In a hypothetical scenario where a business requires people to have a membership to use their service, there are three types of memberships: student, corporate, and individual. Student membership is free, but corporate and individual memberships incur a fee.
In order to implement this on an entity relationship diagram, would the following be appropriate?:
This solution utilizes subtypes/supertypes, with students, corporate, and individuals being subtypes of the membership supertype.
If there is a more appropriate way to handle this, please provide it. I am trying to learn the best practices for database design.
In standard ER modeling, the situation you describe is called generalization/specialization. Students memberships, Corporate memberships, and Individual Memberships are all specialized forms of memberships. In ER diagrams (actually EER diagrams) this is depicted as follows: Diagram
This diagram is for a different case from yours, but the concept of generalization is the same.
Related
I've been struggling to understand when these technologies are useful from a practical standpoint, and how they are different from each other. Could an expert check my understanding?
Graph databases: These are easier to understand and manage than a relational databases when relationships are complex, inherited, inferred with varying degrees of confidence, and likely to change. Some examples: a user doesn't know how much depth they'll need in a hierarchy; is inferring relationships from social media with varying degrees of confidence in ID resolution, topic resolution, and the strength of a relationship; or doesn't know what kinds of call center data they're going to want to store; all of these can be stored in relational databases, but they will need constant updates. They're also more performative for certain tasks.
Ontologies: These formal and standardized representations of knowledge are used to break down data silos. For instance, let's say a B2B sales company derives revenue from several different lines of business, which take one-time payments, subscriptions, sales of IP, and consulting services. The revenue data is stored in many different databases with lots of idiosyncrasies. An ontology allows the user to define a "customer payment" as anything that "creates or refunds revenue," so that subject matter experts can appropriately label the payments in their databases. Ontologies can be used with either graph databases or relational databases, but the emphasis on class inheritance makes them far easier to implement in a graph database, where the taxonomy of classes can be easily modeled.
Knowledge graph: A knowledge graph is a graph database where language (meaning, the entity and node taxonomies) are governed by an ontology. So in our B2B example, "customer payment" edges have one-time payments, subscription, etc subtypes, and connect "customer" classes to "line of business" classes.
Is that basically correct?
A graph database (GD) is a database that can store graph data, which primarily has three types of elements: nodes, edges, and properties. Two popular types of graph databases are (1) Resource Description Framework (RDF)-based graph databases eg. Blazegraph and (2) Label Propagation Graph (LPG)-based graph databases eg. Neo4j. RDF represents knowledge in the form of subject, verb, and object (S-V-O) triplet, such as John livesIn London, and as its nodes and edges cannot hold properties, additional nodes or literals needs to be added to represent properties. LPG represents knowledge in the form of edges, nodes, and attributes where nodes and edges can hold properties in the form of key:value. Eg., a node can have label Person, and Person can have properties name:Tom Hanks, born:1956.
An ontology is a description of the concepts and their relationships, using instances of concepts, attributes of instances (and classes), restrictions of classes, and rules (if-then statements). These rules describe the logical inferences that can be drawn from the assertions/axioms that comprise the overall theory that the ontology describes. Upper level ontology (eg. DOLCE) describes general concepts and relations, whereas domain ontology (eg. Gene Ontology) describes concepts and relations in a particular domain. A graph database may have an ontology in its schema level for logical consistency checking.
Generally, a knowledge graph (KG) is an organization of a knowledge base as a graph having nodes and links between the nodes. An example of an early KG is Wordnet which captures semantic relationships between words and their meanings. Later Google developed their Google Knowledge Graph (GKG) building on DBpedia and Freebase using RDFa, Microdata and JSON-LD content extracted from indexed web pages, and used schema.org vocabulary to organize the nodes. Google reported that it held around 70 billion facts in GKG.
Graph databases supports queries, but not logical inference which needs an ontology. If the connections within the data are of primary focus (eg. friends of a friend), retrieval more important than storage, and data model changes often, then graph database would be a good fit.
Ontology is used when we need to infer new knowledge from the given knowledge. For eg, if given (1) Socrates is Man, and (2) AllMen are Mortal, then the reasoner or inference engine in an ontology can infer a new knowledge (3) Socrates is Mortal. This is made possible by description logic axioms that the Web Ontology Language (OWL) uses to describe resources. The OWL is serialized using Resource Description Framework (RDF).
Ontology is also used when we need to check consistency in the data model. For eg, if an axiom says Human and Sponge are disjoint classes and we make John (a human) instance of both Human and Sponge classes then it will fail consistency test.
Taxonomy is the IS-A class hierarchy which forms the backbone of an ontology.
Knowledge Graphs are often associated with linked open data (LOD) projects built upon standard Web technologies such as HTTP, RDF, URIs, and SPARQL. KG may use ontologies for reasoning and graph databases to store the knowledge. Several large organizations have introduced their KGs.
I am not that much good at database diagraming. Whenever I am asked to create an ERR Diagram, I use MySQL WorkBench software.
However today I ended up in a conclusion when I see different types of ER Diagrams. My diagrams (designed via MySQL WorkBench) are like below.
And I saw other types of ER Diagrams like below.
Can someone please confirm which ER Diagram model should I use?
An Entity Relationship Diagram is an example of a presentation of a Conceptual Model. A Conceptual Model is used to help people understand the subject area(s) the model represents. Therefore, the correct presentation of a Conceptual Model - which may be or include an Entity Relationship Diagram - is one that all interested parties are satisfied adequately explains these subject areas.
These interested parties should include potential users of a system that incorporates the subject areas, managers of these areas and IT professionals who will be designing and building a system covering these areas.
The agreed Conceptual Model is then taken by the IT professionals and formalized into a Logical Model, which may be presented as a Relational Data Model.
Actually both of them are ER diagrams. However, the second one is its scientific representation. MySQL use a representation which is more understandable way of it.
I have a database which I want to visualize in some kind of tool. Let me explain the basic:
Company A does business with Transport Company A and Transport Company B.
Transport Company A does business with Company A, Company B and Company C.
Company C does business with Transport Company A and Transport Company B.
As you can see every Company does business with different Transport Companies and vice versa. These relationships can be implemented in a database, and when drawing a visual model on paper this is also very easy.
Of course the model should contain hundreds of Companies and Transport Companies. So I want to have a visualizing tool, where a overview of these relations can be displayed.
My question is which tools can be used for realizing this?
I think you want to look at Microsoft Visio (get the 2010 version. 2013 is almost unusable from a database standpoint).
But if i am assuming correctly, you want to create a table per company. Don't do this! this can cause redundancy and data integrity problems. you want to create just one table and create what is called a unary many-to-many relationship. This is relationship that can be translated to many different rows can relate to many rows in the same table. I won't go into more detail unless you want me to, as i spent a week or 2 in my Database Design course last month just on many-to-many relationships and gets kinda complicated.
Background
building an online information system which user can access through any computer. I don't want to replicate DB and code for every university or organization.
I just want user to hit a domain like www.example.com sign in and use it.
For second user it will also hit the same domain www.example.com sign in and use it. but the data for them are different.
Scenario
suppose a university has 200 employees, 2nd university has 150 and so on.
Qusetion
Do i need to have separate employee table for each university or is it OK to have a single table with a column that has University ID?
I assume 2nd is best but Suppose i have 20 universities or organizations and a total of thousands of employees.
What is the best approach?
This same thing is for all table? This is just to give you an example.
Thanks
The approach will depend upon the data, usage, and client requirements/restrictions.
Use an integrated model, as suggested by duffymo. This may be appropriate if each organization is part of a larger whole (i.e. all colleges are part of a state college board) and security concerns about cross-query access are minimal2. This approach has a minimal amount of separation between each organization as the same schema1 and relations are "openly" shared. It leads to a very simple model initially, but it can become very complicated (with compound FKs and correct usage of such) if needing relations for organization-specific values because it adds another dimension of data.
Implement multi-tenancy. This can be achieved with implicit filters on the relations (perhaps hidden behinds views and store procedures), different schemas, or other database-specific support. Depending upon implementation this may or may not share schema or relations even though all data may reside in the same database. With implicit isolation, some complicated keys or relationships can be hidden/eliminated. Multi-tenancy isolation also generally makes it harder/impossible to cross-query.
Silo the databases entirely. Each customer or "organization" has a separate database. This implies separate relations and schema groups. I have found this approach to to be relatively simple with automated tooling, but it does require managing multiple database. Direct cross-querying is impossible, although "linked databases" can be used if there is a need.
Even though it's not "a single DB", in our case, we had the following restrictions 1) not allowed to ever share/expose data between organizations, and 2) each organization wanted their own local database. Thus, our product ended up using a silo approach. Make sure that the approach chosen meets customer requirements.
None of these approaches will have any issue with "thousands", "hundreds of thousands", or even "millions" of records as long as the indices and queries are correctly planned. However, switching from one to another can violate many assumed constraints and so the decision should be made earlier on.
1 In this response I am using "schema" to refer to the security grouping of database objects (e.g. tables, views) and not the database model itself. The actual database model used can be common/shared, as we do even when using separate databases.
2 An integrated approach is not necessarily insecure - but it doesn't inherently have some of the built-in isolation of other designs.
I would normalize it to have UNIVERSITY and EMPLOYEE tables, with a one-to-many relationship between them.
You'll have to take care to make sure that only people associated with a given university can see their data. Role based access will be important.
This is called a multi-tenant architecture. you should read this:
http://msdn.microsoft.com/en-us/library/aa479086.aspx
I would go with Tenant Per Schema, which means copying the structure across different schemas, however, as you should keep all your SQL DDL in source control, this is very easy to script.
It's easy to screw up and "leak" information between tenants if doing it all in the same table.
Given a problem specification, how to tell if it is a database design problem or class design(object oriented design) problem?
What comes to my mind, is that in OOP, classes(objects) contain methods, whereas a database is just a collection of relationships and values.
Therefore:
If you can say a problem is about how "things" in the specification relate to each other you have a database design problem.
If it is about what the "things" in the specification can do, you're going to be modeling more along object oriented programming.
If you're using a database and creating domain objects, it's both. Database design and class design are two different things, and both are necessary if you're using a database and classes. It's not like you choose one or the other.
This is where an ORM comes into play. When your data layer retrieves information from the database, a typical approach is to transform the relational data into your domain object(s) and pass that to the business logic layer so the rest of your application can deal with domain objects instead of a relational model.
Then your ORM does the opposite when persisting data: it takes a domain entity and turns it back into a relational structure that can be saved to the database.
Note: I'm assuming a relational database here. If not, substitute relational for whatever type of persistence layer you're using.
I believe that the only specifications which should be addressed as database-oriented problems are those which are focused on the manipulation of structured data types. If your specification is all about "store a customer record", "delete an order record", "change the value of price from 12 to 33 for record matching specifcation", you've got a database project.
I haven't seen that kind of problem specification since the Cobol team I worked in employed a systems ~~anarchist~~ analyst. Almost every project I've worked on since has had requirements that were not about how data was stored, but what the data meant.
If you get a requirement that says "Users may create Customers. Customers can place orders. Orders contain products. Orders can have delivery methods, payment methods, and status. Status follows a business process", you have an OO problem. You probably need a storage mechanism - and a database would be an excellent choice - but you have business logic that cannot be exclusively implemented by creating structured data types and relationships.