I have a table Event which contains ideventtype (references event type), date, idhost,etc.
Now i may have various event type and based on the event type i have fields related to the event type. How do i store these details
Solution 1:-
Save it in the same table as event by adding another column.
Solution 2:-
Create another table, say event_birthday (birthday is the event type) and there i can store the "birthday" related data. However if i have other event types i will have to create many tables, eventually making event type useless.
Any suggestions or other ways to proceed.
[Constraint Added]
Once constraint I have is that the subtable needs to have a foreign key to another table. For example i have a hospital table to be linked to location in the sub table.
I would consider using a NoSQL database, such as MongoDB, for this purpose. But if you're stuck with Sql Server, one option would be to save the event details in a generic separate table as xml and use serialization in code to process the values. This way you could still use queries for data filtering.
Two more other ways also possible.
Solution 3:
Create another table EventAddInfo and that should have 4 columns.
EventAddInfoID
EventId
EventSubCol
EventSubValue
Here we can store these Extra columns as rows. And EventId will be foreign Key from Event table.
Example data would be
| EventAddInfoID |EventId | EventSubCol | EventSubValue |
|---------------- |----------|--------------|---------------|
| 10 | 4 | birthdate | 2002-05-30 |
| 11 | 4 | birthplace | Hospital |
| 12 | 5 | Score | 85 |
| 13 | 5 | Study | Degree |
Note: Consider EventId 5 related to Study Event
Solution 4:
Having one extra column in Event Table of type XML.
For example EventSubInfo.
In this column we can store xml of our own structure
<Cols>
<birthdate>2002-05-30T09:00:00<birthdate>
<birthplace>Hospital<birthplace>
</Cols>
Related
I'm developing an application that uses a mysql database and we wanted to do an approach for history purposes, that we store the current state and the history in the same table for performance reasons (on updates the application doesn't have the id for an entity just a key pair, so it is easier just to insert a new row).
The table looks like this:
+------+-------+-----------+------------------------------+
| id |user_id| type |content |
+------+-------+-----------+------------------------------+
| 1 |'1-2-3'| position | *creation |
| 2 |'1-2-3'| position | *something_changed |
| 3 |'1-2-3'| device | *creation |
| 4 |'1-2-4'| position | *creation |
| 5 |'1-2-4'| device | *creation |
| 6 |'1-2-4'| device | *something_changed |
+------+-------+-----------+------------------------------+
Every entity is described with the user_id and type "key" pair, when something is changed in the entity a new row is inserted. The current state of an entity is selected by the highest id row from the group, which is grouped by the user_id and type. Performance wise the updates should be super fast and the selects can be slower, because those are not used often.
I would like to look up best practices and other people experiences with this method, but I don't know how to search for them. Can you help me? I'm interested in your experiences or opinions on this topic as well.
I know about Kafka and other streaming platforms, but that was sadly not an option for this.
I have two source tables, one is basically an invoice, the other is a migrated invoice. The same object should probably have been used for both, but I have this instead. They contain most of the same data.
I had thought to combine both into a dimension table, however both will use the same natural keys. How should I approach this?
One potential solution I thought of was using negative numbers for the migrated table, but then the natural keys won't align exactly with the source.
Do I just combine them in the fact table? Then I can't link back to the dimension table for either due to NULLs.
Or do I add an additional column or information to indicate which type of invoice it is?
EDIT
Simple models of the current tables below.
The dimension currently only contains the non migrated data, it has a primary key, however
if i merge the migrated invoice table in to this, it will appear as if the changes are being
made to the original invoices and not a second set of invoices
Dimension
surrogate_key| source_pk | Total | scd_from | scd_to
| | | |
1 | 1 | 100 | 01/01/2019 | 31/01/2019
2 | 1 | 150 | 01/02/2019 | 31/12/2019
3 | 2 | 50 | 01/01/2019 | 31/12/9999
source invoice table
pk | Total
___________________
1 | 150
2 | 50
source migrated invoice table
pk | total
___________________
1 | 200
2 | 300
If invoice and migrated invoice have same natural key but some of the fields have different values (your example shows Total amount different between them), then you have one row based on the natural key in the Dim but 2 different columns to represent the 2 sources. Based on your example, you need invoice_Total and migrated_invoice_Total columns in your DIM.
I have to optimize my little-big database, because it's too slow, maybe we'll find another solution together.
First of all let's talk about data that are stored in the database. There are two objects: users and let's say messages
Users
There is something like that:
+----+---------+-------+-----+
| id | user_id | login | etc |
+----+---------+-------+-----+
| 1 | 100001 | A | ....|
| 2 | 100002 | B | ....|
| 3 | 100003 | C | ....|
|... | ...... | ... | ....|
+----+---------+-------+-----+
There is no problem inside this table. (Don't afraid of id and user_id. user_id is used by another application, so it has to be here.)
Messages
And the second table has some problem. Each user has for example messages like this:
+----+---------+------+----+
| id | user_id | from | to |
+----+---------+------+----+
| 1 | 1 | aab | bbc|
| 2 | 2 | vfd | gfg|
| 3 | 1 | aab | bbc|
| 4 | 1 | fge | gfg|
| 5 | 3 | aab | gdf|
|... | ...... | ... | ...|
+----+---------+------+----+
There is no need to edit messages, but there should be an opportunity to updated the list of messages for the user. For example, an external service sends all user's messages to the db and the list has to be updated.
And the most important thing is that there are about 30 Mio of users and average user has 500+ of messages. Another problem that I have to search through the field from and calculate number of matches. I designed a simple SQL query with join, but it takes too much time to get the data.
So...it's quite big amount of data. I decided not to use RDS (I used Postgresql) and decided to move to databases like Clickhouse and so on.
However I faced with a problem that for example Clickhouse doesn't support UPDATE statement.
To resolve this issues I decided to store messages as one row. So the table Messages should be like this:
Here I'd like to store messages in JSON format
{"from":"aaa", "to":bbe"}
{"from":"ret", "to":fdd"}
{"from":"gfd", "to":dgf"}
||
\/
+----+---------+----------+------+ And there I'd like to store the
| id | user_id | messages | hash | <= hash of the messages.
+----+---------+----------+------+
I think that full-text search inside the messages column will save some time resources and so on.
Do you have any ideas? :)
In ClickHouse, the most optimal way is to store data in "big flat table".
So, you store every message in a separate row.
15 billion rows is Ok for ClickHouse, even on single node.
Also, it's reasonable to have each user attributes directly in messages table (pre-joined), so you don't need to do JOINs. It is suitable if user attributes are not updated.
These attributes will have repeated values for each users' message - it's Ok because ClickHouse compresses data well, especially repeated values.
If users' attributes are updated, consider to store users table in separate database and use 'External dictionaries' feature to join it.
If message is updated, just don't update it. Write another row with modified message to a table instead and leave old message as is.
Its important to have right primary key for your table. You should use table from MergeTree family, which constantly reorders data by primary key and so maintains efficiency of range queries. Primary key is not required to be unique, for example you could define primary key as just (from) if you would frequently write "from = ...", and if these queries must be processed in short time.
And you could use user_id as primary key: if queries by user id are frequent and must be processed as fast as possible, but then queries with predicate on 'from' will scan whole table (mind that ClickHouse do full scan efficiently).
If you need to fast lookup by many different attributes, you could just duplicate table with different primary keys. It's typically that table will be compressed well enough and you could afford to have data in few copies with different order for different range queries.
First of all, when we have such a big dataset, from and to columns should be integers, if possible, as their comparison is faster.
Second, you should consider creating proper indexes. As each user has relatively few records (500 compared to 30M in total), it should give you a huge performance benefit.
If everything else fails, consider using partitions:
https://www.postgresql.org/docs/9.1/static/ddl-partitioning.html
In your case they would be dynamic, and hinder first time inserts immensely, so I would consider them only as last, if very efficient, resort.
Taking MySQL as an example DB to perform this in (although I'm not restricted to Relational flavours at this stage) and Java style syntax for model / db interaction.
I'd like the ability to allow versioning of individual column values (and their corresponding types) as and when users edit objects. This is primarily in an attempt to drop the amount of storage required for frequent edits of complex objects.
A simple example might be
- Food (Table)
- id (INT)
- name (VARCHAR(255))
- weight (DECIMAL)
So we could insert an object into the database that looks like...
Food banana = new Food("Banana",0.3);
giving us
+----+--------+--------+
| id | name | weight |
+----+--------+--------+
| 1 | Banana | 0.3 |
+----+--------+--------+
if we then want to update the weight we might use
banana.weight = 0.4;
banana.save();
+----+--------+--------+
| id | name | weight |
+----+--------+--------+
| 1 | Banana | 0.4 |
+----+--------+--------+
Obviously though this is going to overwrite the data.
I could add a revision column to this table, which could be incremented as items are saved, and set a composite key that combines id/version, but this would still mean storing ALL attributes of this object for every single revision
- Food (Table)
- id (INT)
- name (VARCHAR(255))
- weight (DECIMAL)
- revision (INT)
+----+--------+--------+----------+
| id | name | weight | revision |
+----+--------+--------+----------+
| 1 | Banana | 0.3 | 1 |
| 1 | Banana | 0.4 | 2 |
+----+--------+--------+----------+
But in this instance we're going to be storing every single piece of data about every single item. This isn't massively efficient if users are making minor revisions to larger objects where Text fields or even BLOB data may be part of the object.
What I'd really like, would be the ability to selectively store data discretely, so the weight could possible be saved in a separate DB in its own right, that would be able to reference the table, row and column that it relates to.
This could then be smashed together with a VIEW of the table, that could sort of impose any later revisions of individual column data into the mix to create the latest version, but without the need to store ALL data for each small revision.
+----+--------+--------+
| id | name | weight |
+----+--------+--------+
| 1 | Banana | 0.3 |
+----+--------+--------+
+-----+------------+-------------+-----------+-----------+----------+
| ID | TABLE_NAME | COLUMN_NAME | OBJECT_ID | BLOB_DATA | REVISION |
+-----+------------+-------------+-----------+-----------+----------+
| 456 | Food | weight | 1 | 0.4 | 2 |
+-----+------------+-------------+-----------+-----------+----------+
Not sure how successful storing any data as blob to then CAST back to original DTYPE might be, but thought since I was inventing functionality here, why not go nuts.
This method of storage would also be fairly dangerous, since table and column names are entirely subject to change, but hopefully this at least outlines the sort of behaviour I'm thinking of.
A table in 6NF has one CK (candidate key) (in SQL a PK) and at most one other column. Essentially 6NF allows each pre-6NF table's column's update time/version and value recorded in an anomaly-free way. You decompose a table by dropping a non-prime column while adding a table with it plus an old CK's columns. For temporal/versioning applications you further add a time/version column and the new CK is the old one plus it.
Adding a column of time/whatever interval (in SQL start time and end time columns) instead of time to a CK allows a kind of data compression by recording longest uninterupted stretches of time or other dimension through which a column had the same value. One queries by an original CK plus the time whose value you want. You dont need this for your purposes but the initial process of normalizing to 6NF and the addition of a time/whatever column should be explained in temporal tutorials.
Read about temporal databases (which deal both with "valid" data that is times and time intervals but also "transaction" times/versions of database updates) and 6NF and its role in them. (Snodgrass/TSQL2 is bad, Date/Darwen/Lorentzos is good and SQL is problematic.)
Your final suggested table is an example of EAV. This is usually an anti-pattern. It encodes a database in to one or more tables that are effectively metadata. But since the DBMS doesn't know that you lose much of its functionality. EAV is not called for if DDL is sufficient to manage tables with columns that you need. Just declare appropriate tables in each database. Which is really one database, since you expect transactions affecting both. From that link:
You are using a DBMS anti-pattern EAV. You are (trying to) build part of a DBMS into your program + database. The DBMS already exists to manage data and metadata. Use it.
Do not have a class/table of metatdata. Just have attributes of movies be fields/columns of Movies.
The notion that one needs to use EAV "so every entity type can be
extended with custom fields" is mistaken. Just implement via calls
that update metadata tables sometimes instead of just updating regular
tables: DDL instead of DML.
I have to generate a view that shows tracking across each month. The ultimate view will be something like this:
| Person | Task | Jan | Feb | Mar| Apr | May | June . . .
| Joe | Roof Work | 100% | 50% | 50% | 25% |
| Joe | Basement Work | 0% | 50% | 50% | 75% |
| Tom | Basement Work | 100% | 100% | 100% | 100% |
I already have the following tables:
Person
Task
I am now creating a new table to foreign key into the above 2 tables and i am trying to figure out the pros and cons of creating 1 or 2 tables.
Option 1:
Create a new table with the following Columns:
Id
PersonId
TaskId
Jan2012
Feb2012
Mar2012
Apr2013
or
Option 2:
have 2 seperate tables
One table for just
Id
PersonId
TaskId
and another table for just the following columns
Id
PersonTaskId (the id from table above)
MonthYearKey
MonthYearValue
So an example record would be
| 1 | 13 | Jan2011 | 100% |
where 13 would represent a specific unique Person and Task combination. This second way would avoid having to create new columns to continue over time (which seems right) but i also want to avoid overkill.
which would be a more scalable way to have this schema. Also, any other suggestions or more elegant ways of doing this would be great as well?
You can have a m2m table with data columns. I don't see a reason why you can't just put MonthYearKey, MonthYearValue on the same table with PersonId and TaskId
Id
TaskId
PersonId
MonthYearKey
MonthYearValue
It's possible too that you would want to move the MonthYearKey out into their own table, it really just comes down to common queries and what this data is used for.
I would note, you never want to design a schema where you are adding columns due to time. The first option would require maintenance all the time, and would become very difficult to query also.
Option 2 is definitely more scalable and is not overkill.
Option 1 would require you to add a new column every month and simple date based queries of your data would not be possible, e.g. Show me all people who worked at least 90% in any month last year.
The ultimate view would be generated from a particular query or view of your data.