how to make 1 million inserts in cassandra - database

I am parsing thousands of csv files from my application and for each parsed row I am making an insert into Cassandra. It seems that after letting it run it stops at 2048 inserts and throws the BusyConnection error.
Whats the best way for me to make about 1 million inserts?
Should i export the inserts as strings into a file, then run that file directly from CQL to make these massive inserts so I dont actually do it over the network?

We solve such issues using script(s).
The script go through input data and...
At each time it takes a specific amount of data from input.
Wait for specific amount of time.
Continues in reading and inserting of data.
ad 1. For our configuration and data (max 10 columns with mostly numbers and short texts) we found from 500 to 1000 rows are optimal.
ad 2. We define wait time as n * t. Where n is number of rows processed in single run of script. And t is time constant in millisecond. Value of t strongly depends on your configuration; however, for us t = 70 ms is enough to make the process smooth.

1 million requests - it's not so big number really, you can load it from cqlsh using the COPY FROM command. But you can load this data via your Java code as well.
From the error message it looks like that you're using asynchronous API. You can use it for high-performance inserts, but you need to control how many requests are processed at the same time (so-called, in-flight requests).
There are several aspects here:
Starting with version 3 of the protocol, you may have up to 32k in-flight requests per connection instead of 1024 that is used by default. You can configure it when creating Cluster object.
You need to control how many requests are in-flight, by wrapping session.executeAsync with some counter, for example, like in this example (not the best because it limits on the total requests per session, not on the connections to individual hosts - this will require much more logic, especially around token-aware requests).

Related

Improve throughput of ndb query over large data

I am trying to perform some data processing in a GAE application over data that is stored in the Datastore. The bottleneck point is the throughput in which the query returns entities and I wonder how to improve the query's performance.
What I do in general:
everything works in a task queue, so we have plenty of time (10 minute deadline).
I run a query over the ndb entities in order to select which entities need to be processed.
as the query returns results, I group entities in batches of, say, 1000 and send them to another task queue for further processing.
the stored data is going to be large (say 500K-1M entities) and there is a chance that the 10 minutes deadline is not enough. Therefore, when the task is reaching the taskqueue deadline, I spawn a new task. This means I need an ndb.Cursor in order to continue the query from where it stopped.
The problem is the rate in which the query returns entities. I have tried several approaches and observed the following performance (which is too slow for my app):
Use fetch_page() in a while loop.
The code is straightforward
while has_more and theres_more_time:
entities, cursor, more = query.fetch_page(1000, ...)
send_to_process_queue(entities)
has_more = more and cursor
With this approach, it takes 25-30 seconds to process 10K entities. Roughly speaking, that is 20K entities per minute. I tried changing the page size or the class of the frontend instance; neither made any difference in performance.
Segment the data and fire multiple fetch_page_async() in parallel.
This approach is taken from here (approach C)
The overall performance remains the same as above. I tried with various number of segments (from 2 to 10) in order to have 2-10 parallel fetch_async() calls. In all cases, the overall time remained the same. The more parallel fetch_page_async() are called, the longer it takes for each one to complete. I also tried with 20 parallel fetches and it got worse. Changing the page size or the fronted instance class did not have and impact either.
Fetch everything with a single fetch() call.
Now this is the least suitable approach (if not unsuitable at all) as the instance may run out of memory, plus I don't get a cursor in case I need to spawn to another task (in fact I won't even have the ability to do so, the task will simply exceed the deadline). I tried this out of curiosity in order to see how it performs and I observed the best performance! It took 8-10 seconds for 10K entities, which is roughly be 60K entities per minute. Now that is approx. 3 times faster than fetch_page(). I wonder why this happens.
Use query.iter() in a single loop.
This is match like the first approach. This will make use of the query iterator's underlying generator, plus I can obtain a cursor from the iterator in case I need to spawn a new task, so it suits me. With the query iterator, it fetched 10K entities in 16-18 seconds, which is approx. 36-40K entities per minute. The iterator is 30% faster than fetch_page, but much slower that fetch().
For all the above approaches, I tried F1 and F4 frontend instances without any difference in Datastore performance. I also tried to change the batch_size parameter in the queries, still without any change.
A first question is why do fetch(), fetch_page() and iter() behave so differently and how to make either fetch_page() or iter() do equally well as fetch()? And then another critical question is whether these throughputs (20-60K entities per minute, depending on api call) are the best we can do in GAE.
I 'm aware of the MapReduce API but I think it doesn't suit me. AFAIK, the MapReduce API doesn't support queries and I don't want to scan all the Datastore entities (it's will be too costly and slow - the query may return only a few results). Last, but not least, I have to stick to GAE. Resorting to another platform is not an option for me. So the question really is how to optimize the ndb query.
Any suggestions?
In case anyone is interested, I was able to significantly increase the throughput of the data processing by re-designing the component - it was suggested that I change the data models but that was not possible.
First, I segmented the data and then processed each data segment in a separate taskqueue.Task instead of calling multiple fetch_page_async from a single task (as I described in the first post). Initially, these tasks were processed by GAE sequentially utilizing only a single Fx instance. To achieve parallelization of the tasks, I moved the component to a specific GAE module and used basic scaling, i.e. addressable Bx instances. When I enqueue the tasks for each data segment, I explicitly instruct which basic instance will handle each task by specifying the 'target' option.
With this design, I was able to process 20.000 entities in total within 4-5 seconds (instead of 40'-60'!), using 5 B4 instances.
Now, this has additional costs because of the Bx instances. We 'll have to fine tune the type and number of basic instances we need.
The new experimental Data Processing feature (an AppEngine API for MapReduce) might be suitable. It uses automatic sharding to execute multiple parallel worker processes, which may or may not help (like the Approach C in the other linked question).
Your comment about "no need to scan all entities" triggers the thought that custom indexes could help your queries. That may entail schema changes to store the data in a less normal form.
Design a solution from the output perspective - what the simplest query is that produces the required results, then what the entity structure is to support such a query, then what work is needed to create and maintain such an entity structure from the current data.

node.js DB bulk insert vs insert one-at-a-tme

I'm a nodejs newbie and was wondering which way was better to insert huge number of rows into a DB. On the surface, it looks like inserting stuff one-at-a-time looks more like the way to go because I can free the event loop quickly and serve other requests. But, the code looks hard to understand that way. For bulk inserts, I'd have to prepare the data beforehand which would mean using loops for sure. This would cause less requests to be served during that period as the event loop is busy with the loop.
So, what's the preferred way ? Is my analysis correct ?
There's no right answer here. It depends on the details: why are you inserting a huge number of rows? How often? Is this just a one-time bootstrap or does your app do this every 10 seconds? It also matters what compute/IO resources are available. Is your app the only thing using the database or is blasting it with requests going to be a denial of service for other users?
Without the details, my rule of thumb would be bulk insert with a small concurrency limit, like fire off up to 10 inserts, and then wait until one of them finishes before sending another insert command to the database. This follows the model of async.eachLimit. This is how browsers handle concurrent requests to a given web site, and it has proven to be a reasonable default policy.
In general, loops on in-memory objects should be fast, very fast.
I know you're worried about blocking the CPU, but you should be considering the total amount of work to be done. Sending items one at time carries a lot of overhead. Each query to the DB has its own sequence of inner for loops that probably make your "batching" for loop look pretty small.
If you need to dump 1000 things in the DB, the minimum amount of work you can do is to run this all at once. If you make it 10 batches of 100 "things", you have to do all of the same work + you have to generate and track all of these requests.
So how often are you doing these bulk inserts? If this is a regular occurrence, you probably want to minimize the total amount of work and bulk insert everything at once.
The trade-off here is logging and retries. It's usually not enough to just perform some type of bulk insert and forget about it. The bulk insert is eventually going to fail (fully or partially) and you will need some type of logic for retries or consolidation.
If that's a concern, you probably want to manage the size of the bulk insert so that you can retry blocks intelligently.

Insert thousands entities in a reasonnable time into BigTable

I'm having some issues when I try to insert the 36k french cities into BigTable. I'm parsing a CSV file and putting every row into the datastore using this piece of code:
import csv
from databaseModel import *
from google.appengine.ext.db import GqlQuery
def add_cities():
spamReader = csv.reader(open('datas/cities_utf8.txt', 'rb'), delimiter='\t', quotechar='|')
mylist = []
for i in spamReader:
region = GqlQuery("SELECT __key__ FROM Region WHERE code=:1", i[2].decode("utf-8"))
mylist.append(InseeCity(region=region.get(), name=i[11].decode("utf-8"), name_f=strip_accents(i[11].decode("utf-8")).lower()))
db.put(mylist)
It's taking around 5 minutes (!!!) to do it with the local dev server, even 10 when deleting them with db.delete() function.
When I try it online calling a test.py page containing add_cities(), the 30s timeout is reached.
I'm coming from the MySQL world and I think it's a real shame not to add 36k entities in less than a second. I can be wrong in the way to do it, so I'm refering to you:
Why is it so slow ?
Is there any way to do it in a reasonnable time ?
Thanks :)
First off, it's the datastore, not Bigtable. The datastore uses bigtable, but it adds a lot more on top of that.
The main reason this is going so slowly is that you're doing a query (on the 'Region' kind) for every record you add. This is inevitably going to slow things down substantially. There's two things you can do to speed things up:
Use the code of a Region as its key_name, allowing you to do a faster datastore get instead of a query. In fact, since you only need the region's key for the reference property, you needn't fetch the region at all in that case.
Cache the region list in memory, or skip storing it in the datastore at all. By its nature, I'm guessing regions is both a small list and infrequently changing, so there may be no need to store it in the datastore in the first place.
In addition, you should use the mapreduce framework when loading large amounts of data to avoid timeouts. It has built-in support for reading CSVs from blobstore blobs, too.
Use the Task Queue. If you want your dataset to process quickly, have your upload handler create a task for each subset of 500 using an offset value.
FWIW we process large CSV's into datastore using mapreduce, with some initial handling/ validation inside a task. Even tasks have a limit (10 mins) at the moment, but that's probably fine for your data size.
Make sure if you're doing inserts,etc. you batch as much as possible - don't insert individual records, and same for lookups - get_by_keyname allows you to pass in an array of keys. (I believe db put has a limit of 200 records at the moment?)
Mapreduce might be overkill for what you're doing now, but it's definitely worth wrapping your head around, it's a must-have for larger data sets.
Lastly, timing of anything on the SDK is largely pointless - think of it as a debugger more than anything else!

How to efficiently utilize 10+ computers to import data

We have flat files (CSV) with >200,000,000 rows, which we import into a star schema with 23 dimension tables. The biggest dimension table has 3 million rows. At the moment we run the importing process on a single computer and it takes around 15 hours. As this is too long time, we want to utilize something like 40 computers to do the importing.
My question
How can we efficiently utilize the 40 computers to do the importing. The main worry is that there will be a lot of time spent replicating the dimension tables across all the nodes as they need to be identical on all nodes. This could mean that if we utilized 1000 servers to do the importing in the future, it might actually be slower than utilize a single one, due to the extensive network communication and coordination between the servers.
Does anyone have suggestion?
EDIT:
The following is a simplification of the CSV files:
"avalue";"anothervalue"
"bvalue";"evenanothervalue"
"avalue";"evenanothervalue"
"avalue";"evenanothervalue"
"bvalue";"evenanothervalue"
"avalue";"anothervalue"
After importing, the tables look like this:
dimension_table1
id name
1 "avalue"
2 "bvalue"
dimension_table2
id name
1 "anothervalue"
2 "evenanothervalue"
Fact table
dimension_table1_ID dimension_table2_ID
1 1
2 2
1 2
1 2
2 2
1 1
You could consider using a 64bit hash function to produce a bigint ID for each string, instead of using sequential IDs.
With 64-bit hash codes, you can store 2^(32 - 7) or over 30 million items in your hash table before there is a 0.0031% chance of a collision.
This would allow you to have identical IDs on all nodes, with no communication whatsoever between servers between the 'dispatch' and the 'merge' phases.
You could even increase the number of bits to further lower the chance of collision; only, you would not be able to make the resultant hash fit in a 64bit integer database field.
See:
http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash
http://code.google.com/p/smhasher/wiki/MurmurHash
http://www.partow.net/programming/hashfunctions/index.html
Loading CSV data into a database is slow because it needs to read, split and validate the data.
So what you should try is this:
Setup a local database on each computer. This will get rid of the network latency.
Load a different part of the data on each computer. Try to give each computer the same chunk. If that isn't easy for some reason, give each computer, say, 10'000 rows. When they are done, give them the next chunk.
Dump the data with the DB tools
Load all dumps into a single DB
Make sure that your loader tool can import data into a table which already contains data. If you can't do this, check your DB documentation for "remote table". A lot of databases allow to make a table from another DB server visible locally.
That allows you to run commands like insert into TABLE (....) select .... from REMOTE_SERVER.TABLE
If you need primary keys (and you should), you will also have the problem to assign PKs during the import into the local DBs. I suggest to add the PKs to the CSV file.
[EDIT] After checking with your edits, here is what you should try:
Write a small program which extract the unique values in the first and second column of the CSV file. That could be a simple script like:
cut -d";" -f1 | sort -u | nawk ' { print FNR";"$0 }'
This is a pretty cheap process (a couple of minutes even for huge files). It gives you ID-value files.
Write a program which reads the new ID-value files, caches them in memory and then reads the huge CSV files and replaces the values with the IDs.
If the ID-value files are too big, just do this step for the small files and load the huge ones into all 40 per-machine DBs.
Split the huge file into 40 chunks and load each of them on each machine.
If you had huge ID-value files, you can use the tables created on each machine to replace all the values that remained.
Use backup/restore or remote tables to merge the results.
Or, even better, keep the data on the 40 machines and use algorithms from parallel computing to split the work and merge the results. That's how Google can create search results from billions of web pages in a few milliseconds.
See here for an introduction.
This is a very generic question and does not take the database backend into account. Firing with 40 or 1000 machines on a database backend that can not handle the load will give you nothing. Such a problem is truly to broad to answer it in a specific way..you should get in touch with people inside your organization with enough skills on the DB level first and then come back with a more specific question.
Assuming N computers, X files at about 50GB files each, and a goal of having 1 database containing everything at the end.
Question: It takes 15 hours now. Do you know which part of the process is taking the longest? (Reading data, cleansing data, saving read data in tables, indexing… you are inserting data into unindexed tables and indexing after, right?)
To split this job up amongst the N computers, I’d do something like (and this is a back-of-the-envelope design):
Have a “central” or master database. Use this to mangae the overall process, and to hold the final complete warehouse.
It contains lists of all X files and all N-1 (not counting itself) “worker” databases
Each worker database is somehow linked to the master database (just how depends on RDBMS, which you have not specified)
When up and running, a "ready" worker database polls the master database for a file to process. The master database dolls out files to worker systems, ensuring that no file gets processed by more than one at a time. (Have to track success/failure of loading a given file; watch for timeouts (worker failed), manage retries.)
Worker database has local instance of star schema. When assigned a file, it empties the schema and loads the data from that one file. (For scalability, might be worth loading a few files at a time?) “First stage” data cleansing is done here for the data contained within that file(s).
When loaded, master database is updated with a “ready flagy” for that worker, and it goes into waiting mode.
Master database has it’s own to-do list of worker databases that have finished loading data. It processes each waiting worker set in turn; when a worker set has been processed, the worker is set back to “check if there’s another file to process” mode.
At start of process, the star schema in the master database is cleared. The first set loaded can probably just be copied over verbatim.
For second set and up, have to read and “merge” data – toss out redundant entries, merge data via conformed dimensions, etc. Business rules that apply to all the data, not just one set at a time, must be done now as well. This would be “second stage” data cleansing.
Again, repeat the above step for each worker database, until all files have been uploaded.
Advantages:
Reading/converting data from files into databases and doing “first stage” cleansing gets scaled out across N computers.
Ideally, little work (“second stage”, merging datasets) is left for the master database
Limitations:
Lots of data is first read into worker database, and then read again (albeit in DBMS-native format) across the network
Master database is a possible chokepoint. Everything has to go through here.
Shortcuts:
It seems likely that when a workstation “checks in” for a new file, it can refresh a local store of data already loaded in the master and add data cleansing considerations based on this to its “first stage” work (i.e. it knows code 5484J has already been loaded, so it can filter it out and not pass it back to the master database).
SQL Server table partitioning or similar physical implementation tricks of other RDBMSs could probably be used to good effect.
Other shortcuts are likely, but it totally depends upon the business rules being implemented.
Unfortunately, without further information or understanding of the system and data involved, one can’t tell if this process would end up being faster or slower than the “do it all one one box” solution. At the end of the day it depends a lot on your data: does it submit to “divide and conquer” techniques, or must it all be run through a single processing instance?
The simplest thing is to make one computer responsible for handing out new dimension item id's. You can have one for each dimension. If the dimension handling computers are on the same network, you can have them broadcast the id's. That should be fast enough.
What database did you plan on using with a 23-dimensional starscheme? Importing might not be the only performance bottleneck. You might want to do this in a distributed main-memory system. That avoids a lot of the materalization issues.
You should investigate if there are highly correlating dimensions.
In general, with a 23 dimensional star scheme with large dimensions a standard relational database (SQL Server, PostgreSQL, MySQL) is going to perform extremely bad with datawarehouse questions. In order to avoid having to do a full table scan, relational databases use materialized views. With 23 dimensions you cannot afford enough of them. A distributed main-memory database might be able to do full table scans fast enough (in 2004 I did about 8 million rows/sec/thread on a Pentium 4 3 GHz in Delphi). Vertica might be an other option.
Another question: how large is the file when you zip it? That provides a good first order estimate of the amount of normalization you can do.
[edit] I've taken a look at your other questions. This does not look like a good match for PostgreSQL (or MySQL or SQL server). How long are you willing to wait for query results?
Rohita,
I'd suggest you eliminate a lot of the work from the load by sumarising the data FIRST, outside of the database. I work in a Solaris unix environment. I'd be leaning towards a korn-shell script, which cuts the file up into more managable chunks, then farms those chunks out equally to my two OTHER servers. I'd process the chunks using a nawk script (nawk has an efficient hashtable, which they call "associative arrays") to calculate the distinct values (the dimensions tables) and the Fact table. Just associate each new-name-seen with an incrementor-for-this-dimension, then write the Fact.
If you do this through named pipes you can push, process-remotely, and readback-back the data 'on the fly' while the "host" computer sits there loading it straight into tables.
Remember, No matter WHAT you do with 200,000,000 rows of data (How many Gig is it?), it's going to take some time. Sounds like you're in for some fun. It's interesting to read how other people propose to tackle this problem... The old adage "there's more than one way to do it!" has never been so true. Good luck!
Cheers. Keith.
On another note you could utilize Windows Hyper-V Cloud Computing addon for Windows Server:http://www.microsoft.com/virtualization/en/us/private-cloud.aspx
It seems that your implementation is very inefficient as it's loading at the speed of less than 1 MB/sec (50GB/15hrs).
Proper implementation on a modern single server (2x Xeon 5690 CPUs + RAM that's enough for ALL dimensions loaded in hash tables + 8GB ) should give you at least 10 times better speed i.e at least 10MB/sec.

SQL Server 2008: The reasonable stress tests scenario

I am performing stress testing on SQL Server 2008 with JMeter.
I wish to improve a stored procedure that has to serve 20 requests per second.
The procedure takes an xml parameter and returns an xml result.
Should I use only one parameter value or test multiple scenarios?
My main doubts are:
recompilations of the procedure execution plan (this may slow down the procedure)
extraction of data from disk (not all necessary data may be hold in the main memory)
Designing a realistic Stress Test/Load Test in SQL Server is an art.
There are many factors that can impact performance:
Hardware: You need to run your tests against the the same hardware that you have defined your target (20 call per second). This includes disk configuration, redundancy, clustering, ... This is not always possible so you need to make it as close as possible however the more different your test environment becomes, the more unrealistic results can be. This means, for example, if you use 2 CPUs instead of 4, you cannot adjust the parameters accordingly.
Data load: in terms of number of the records you need to test, it is ideal to have around 30%-40% more of the maximum rows you expect in the tables.
Data and index distribution: It is a common mistake to load the server with a preset or completely random data. Both are wrong. The distribution of the values need to be realistic. For example distribution of the marital status is not the same across all possible values so you need to design your data generation to include this.
Index fragmentation: this is a tough one. Normally indexes are rebuilt overnight, but during the course of the day, indexes become fragmented so the performance can be very different during those times.
Concurrent load: A server could provide you with 20 requests per second, if it is the only call you are making to the database but as soon as you start making other calls, it all falls to pieces. The load need to include other related parts of the system.
Operation Load: It is absolutely no point to make 20 calls per second if the requests are all the same. You need to use Data Generation techniques to make the requests realistic not purely random.
If you are using C#, I have done this tool a while back which might help you with creating realistic random data.

Resources