter % 2) == 0){
wave[p] = 1;
} else{
wave[p] = 0;
}
if ((p + 1) % highValues == 0){
counter++;
}
}
}
// Finds the average of all the values inside an array
double arrayAverage(double array[], int size){
int i;
double sum = 0;
// Same thing as for(i = 0; i < arraySize; i++)
for(i = size; i--; ){
sum = array[i] + sum;
}
return sum / size;
}
// Cross-Correlation algorithm
double crossCorrelationV2(double dataWave[], double analyzingWave[]){
int bigArraySize = (2 * ARRAYSIZE) - 1;
// Expand analyzing array into array of size 2arraySize-1
int lastArrayIndex = ARRAYSIZE - 1;
int lastBigArrayIndex = 2 * ARRAYSIZE - 2; //bigArraySize - 1; //2 * arraySize - 2;
double bigAnalyzingArray[bigArraySize];
int i;
int b;
// Set first few elements of the array equal to analyzingWave
// Set remainder of big analyzing array to 0
for(i = 0; i < ARRAYSIZE; i++){
bigAnalyzingArray[i] = analyzingWave[i];
bigAnalyzingArray[i + ARRAYSIZE] = 0;
}
double maxCorrelationValue = 0;
double currentCorrelationValue;
// "Beginning" of correlation algorithm proper
for(i = 0; i < bigArraySize; i++){
currentCorrelationValue = 0;
for(b = lastBigArrayIndex; b > 0; b--){
if (b >= lastArrayIndex){
currentCorrelationValue = dataWave[b - lastBigArrayIndex / 2] * bigAnalyzingArray[b] + currentCorrelationValue;
}
bigAnalyzingArray[b] = bigAnalyzingArray[b - 1];
}
bigAnalyzingArray[0] = 0;
if (currentCorrelationValue > maxCorrelationValue){
maxCorrelationValue = currentCorrelationValue;
}
}
return maxCorrelationValue;
}
int main(){
int samplesNumber = 25;
double analyzingFreq = 1300;
double analyzingWave[ARRAYSIZE];
double dataWave[ARRAYSIZE];
createAnalyzingWave(analyzingFreq, analyzingWave);
//createDataWave(arraySize, pulsesNumber, dataWave);
double maximumCorrelationArray[samplesNumber];
int i;
for(i = 0; i < samplesNumber; i++){
createDataWave(dataWave);
maximumCorrelationArray[i] = crossCorrelationV2(dataWave, analyzingWave);
}
printf("Average of the array values: %lf\n", arrayAverage(maximumCorrelationArray, samplesNumber));
return 0;
}
The first point is that you are explicitly shifting the analizingData array, this way you are required twice as much memory and moving the items is about 50% of your time. In a test here using crossCorrelationV2 takes 4.1 seconds, with the implementation crossCorrelationV3 it runs in ~2.0 seconds.
The next thing is that you are spending time multiplying by zero on the padded array, removing that, and also removing the padding, and simplifying the indices we end with crossCorrelationV4 that makes the program to run in ~1.0 second.
// Cross-Correlation algorithm
double crossCorrelationV3(double dataWave[], double analyzingWave[]){
int bigArraySize = (2 * ARRAYSIZE) - 1;
// Expand analyzing array into array of size 2arraySize-1
int lastArrayIndex = ARRAYSIZE - 1;
int lastBigArrayIndex = 2 * ARRAYSIZE - 2; //bigArraySize - 1; //2 * arraySize - 2;
double bigAnalyzingArray[bigArraySize];
int i;
int b;
// Set first few elements of the array equal to analyzingWave
// Set remainder of big analyzing array to 0
for(i = 0; i < ARRAYSIZE; i++){
bigAnalyzingArray[i] = analyzingWave[i];
bigAnalyzingArray[i + ARRAYSIZE] = 0;
}
double maxCorrelationValue = 0;
double currentCorrelationValue;
// "Beginning" of correlation algorithm proper
for(i = 0; i < bigArraySize; i++){
currentCorrelationValue = 0;
// Instead of checking if b >= lastArrayIndex inside the loop I use it as
// a stopping condition.
for(b = lastBigArrayIndex; b >= lastArrayIndex; b--){
// instead of shifting bitAnalizing[b] = bigAnalyzingArray[b-1] every iteration
// I simply use bigAnalizingArray[b-i]
currentCorrelationValue = dataWave[b - lastBigArrayIndex / 2] * bigAnalyzingArray[b - i] + currentCorrelationValue;
}
bigAnalyzingArray[0] = 0;
if (currentCorrelationValue > maxCorrelationValue){
maxCorrelationValue = currentCorrelationValue;
}
}
return maxCorrelationValue;
}
// Cross-Correlation algorithm
double crossCorrelationV4(double dataWave[], double analyzingWave[]){
int bigArraySize = (2 * ARRAYSIZE) - 1;
// Expand analyzing array into array of size 2arraySize-1
int lastArrayIndex = ARRAYSIZE - 1;
int lastBigArrayIndex = 2 * ARRAYSIZE - 2; //bigArraySize - 1; //2 * arraySize - 2;
// I will not allocate the bigAnalizingArray here
// double bigAnalyzingArray[bigArraySize];
int i;
int b;
// I will not copy the analizingWave to bigAnalyzingArray
// for(i = 0; i < ARRAYSIZE; i++){
// bigAnalyzingArray[i] = analyzingWave[i];
// bigAnalyzingArray[i + ARRAYSIZE] = 0;
// }
double maxCorrelationValue = 0;
double currentCorrelationValue;
// Compute the correlation by symmetric paris
// the idea here is to simplify the indices of the inner loops since
// they are computed more times.
for(i = 0; i < lastArrayIndex; i++){
currentCorrelationValue = 0;
for(b = lastArrayIndex - i; b >= 0; b--){
// instead of shifting bitAnalizing[b] = bigAnalyzingArray[b-1] every iteration
// I simply use bigAnalizingArray[b-i]
currentCorrelationValue += dataWave[b] * analyzingWave[b + i];
}
if (currentCorrelationValue > maxCorrelationValue){
maxCorrelationValue = currentCorrelationValue;
}
if(i != 0){
currentCorrelationValue = 0;
// Correlate shifting to the other side
for(b = lastArrayIndex - i; b >= 0; b--){
// instead of shifting bitAnalizing[b] = bigAnalyzingArray[b-1] every iteration
// I simply use bigAnalizingArray[b-i]
currentCorrelationValue += dataWave[b + i] * analyzingWave[b];
}
if (currentCorrelationValue > maxCorrelationValue){
maxCorrelationValue = currentCorrelationValue;
}
}
}
return maxCorrelationValue;
}
If you want more optimization you can unroll some iterations of the loop and enable some compiler optimizations like vector extension.

Program to show the process of getting from a 4-digit number to Kaprekar's constant goes on an infinite loop

We are asked to write some code that takes a 4 digit number as input, and does the following:
Take any four-digit number, using at least two different digits.
Arrange the digits in descending and then in ascending order to get two four-digit numbers
Subtract the smaller number from the bigger number.
Go back to step 2 and repeat.
The end result will always freeze at kaprekar's constant 1674 and we must print the algorithm's resulting number each and every time . In the end we also have to print the number of times we had to run the algorithm to get there .
I worked it out as loop , storing the digits in 2 arrays and sorting the first in ascending order and the second in descending order over and over again till i get to 1674 but for some reason the "process" loop won't stop . Any help would be appreciated .
#include <stdio.h>
#include <stdlib.h>
int main()
{
long int pow1(int x, int n)
{
int i, result = 1;
for (i = 0; i < n; i++)
{ // Power Function //
result *= x;
}
return (result);
}
int a, s;
int val[] = {
0,
0,
0,
0};
int value[] = {
0,
0,
0,
0};
int ex = 0;
scanf(" %d", &a);
if (a / 1000 != 0 && a / 1000 < 10)
{
// Extracting the digits and storing them in the arrays .
for (int i = 0; i <= 3; ++i)
{
value[i] = val[i] = (a % pow1(10, i + 1) - a % pow1(10, i)) / pow1(10, i);
if (i > 0)
{
if (val[i] == val[i - 1])
{
ex++;
}
}
}
if (ex == 3)
{
printf("Wrong input");
exit(0);
}
int j = 0, k = a;
// Start of process
while (k != 6174)
{
while (1)
{
s = 0;
for (int i = 0; i <= 3; i++)
{
if (val[i] > val[i + 1])
{
int temp = val[i];
val[i] = val[i + 1];
val[i + 1] = temp;
s = 1;
}
}
if (s == 0)
{
break;
}
}
while (1)
{
s = 0;
for (int i = 0; i <= 3; i++)
{
if (value[i] < value[i + 1])
{
int temp = value[i];
value[i] = value[i + 1];
value[i + 1] = temp;
s = 1;
}
}
if (s == 0)
{
break;
}
}
j++;
printf("max:%d min: %d ", value[0] * 1000 + value[1] * 100 + value[2] * 10 + value[3], val[0] * 1000 + val[1] * 100 + val[2] * 10 + val[3]);
k = value[0] * 1000 + value[1] * 100 + value[2] * 10 + value[3] - (val[0] * 1000 + val[1] * 100 + val[2] * 10 + val[3]);
printf("diff:%d\n", k);
for (int i = 0; i <= 3; ++i)
{
value[i] = val[i] = (k % pow1(10, i + 1) - k % pow1(10, i)) / pow1(10, i);
}
}
printf("Took %d turns", j);
}
else
{
printf("Wrong input");
}
return 0;
}
You have defined val and value as 4 element [0..3], yet in your loops you access and modify both over [0..4] eg: val[i+1] = temp.
I proper sized them (int val[5] = {0}, value[5] = {0}), and your test yielded:
max:2211 min: 112 diff:2099
max:9920 min: 229 diff:9691
max:9961 min: 1699 diff:8262
max:8622 min: 2268 diff:6354
max:6543 min: 3456 diff:3087
max:8730 min: 378 diff:8352
max:8532 min: 2358 diff:6174
Took 7 turns
Because your sort isn't quite right.
If you change your sort to be:
for (int i = 1; i < 4; i++)
{
if (val[i-1] > val[i])
{
int temp = val[i];
val[i] = val[i - 1];
val[i - 1] = temp;
s = 1;
}
}
it will respect its boundaries, and be correct; so you can go back to len 4 vectors. Remember to change the other one as well.
ps: It is more work for me to complain that you didn't put a main wrapper in your example than to put one in. That doesn't excuse not doing the least you can do.

How to fix the output of the following C program?

I have a problem with output of the following C program. It does not get me the correct output.I transform this program from the sum of two big numbers.
So I get the output with some "errors" like "232423-3-4-34--3424" instead of "23242334343424". How do i fix this?
#include<stdio.h>
int main() {
int num1[255], num2[255], dif[255];
char s1[255], s2[255];
int l1, l2;
printf("Enter Number1:\n");
scanf("%s", &s1);
printf("Enter Number2:\n");
scanf("%s", &s2);
for (l1 = 0; s1[l1] != '\0'; l1++)
num1[l1] = s1[l1] - '0';
for (l2 = 0; s2[l2] != '\0'; l2++)
num2[l2] = s2[l2] - '0';
int carry = 0;
int k = 0;
int i = l1 - 1;
int j = l2 - 1;
for (; i >= 0 && j >= 0; i--, j--, k++) {
dif[k] = (num1[i] - num2[j] - carry) % 10;
carry = (num1[i] - num2[j] - carry) / 10;
}
if (l1 > l2) {
while (i >= 0) {
dif[k++] = (num1[i] - carry) % 10;
carry = (num1[i--] - carry) / 10;
}
} else if (l1 < l2) {
while (j >= 0) {
dif[k++] = (num2[j] - carry) % 10;
carry = (num2[j--] - carry) / 10;
}
} else {
if (carry > 0)
dif[k++] = carry;
}
printf("Result:");
for (k--; k >= 0; k--)
printf("%d", dif[k]);
return 0;
}
Your result includes negative numbers because the code doesn't correctly implement modulo-10 arithmetic. In lines like this:
dif[k] = (num1[i] - num2[j] - carry) % 10;
If subtraction num1[i] - num2[j] - carry is less than 0, you want to store the result of 10-subtraction. There are languages where the % operator works like that in, but in C it returns a negative number, so -1 % 10 yields -1 and not 9.
To fix the issue, the code needs to be more explicit, e.g.:
int sub = num1[i] - num2[j] - carry;
if (sub >= 0) {
dif[k] = sub;
carry = 0;
} else {
dif[k] = 10 - sub;
carry = 1;
}

This is a c program to find next greatest number with same digits. But not passing one test case

This is a C program to find the next greater number with the same digits. This program is working for all given test cases except one. When the input is 472, the expected output is 724. But my output is 247. Can anyone please help me to find the error?
logic I tried to solve this is :
Traverse the given number from rightmost digit, keep traversing till you find a digit which is smaller than the previously traversed digit. For example, if the input number is 534976, we stop at 4 because 4 is smaller than next digit 9. If we do not find such a digit, then output is Not Possible.
Now search the right side of above found digit ‘d’ for the smallest digit greater than ‘d’. For 534976, the right side of 4 contains 976. The smallest digit greater than 4 is 6.
Swap the above found two digits, we get 536974 in above example.
Now sort all digits from position next to ‘d’ to the end of number. The number that we get after sorting is the output. For above example, we sort digits in bold 536974. We get 536479 which is the next greater number for input 534976.
Here is my code:
#include <stdio.h>
#include <stdlib.h>
int main() {
int N, dig[100], i = 0,j, temp, t, s, k, l, min, temp1;
scanf("%d", &N);
while (N > 0) {
dig[i] = N % 10;
i++;
N = N / 10;
}
for (j = 0; j <= i; j++) {
if (dig[j] > dig[j + 1]) {
s = j;
break;
}
}
min = dig[s];
//printf("%d ", min);
for (k = s; k >= 0; k--) {
if (dig[k] <= min) {
min = dig[k];
t = k;
}
}
//printf("%d ", t);
temp = dig[t];
dig[t] = dig[s + 1];
dig[s + 1] = temp;
for (k = 0; k <= s; k++) {
for (l = k + 1; l <= s; l++) {
if (dig[k] < dig[l]) {
temp1 = dig[k];
dig[k] = dig[l];
dig[l] = temp1;
}
}
}
for (k = i - 1; k >= 0; k--) {
printf("%d", dig[k]);
}
}
Your algorithm seems correct, but the loops are incorrect. Some index boundaries are off by one and the comparisons with <= are incorrect. Storing the digits by increasing powers of 10, while more practical is counter-intuitive and complicates the translation of the algorithm into code.
Here is a corrected version, that outputs all greater numbers. You can easily check the output by piping through sort -c to verify order and wc -l to verify that all combinations have been found (there should be at most n! - 1 greater numbers for a number with n digits).
#include <stdio.h>
int main() {
int N, dig[100], i, j, s, t, k, l, temp;
if (scanf("%d", &N) != 1 || N < 0)
return 1;
for (;;) {
for (i = j = 100; N > 0;) {
dig[--i] = N % 10;
N = N / 10;
}
for (s = j - 2; s >= i; s--) {
if (dig[s] < dig[s + 1]) {
break;
}
}
if (s < i) {
/* no greater number with the same digits */
break;
}
t = s + 1;
for (k = t + 1; k < j; k++) {
if (dig[k] < dig[t] && dig[k] > dig[s]) {
t = k;
}
}
temp = dig[t];
dig[t] = dig[s];
dig[s] = temp;
for (k = s + 1; k < j; k++) {
for (l = k + 1; l < j; l++) {
if (dig[k] > dig[l]) {
temp = dig[k];
dig[k] = dig[l];
dig[l] = temp;
}
}
}
N = 0;
for (k = i; k < j; k++) {
N = N * 10 + dig[k];
printf("%d", dig[k]);
}
printf("\n");
}
return 0;
}
Input: 472
Output:
724
742

Calculating large power of a number in c

I am writing a program in c to store 2^100000, and I am using arrays to store the result.
Here is the full code:
#include <stdio.h>
#include <math.h>
int main()
{
int test, n, i, j, x, resul;
int a[200], m, temp;
scanf("%d", &test);
for (i = 0; i < test; i++) {
a[0] = 3; // initializes array with only 1 digit, the digit 1.
m = 1; // initializes digit counter
scanf("%d", &n);
temp = 0; // Initializes carry variable to 0.
for (i = 1; i < n; i++) {
for (j = 0; j < m; j++) {
x = a[j] * 2 + temp; //x contains the digit by digit product
a[j] = x % 10; //Contains the digit to store in position j
temp = x / 10; //Contains the carry value that will be stored on later indexes
}
while (temp > 0) { //while loop that will store the carry value on array.
a[m] = temp % 10;
temp = temp / 10;
m++; // increments digit counter
}
}
for (i = m - 1; i >= 0; i--) //printing answer
printf("%d", a[i]);
}
return 0;
}
Can some one tell me a more efficient way to do so to reduce the time complexity?
2^n in binary is an (n+1)-digit integer with every bit set to 0 except the most significant bit being set to 1. e.g: 32 = 2^5 = 0b100000
Likewise, 2^100000 can be computed by setting the 100001-th bit in a zeroed 100001 bit long integer to 1. O(1) is as time efficient as you can go.
There are several problems with your code:
The array a is defined with a size of only 200 digits. This is much too small for 2^100000 that has 30103 digits. You should increase the array size and check for overflow in the multiplication algorithm.
You initialize a[0] = 3; and comment this as the digit 1. Indeed you should write a[0] = 1;.
The second loop for (i = 1; i < n; i++) should include the desired power number: you should write for (i = 1; i <= n; i++).
You use the same loop variable for the outer loop and the second level ones, causing incorrect behavior.
You do not test the return value of scanf, causing undefined behavior on invalid input.
You do not check for overflow, invoking undefined behavior on large values.
Here is a corrected version:
#include <stdio.h>
int main()
{
int n, i, j, x, m, test, temp;
int a[32000];
if (scanf("%d", &test) != 1)
return 1;
while (test-- > 0) {
if (scanf("%d", &n) != 1)
break;
a[0] = 1; // initializes array with only 1 digit, the number 1.
m = 1; // initializes digit counter
temp = 0; // Initializes carry variable to 0.
for (i = 1; i <= n; i++) {
for (j = 0; j < m; j++) {
x = a[j] * 2 + temp; //x contains the digit by digit product
a[j] = x % 10; //Contains the digit to store in position j
temp = x / 10; //Contains the carry value that will be stored on later indexes
}
// while loop that will store the carry value on array.
if (temp > 0) {
if (m >= (int)(sizeof(a)/sizeof(*a)))
break;
a[m++] = temp;
temp = 0;
}
}
if (temp > 0) {
printf("overflow");
} else {
for (i = m - 1; i >= 0; i--) //printing answer
putchar('0' + a[i]);
}
printf("\n");
}
return 0;
}
Running this code with input 1 and 100000 on my laptop takes about 6,5 seconds. That's indeed quite inefficient. Using a few optimization techniques that do not really change the complexity of this simple iterative algorithm still can yield a dramatic performance boost, possibly 100 times faster.
Here are some ideas:
store 9 digits per int in the array instead of just 1.
multiply by 2^29 in each iteration instead of just 2, using long long to compute the intermediary result. Initialize the first step to 1 << (n % 29) to account for n not being a multiple of 29. 2^29 is the largest power of 2 less than 10^9.
Here is version that implements these two ideas:
#include <stdio.h>
int main() {
int n, i, j, m, test, temp;
int a[32000];
if (scanf("%d", &test) != 1)
return 1;
while (test-- > 0) {
if (scanf("%d", &n) != 1)
break;
i = n % 29;
n /= 29;
a[0] = 1 << i;
m = 1;
temp = 0;
for (i = 1; i <= n; i++) {
for (j = 0; j < m; j++) {
long long x = a[j] * (1LL << 29) + temp;
a[j] = x % 1000000000;
temp = x / 1000000000;
}
if (temp > 0) {
if (m >= (int)(sizeof(a)/sizeof(*a)))
break;
a[m++] = temp;
temp = 0;
}
}
if (temp > 0) {
printf("overflow");
} else {
printf("%d", a[m - 1]);
for (i = m - 2; i >= 0; i--)
printf("%09d", a[i]);
}
printf("\n");
}
return 0;
}
Running it on the same laptop computes the correct result in only 33ms, that's 200 times faster.
The Time Complexity is the same, but implementation is much more efficient.
Be aware that native C integers are limited, in practice to some power of two related to the word size of your computer (e.g. typically 32 or 64 bits). Read about <stdint.h> and int32_t & int64_t.
Maybe you want some bignums (or bigints), a.k.a. arbitrary precision arithmetic.
The underlying algorithms are very clever (and more efficient than the naive ones you learned in school). So don't try to reinvent them, and use a library like GMPlib

Resources