What are the difference between the Traditional Logic and the Fuzzy Logic - artificial-intelligence

Please explain the differences about Traditional and Fuzzy Logics(FLS).
It will help understand about those systems to beginners(Like me).

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of FL imitates the way of decision making in humans that involves all intermediate possibilities between digital values YES and NO.
The conventional logic block that a computer can understand takes precise input and produces a definite output as TRUE or FALSE, which is equivalent to a human’s YES or NO.
Traditional logic: a system of formal logic mainly concerned with the syllogistic forms of deduction that is based on Aristotle and includes some of the changes and elaborations made by the Stoics and the Scholastics: Aristotelian logic — compare immediate inference, opposition, subject-predicate, syllogism, symbolic logic
FOR MORE INFO ABOUT THE FUZZY lOGIC SEE THIS :
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_fuzzy_logic_systems.htm
I hope that I could help you to understand the difference.

Related

How to use a Bayesian Network to compute conditional probability queries

I am studying about Bayesian Network of my AI courses.
Does anyone know how to calculate causal inference and diagnostic inference in the attached picture?
Bayesian Network Example
There are lots of ways to perform inference from a Bayesian network, the most naive of which is just enumeration.
Enumeration works for both causal inference and diagnostic inference. The difference is finding out how likely the effect is based on evidence of the cause (causal inference) vs finding out how likely the cause is based on evidence of the effect (diagnostic inference).
The answer from Nick Larsen is a good one. I'll elaborate to give a worked solution to your problem since you might be looking for something a little more specific.
Problem 1: P(C|E). What is the probability of having a promising career (C=1) GIVEN the economic environment is positive (E=1)?
We use the factored structure of the Bayes net to write the full joint probability in terms of the factored variables.
Notice that you have just used the law of total probability to introduce the latent variables (S and J) and then marginalise (sum) them out. I have used the 'hat' to refer to not (~ in your question above). Notice too that once you have applied the rule of total probability, the Bayes net does a lot of the hard work for you by allowing you to factor the joint probability into a number of smaller conditional probabilities.
Problem 2: P(E|C). What is the probability that the economic environment is positive (E=1) GIVEN we observe that you have a promising career (C=1)?
Here we actually need to apply Bayes rule in the first line. Notice that you have an annoying normalising constant P(C) that is carried throughout. This term can be solved in much the same way as you solved Problem 1:
The computation of P(C=1|E=1) is solved in problem 1. I have left out the computation for P(C=0|E=1) = 0.5425 out but it is the same process as Problem 1.
Now you are in a position to solve for P(E|C) = .38/.65125 = .583

Find-S concept learning algorithm

I am implementing and analysing the Find-S Algorithm (which I understood quite well). However, for the testing part, I am not sure whether the order of the examples in the training set affect the output.
Is this known or still unproven?
The order of examples will not affect the output if the function which expands the hypothesis is associative -- that is, if f(f(h0),x1),x2) = f(f(h0,x2),x1) for all h0,x1,x2.
The order of instances will affect your output because when FIND-S try to maximally specific hypothesis, it looks attributes and their values. It is discussed in Tom Mitchell's Machine Learning Book under title of '2.4 FIND-S FINDING A MAXIMALLY SPECIFIC HYPOTHESIS'.

Logic programming with integer or even floating point domains

I am reading a lot about logic programming - ASP (Answer Set Programming) is one example or this. They (logic programs) are usually in the form:
[Program 1]
Rule1: a <- a1, a2, ..., not am, am+1;
Rule2: ...
This set of rules is called the logic program and the s.c. model is the result of such computation - some kind of assignment of True/False values to each of a1, a2, ...
There is lot of research going on - e.g. how such kind of programs (rules) can be integrated with the (semantic web) ontologies to build knowledge bases that contain both - rules and ontologies (some kind of constraints/behaviour and data); there is lot of research about ASP itself - like parallel extensions, extensions for probabilistic logic, for temporal logic and so on.
My question is - is there some kind of research and maybe some proof-of-concept projects where this analysis is extended from Boolean variables to variables with integer and maybe even float domains? Currently I have not found any research that could address the following programs:
[Program 2]
Rule1 a1:=5 <- a2=5, a3=7, a4<8, ...
Rule2 ...
...
[the final assignment of values to a1, a2, etc., is the solution of this program]
Currently - as I understand - if one could like to perform some kind of analysis on Program-2 (e.g. to find if this program is correct in some sense - e.g. if it satisfies some properties, if it terminates, what domains are allowed not to violate some kind of properties and so on), then he or she must restate Program-2 in terms of Program-1 and then proceed in way which seems to be completely unexplored - to my knowledge (and I don't believe that is it unexplored, simply - I don't know some sources or trend). There is constraint logic programming that allow the use of statements with inequalities in Program-1, but it is too focused on Boolean variables as well. Actually - Programm-2 is of kind that can be fairly common in business rules systems, that was the cause of my interest in logic programming.
SO - my question has some history - my practical experience has led me to appreciate business rules systems/engines, especially - JBoss project Drools and it was my intention to do some kind of research of theory underlying s.c. production rules systems (I was and I am planning to do my thesis about them - if I would spot what can be done here), but I can say that there is little to do - after going over the literature (e.g. http://www.computer.org/csdl/trans/tk/2010/11/index.html was excellent IEEE TKDE special issues with some articles about them, one of them was writter by Drools leader) one can see that there is some kind of technical improvements of the decades old Rete algorithm but there is no theory of Drools or other production rule systems that could help with to do some formal analysis about them. So - the other question is - is there theory of production rule systems (for rule engines like Drools, Jess, CLIPS and so on) and is there practical need for such theory and what are the practical issues of using Drools and other systems that can be addressed by the theory of production rule systems.
p.s. I know - all these are questions that should be directed to thesis advisor, but my current position is that there is no (up to my knowledge) person in department where I am enrolled with who could fit to answer them, so - I am reading journals and also conference proceedings (there are nice conference series series of Lecture Notes in Computer Science - RuleML and RR)...
Thanks for any hint in advance!
In a sense the boolean systems already do what you suggest.
to ensure A=5 is part of your solution, consider the rules (I forget my ASP syntax so bear with me)
integer 1..100 //integers 1 to 100 exist
1{A(X) : integer(X)}1 //there is one A(X) that is true, where X is an integer
A(5) //A(5) is true
and I think your clause would require:
integer 1..100 //integers 1 to 100 exist
1{A(X) : integer(X)}1 //A1 can take only one value and must take a value
1{B(X) : integer(X)}1 //A2 ``
1{C(X) : integer(X)}1 //A3 ``
1{D(X) : integer(X)}1 //A4 ``
A(5) :- B(5), C(7), D(8) //A2=5, A3=7, A4=8 ==> A1=5
I hope I've understood the question correctly.
Recent versions of Clojure core.logic (since 0.8) include exactly this kind of support, based on cKanren
See an example here: https://gist.github.com/4229449

How to determine subject, object and other words?

I'm trying to implement application that can determine meaning of sentence, by dividing it to smaller pieces. So I need to know what words are subject, object etc. so that my program can know how to handle this sentence.
This is an open research problem. You can get an overview on Wikipedia, http://en.wikipedia.org/wiki/Natural_language_processing. Consider phrases like "Time flies like an arrow, fruit flies like a banana" - unambiguously classifying words is not easy.
You should look at the Natural Language Toolkit, which is for exactly this sort of thing.
See this section of the manual: Categorizing and Tagging Words - here's an extract:
>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
"Here we see that and is CC, a coordinating conjunction; now and completely are RB, or adverbs; for is IN, a preposition; something is NN, a noun; and different is JJ, an adjective."
I guess there is not "simple" way to do this. You have to build a linguistic analyzer (which is quite possible), however, a language as a lot of exceptional cases. And that is what makes implementing a linguistic analyzer that hard.
The specific problem you mention, the identification of the subject and objects of a clause, is accomplished by syntactic parsing. You can get a good idea of how parsing works by using this demo of parsing software developed by Stanford University.
However, syntactic parsing does not determine the meanining of a sentence, only its structure. Determining meaning (semantics) is a very hard problem in general and there is no technology that can really 'understand' a sentence in the same way that a human would. Although there is no general solution, you may be able to do something in a very restricted subject domain. For example, is the data you want to analyse about a narrow topic with a limited set of 'things' that people talk about?
StompChicken has given the right answer to this question, but I'd like to add that the concepts of subject and object are known as grammatical relations, and that Briscoe and Carroll's RASP is a parser that can go the extra step of deducing a list of relations from the parse.
Here's some example output from their demo page. It's an extract from the output for a sentence that begins "We describe a robust accurate domain-independent approach...":
(|ncsubj| |describe:2_VV0| |We:1_PPIS2| _)
(|dobj| |describe:2_VV0| |approach:7_NN1|)

What is fuzzy logic?

I'm working with a couple of AI algorithms at school and I find people use the words Fuzzy Logic to explain any situation that they can solve with a couple of cases. When I go back to the books I just read about how instead of a state going from On to Off it's a diagonal line and something can be in both states but in different "levels".
I've read the wikipedia entry and a couple of tutorials and even programmed stuff that "uses fuzzy logic" (an edge detector and a 1-wheel self-controlled robot) and still I find it very confusing going from Theory to Code... for you, in the less complicated definition, what is fuzzy logic?
Fuzzy logic is logic where state membership is, essentially, a float with range 0..1 instead of an int 0 or 1. The mileage you get out of it is that things like, for example, the changes you make in a control system are somewhat naturally more fine-tuned than what you'd get with naive binary logic.
An example might be logic that throttles back system activity based on active TCP connections. Say you define "a little bit too many" TCP connections on your machine as 1000 and "a lot too many" as 2000. At any given time, your system has a "too many TCP connections" state from 0 (<= 1000) to 1 (>= 2000), which you can use as a coefficient in applying whatever throttling mechanisms you have available. This is much more forgiving and responsive to system behavior than naive binary logic that only knows how to determine "too many", and throttle completely, or "not too many", and not throttle at all.
I'd like to add to the answers (that have been modded up) that, a good way to visualize fuzzy logic is follows:
Traditionally, with binary logic you would have a graph whose membership function is true or false whereas in a fuzzy logic system, the membership function is not.
1|
| /\
| / \
| / \
0|/ \
------------
a b c d
Assume for a second that the function is "likes peanuts"
a. kinda likes peanuts
b. really likes peanuts
c. kinda likes peanuts
d. doesn't like peanuts
The function itself doesn't have to be triangular and often isn't (it's just easier with ascii art).
A fuzzy system will likely have many of these, some even overlapping (even opposites) like so:
1| A B
| /\ /\ A = Likes Peanuts
| / \/ \ B = Doesn't Like Peanuts
| / /\ \
0|/ / \ \
------------
a b c d
so now c is "kind likes peanuts, kinda doesn't like peanuts" and d is "really doesn't like peanuts"
And you can program accordingly based on that info.
Hope this helps for the visual learners out there.
The best definition of fuzzy logic is given by its inventor Lotfi Zadeh:
“Fuzzy logic means of representing problems to computers in a way akin to the way human solve them and the essence of fuzzy logic is that everything is a matter of degree.”
The meaning of solving problems with computers akin to the way human solve can easily be explained with a simple example from a basketball game; if a player wants to guard another player firstly he should consider how tall he is and how his playing skills are. Simply if the player that he wants to guard is tall and plays very slow relative to him then he will use his instinct to determine to consider if he should guard that player as there is an uncertainty for him. In this example the important point is the properties are relative to the player and there is a degree for the height and playing skill for the rival player. Fuzzy logic provides a deterministic way for this uncertain situation.
There are some steps to process the fuzzy logic (Figure-1). These steps are; firstly fuzzification where crisp inputs get converted to fuzzy inputs secondly these inputs get processed with fuzzy rules to create fuzzy output and lastly defuzzification which results with degree of result as in fuzzy logic there can be more than one result with different degrees.
Figure 1 – Fuzzy Process Steps (David M. Bourg P.192)
To exemplify the fuzzy process steps, the previous basketball game situation could be used. As mentioned in the example the rival player is tall with 1.87 meters which is quite tall relative to our player and can dribble with 3 m/s which is slow relative to our player. Addition to these data some rules are needed to consider which are called fuzzy rules such as;
if player is short but not fast then guard,
if player is fast but not short then don’t guard
If player is tall then don’t guard
If player is average tall and average fast guard
Figure 2 – how tall
Figure 3- how fast
According to the rules and the input data an output will be created by fuzzy system such as; the degree for guard is 0.7, degree for sometimes guard is 0.4 and never guard is 0.2.
Figure 4-output fuzzy sets
On the last step, defuzzication, is using for creating a crisp output which is a number which may determine the energy that we should use to guard the player during game. The centre of mass is a common method to create the output. On this phase the weights to calculate the mean point is totally depends on the implementation. On this application it is considered to give high weight to guard or not guard but low weight given to sometimes guard. (David M. Bourg, 2004)
Figure 5- fuzzy output (David M. Bourg P.204)
Output = [0.7 * (-10) + 0.4 * 1 + 0.2 * 10] / (0.7 + 0.4 + 0.2) ≈ -3.5
As a result fuzzy logic is using under uncertainty to make a decision and to find out the degree of decision. The problem of fuzzy logic is as the number of inputs increase the number of rules increase exponential.
For more information and its possible application in a game I wrote a little article check this out
To build off of chaos' answer, a formal logic is nothing but an inductively defined set that maps sentences to a valuation. At least, that's how a model theorist thinks of logic. In the case of a sentential boolean logic:
(basis clause) For all A, v(A) in {0,1}
(iterative) For the following connectives,
v(!A) = 1 - v(A)
v(A & B) = min{v(A), v(B)}
v(A | B) = max{v(A), v(B)}
(closure) All sentences in a boolean sentential logic are evaluated per above.
A fuzzy logic changes would be inductively defined:
(basis clause) For all A, v(A) between [0,1]
(iterative) For the following connectives,
v(!A) = 1 - v(A)
v(A & B) = min{v(A), v(B)}
v(A | B) = max{v(A), v(B)}
(closure) All sentences in a fuzzy sentential logic are evaluated per above.
Notice the only difference in the underlying logic is the permission to evaluate a sentence as having the "truth value" of 0.5. An important question for a fuzzy logic model is the threshold that counts for truth satisfaction. This is to ask: for a valuation v(A), for what value D it is the case the v(A) > D means that A is satisfied.
If you really want to found out more about non-classical logics like fuzzy logic, I would recommend either An Introduction to Non-Classical Logic: From If to Is or Possibilities and Paradox
Putting my coder hat back on, I would be careful with the use of fuzzy logic in real world programming, because of the tendency for a fuzzy logic to be undecidable. Maybe it's too much complexity for little gain. For instance a supervaluational logic may do just fine to help a program model vagueness. Or maybe probability would be good enough. In short, I need to be convinced that the domain model dovetails with a fuzzy logic.
Maybe an example clears up what the benefits can be:
Let's say you want to make a thermostat and you want it to be 24 degrees.
This is how you'd implement it using boolean logic:
Rule1: heat up at full power when
it's colder than 21 degrees.
Rule2:
cool down at full power when it's
warmer than 27 degrees.
Such a system will only once and a while be 24 degrees, and it will be very inefficient.
Now, using fuzzy logic, it would be like something like this:
Rule1: For each degree that it's colder than 24 degrees, turn up the heater one notch (0 at 24).
Rule2: For each degree that it's warmer than 24 degress, turn up the cooler one notch (0 at 24).
This system will always be somewhere around 24 degrees, and it only once and will only once and a while make a tiny adjustment. It will also be more energy-efficient.
Well, you could read the works of Bart Kosko, one of the 'founding fathers'. 'Fuzzy Thinking: The New Science of Fuzzy Logic' from 1994 is readable (and available quite cheaply secondhand via Amazon). Apparently, he has a newer book 'Noise' from 2006 which is also quite approachable.
Basically though (in my paraphrase - not having read the first of those books for several years now), fuzzy logic is about how to deal with the world where something is perhaps 10% cool, 50% warm, and 10% hot, where different decisions may be made on the degree to which the different states are true (and no, it wasn't entirely an accident that those percentages don't add up to 100% - though I'd accept correction if needed).
A very good explanation, with a help of Fuzzy Logic Washing Machines.
I know what you mean about it being difficult to go from concept to code. I'm writing a scoring system that looks at the values of sysinfo and /proc on Linux systems and comes up with a number between 0 and 10, 10 being the absolute worst. A simple example:
You have 3 load averages (1, 5, 15 minute) with (at least) three possible states, good, getting bad, bad. Expanding that, you could have six possible states per average, adding 'about to' to the three that I just noted. Yet, the result of all 18 possibilities can only deduct 1 from the score. Repeat that with swap consumed, actual VM allocated (committed) memory and other stuff .. and you have one big bowl of conditional spaghetti :)
Its as much a definition as it is an art, how you implement the decision making process is always more interesting than the paradigm itself .. whereas in a boolean world, its rather cut and dry.
It would be very easy for me to say if load1 < 2 deduct 1, but not very accurate at all.
If you can teach a program to do what you would do when evaluating some set of circumstances and keep the code readable, you have implemented a good example of fuzzy logic.
Fuzzy Logic is a problem-solving methodology that lends itself to implementation in systems ranging from simple, small, embedded micro-controllers to large, networked, multi-channel PC or workstation-based data acquisition and control systems. It can be implemented in hardware, software, or a combination of both. Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing input information. Fuzzy Logic approach to control problems mimics how a person would make decisions, only much faster.
Fuzzy logic has proved to be particularly useful in expert system and other artificial intelligence applications. It is also used in some spell checkers to suggest a list of probable words to replace a misspelled one.
To learn more, just check out: http://en.wikipedia.org/wiki/Fuzzy_logic.
The following is sort of an empirical answer.
A simple (possibly simplistic answer) is that "fuzzy logic" is any logic that returns values other than straight true / false, or 1 / 0. There are a lot of variations on this and they tend to be highly domain specific.
For example, in my previous life I did search engines that used "content similarity searching" as opposed to then common "boolean search". Our similarity system used the Cosine Coefficient of weighted-attribute vectors representing the query and the documents and produced values in the range 0..1. Users would supply "relevance feedback" which was used to shift the query vector in the direction of desirable documents. This is somewhat related to the training done in certain AI systems where the logic gets "rewarded" or "punished" for results of trial runs.
Right now Netflix is running a competition to find a better suggestion algorithm for their company. See http://www.netflixprize.com/. Effectively all of the algorithms could be characterized as "fuzzy logic"
Fuzzy logic is calculating algorithm based on human like way of thinking. It is particularly useful when there is a large number of input variables. One online fuzzy logic calculator for two variables input is given:
http://www.cirvirlab.com/simulation/fuzzy_logic_calculator.php

Resources