inputArray=[5, 1, 2, 3, 1, 4]
product = -1000
f = 0
for f in range(len(inputArray)):
try:
if product< inputArray[f] * inputArray[f+1]:
product = inputArray[f] * inputArray[f+1]
print product
except:
'no more'
print product
Result: 5,6
why doesn't it keep multiply the rest of the adjacent elements?
If you'd like that as an official answer, the explanation is below:
It does multiply on every iteration. It just doesn't print and redefine product unless product is less than the value of this iteration multiplied by next iteration. so visualize it like so:
-1000 < 5 so print. now the value of product is 5.
5 > 1 * 2 so do nothing.
5 < 2 * 3 so print. the value of product is now 6.
6 > 3 * 1 so do nothing.
6 > 1 * 4 so do nothing.
So you would have printed only 5 and 6.
Related
There's an array A[] having n elements. There's another array B[] of the same size n with every element initialized to zero. For every i in range 1 to n, elements of B[] in the range i-A_i to i+A_i (inclusive) need to be increased by 1.
I've already tried an O(n^2) solution using nested loop method. I cannot really figure out an O(n) solution if existent.
i=1;
while(i<=n)
{
start=(i-A[i]<1)?1:i-A[i];
end=(i+A[i]>n)?n:i+A[i];
while(start<=end)
{
B[start]+=1;
start+=1;
}
i+=1;
}
A naive implementation is to to increment each range per item in A, but you do not need to do taht. You can first "prepare" your array by adding 1 where the increment should start, and -1 where the increment should stop. Next you can calculate the cummulative sum of the array. Like:
def fill_list(la):
lb = [0]*len(la)
n1 = len(la)-1
for i, a in enumerate(la, 1):
xf, xt = i-a, i+a+1
lb[max(0, i-a)] += 1
if xt <= n1:
lb[xt] -= 1
c = 0
for i, b in enumerate(lb):
c += b
lb[i] = c
return lb
or if you want to return the range from 1 to n:
def fill_list1(la):
n1 = len(la)
lb = [0]*(n1+1)
for i, a in enumerate(la, 1):
xf, xt = i-a, i+a+1
lb[max(0, i-a)] += 1
if xt <= n1:
lb[xt] -= 1
c = 0
for i, b in enumerate(lb):
c += b
lb[i] = c
return lb[1:]
We can then for example generate a list with:
>>> fill_list([1,4,2,5,1,3,0,2])
[4, 4, 4, 5, 5, 5, 4, 3]
>>> fill_list1([1,2,3,4,5])
[5, 5, 4, 4, 3]
This thus has ranges for:
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--
|-----|
|-----------------------|
|-----------|
|-----------------------------|
|-----|
|-----------------|
|
|-----------|
--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--
0 1 1 1 1 0 0 1 0 0 -1 -1 -1 -2 -1
--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--
0 1 2 3 4 4 4 5 5 5 4 3 3 1 0
The increments that are done before the start of the range (so with an index less than 0) are just placed at index 0 such that we take these into account. The ones that are done after the window (so with an index larger than or equal to n are simply ignored).
In the image the first row shows the indices, next we denote the ranges that arise from the same input, next we show the increments and decrements that would be put on an infinite tape, and next we show the cummulative sum.
The algorithm works in O(n): first we iterate over la in linear time, and increment and decrement the corresponding elements in b. Next we iterate over b, again in O(n) to calcuate the cummulative sum.
I'm trying to write a function that shuffles an array, which contains repeating elements, but ensures that repeating elements are not too close to one another.
This code works but seems inefficient to me:
function shuffledArr = distShuffle(myArr, myDist)
% this function takes an array myArr and shuffles it, while ensuring that repeating
% elements are at least myDist elements away from on another
% flag to indicate whether there are repetitions within myDist
reps = 1;
while reps
% set to 0 to break while-loop, will be set to 1 if it doesn't meet condition
reps = 0;
% randomly shuffle array
shuffledArr = Shuffle(myArr);
% loop through each unique value, find its position, and calculate the distance to the next occurence
for x = 1:length(unique(myArr))
% check if there are any repetitions that are separated by myDist or less
if any(diff(find(shuffledArr == x)) <= myDist)
reps = 1;
break;
end
end
end
This seems suboptimal to me for three reasons:
1) It may not be necessary to repeatedly shuffle until a solution has been found.
2) This while loop will go on forever if there is no possible solution (i.e. setting myDist to be too high to find a configuration that fits). Any ideas on how to catch this in advance?
3) There must be an easier way to determine the distance between repeating elements in an array than what I did by looping through each unique value.
I would be grateful for answers to points 2 and 3, even if point 1 is correct and it is possible to do this in a single shuffle.
I think it is sufficient to check the following condition to prevent infinite loops:
[~,num, C] = mode(myArr);
N = numel(C);
assert( (myDist<=N) || (myDist-N+1) * (num-1) +N*num <= numel(myArr),...
'Shuffling impossible!');
Assume that myDist is 2 and we have the following data:
[4 6 5 1 6 7 4 6]
We can find the the mode , 6, with its occurence, 3. We arrange 6s separating them by 2 = myDist blanks:
6 _ _ 6 _ _6
There must be (3-1) * myDist = 4 numbers to fill the blanks. Now we have five more numbers so the array can be shuffled.
The problem becomes more complicated if we have multiple modes. For example for this array [4 6 5 1 6 7 4 6 4] we have N=2 modes: 6 and 4. They can be arranged as:
6 4 _ 6 4 _ 6 4
We have 2 blanks and three more numbers [ 5 1 7] that can be used to fill the blanks. If for example we had only one number [ 5] it was impossible to fill the blanks and we couldn't shuffle the array.
For the third point you can use sparse matrix to accelerate the computation (My initial testing in Octave shows that it is more efficient):
function shuffledArr = distShuffleSparse(myArr, myDist)
[U,~,idx] = unique(myArr);
reps = true;
while reps
S = Shuffle(idx);
shuffledBin = sparse ( 1:numel(idx), S, true, numel(idx) + myDist, numel(U) );
reps = any (diff(find(shuffledBin)) <= myDist);
end
shuffledArr = U(S);
end
Alternatively you can use sub2ind and sort instead of sparse matrix:
function shuffledArr = distShuffleSparse(myArr, myDist)
[U,~,idx] = unique(myArr);
reps = true;
while reps
S = Shuffle(idx);
f = sub2ind ( [numel(idx) + myDist, numel(U)] , 1:numel(idx), S );
reps = any (diff(sort(f)) <= myDist);
end
shuffledArr = U(S);
end
If you just want to find one possible solution you could use something like that:
x = [1 1 1 2 2 2 3 3 3 3 3 4 5 5 6 7 8 9];
n = numel(x);
dist = 3; %minimal distance
uni = unique(x); %get the unique value
his = histc(x,uni); %count the occurence of each element
s = [sortrows([uni;his].',2,'descend'), zeros(length(uni),1)];
xr = []; %the vector that will contains the solution
%the for loop that will maximize the distance of each element
for ii = 1:n
s(s(:,3)<0,3) = s(s(:,3)<0,3)+1;
s(1,3) = s(1,3)-dist;
s(1,2) = s(1,2)-1;
xr = [xr s(1,1)];
s = sortrows(s,[3,2],{'descend','descend'})
end
if any(s(:,2)~=0)
fprintf('failed, dist is too big')
end
Result:
xr = [3 1 2 5 3 1 2 4 3 6 7 8 3 9 5 1 2 3]
Explaination:
I create a vector s and at the beggining s is equal to:
s =
3 5 0
1 3 0
2 3 0
5 2 0
4 1 0
6 1 0
7 1 0
8 1 0
9 1 0
%col1 = unique element; col2 = occurence of each element, col3 = penalities
At each iteration of our for-loop we choose the element with the maximum occurence since this element will be harder to place in our array.
Then after the first iteration s is equal to:
s =
1 3 0 %1 is the next element that will be placed in our array.
2 3 0
5 2 0
4 1 0
6 1 0
7 1 0
8 1 0
9 1 0
3 4 -3 %3 has now 5-1 = 4 occurence and a penalities of -3 so it won't show up the next 3 iterations.
at the end every number of the second column should be equal to 0, if it's not the minimal distance was too big.
I have an array that looks something like...
1 0 0 1 2 2 1 1 2 1 0
2 1 0 0 0 1 1 0 0 2 1
1 2 2 1 1 1 2 0 0 1 0
0 0 0 1 2 1 1 2 0 1 2
however my real array is (50x50).
I am relatively new to MATLAB and need to be able to count the amount of unique values in each row and column, for example there is four '1's in row-2 and three '0's in column-3. I need to be able to do this with my real array.
It would help even more if these quantities of unique values were in arrays of their own also.
PLEASE use simple language, or else i will get lost, for example if representing an array, don't call it x, but perhaps column_occurances_array... for me please :)
What I would do is iterate over each row of your matrix and calculate a histogram of occurrences for each row. Use histc to calculate the occurrences of each row. The thing that is nice about histc is that you are able to specify where the bins are to start accumulating. These correspond to the unique entries for each row of your matrix. As such, use unique to compute these unique entries.
Now, I would use arrayfun to iterate over all of your rows in your matrix, and this will produce a cell array. Each element in this cell array will give you the counts for each unique value for each row. Therefore, assuming your matrix of values is stored in A, you would simply do:
vals = arrayfun(#(x) [unique(A(x,:)); histc(A(x,:), unique(A(x,:)))], 1:size(A,1), 'uni', 0);
Now, if we want to display all of our counts, use celldisp. Using your example, and with the above code combined with celldisp, this is what I get:
vals{1} =
0 1 2
3 5 3
vals{2} =
0 1 2
5 4 2
vals{3} =
0 1 2
3 5 3
vals{4} =
0 1 2
4 4 3
What the above display is saying is that for the first row, you have 3 zeros, 5 ones and 3 twos. The second row has 5 zeros, 4 ones and 2 twos and so on. These are just for the rows. If you want to do these for columns, you have to modify your code slightly to operate along columns:
vals = arrayfun(#(x) [unique(A(:,x)) histc(A(:,x), unique(A(:,x)))].', 1:size(A,2), 'uni', 0);
By using celldisp, this is what we get:
vals{1} =
0 1 2
1 2 1
vals{2} =
0 1 2
2 1 1
vals{3} =
0 2
3 1
vals{4} =
0 1
1 3
vals{5} =
0 1 2
1 1 2
vals{6} =
1 2
3 1
vals{7} =
1 2
3 1
vals{8} =
0 1 2
2 1 1
vals{9} =
0 2
3 1
vals{10} =
1 2
3 1
vals{11} =
0 1 2
2 1 1
This means that in the first column, we see 1 zero, 2 ones and 1 two, etc. etc.
I absolutely agree with rayryeng! However, here is some code which might be easier to understand for you as a beginner. It is without cell arrays or arrayfuns and quite self-explanatory:
%% initialize your array randomly for demonstration:
numRows = 50;
numCols = 50;
yourArray = round(10*rand(numRows,numCols));
%% do some stuff of what you are asking for
% find all occuring numbers in yourArray
occVals = unique(yourArray(:));
% now you could sort them just for convinience
occVals = sort(occVals);
% now we could create a matrix occMat_row of dimension |occVals| x numRows
% where occMat_row(i,j) represents how often the ith value occurs in the
% jth row, analoguesly occMat_col:
occMat_row = zeros(length(occVals),numRows);
occMat_col = zeros(length(occVals),numCols);
for k = 1:length(occVals)
occMat_row(k,:) = sum(yourArray == occVals(k),2)';
occMat_col(k,:) = sum(yourArray == occVals(k),1);
end
I am having trouble averaging y values based on their x counter parts.
For example
1 5
3 4
1 6
How do I get 5 and 6 to average based on being paired with an x value of 1? For my specific issue I will have 98 values between repeating 1's, and there will be a total of 99 1's in the array.
This is not extremely complicated, but it has been over a year since I have used matlab so being rusty has me scratching my head.
Here's what I got:
x = [1, 5;
3, 4;
1, 6]
col1 = x(:, 1) % extract first row
col1 =
1
3
1
ri = find(col1 == 1) % get row indices where 1 appears
ri =
1
3
mean(x(ri, 2)) % index into the second column of rows with a 1, and take average
ans = 5.5000
This question already has answers here:
Repeat copies of array elements: Run-length decoding in MATLAB
(5 answers)
Closed 8 years ago.
My question is similar to this one, but I would like to replicate each element according to a count specified in a second array of the same size.
An example of this, say I had an array v = [3 1 9 4], I want to use rep = [2 3 1 5] to replicate the first element 2 times, the second three times, and so on to get [3 3 1 1 1 9 4 4 4 4 4].
So far I'm using a simple loop to get the job done. This is what I started with:
vv = [];
for i=1:numel(v)
vv = [vv repmat(v(i),1,rep(i))];
end
I managed to improve by preallocating space:
vv = zeros(1,sum(rep));
c = cumsum([1 rep]);
for i=1:numel(v)
vv(c(i):c(i)+rep(i)-1) = repmat(v(i),1,rep(i));
end
However I still feel there has to be a more clever way to do this... Thanks
Here's one way I like to accomplish this:
>> index = zeros(1,sum(rep));
>> index(cumsum([1 rep(1:end-1)])) = 1;
index =
1 0 1 0 0 1 1 0 0 0 0
>> index = cumsum(index)
index =
1 1 2 2 2 3 4 4 4 4 4
>> vv = v(index)
vv =
3 3 1 1 1 9 4 4 4 4 4
This works by first creating an index vector of zeroes the same length as the final count of all the values. By performing a cumulative sum of the rep vector with the last element removed and a 1 placed at the start, I get a vector of indices into index showing where the groups of replicated values will begin. These points are marked with ones. When a cumulative sum is performed on index, I get a final index vector that I can use to index into v to create the vector of heterogeneously-replicated values.
To add to the list of possible solutions, consider this one:
vv = cellfun(#(a,b)repmat(a,1,b), num2cell(v), num2cell(rep), 'UniformOutput',0);
vv = [vv{:}];
This is much slower than the one by gnovice..
What you are trying to do is to run-length decode. A high level reliable/vectorized utility is the FEX submission rude():
% example inputs
counts = [2, 3, 1];
values = [24,3,30];
the result
rude(counts, values)
ans =
24 24 3 3 3 30
Note that this function performs the opposite operation as well, i.e. run-length encodes a vector or in other words returns values and the corresponding counts.
accumarray function can be used to make the code work if zeros exit in rep array
function vv = repeatElements(v, rep)
index = accumarray(cumsum(rep)'+1, 1);
vv = v(cumsum(index(1:end-1))+1);
end
This works similar to solution of gnovice, except that indices are accumulated instead being assigned to 1. This allows to skip some indices (3 and 6 in the example below) and remove corresponding elements from the output.
>> v = [3 1 42 9 4 42];
>> rep = [2 3 0 1 5 0];
>> index = accumarray(cumsum(rep)'+1, 1)'
index =
0 0 1 0 0 2 1 0 0 0 0 2
>> cumsum(index(1:end-1))+1
ans =
1 1 2 2 2 4 5 5 5 5 5
>> vv = v(cumsum(index(1:end-1))+1)
vv =
3 3 1 1 1 9 4 4 4 4 4