I'm having hard time with this one:
I need to write a function in C that recieving a binary array and his size, and the function should calculate and replace the current values with the distance (by indexes) of each 1 to the closest 0.
for example: if the function recieve that array {1,1,0,1,1,1,0,1} then the new values of the array should be {2,1,0,1,2,1,0,1}. It is known that the input has atleast 1 zero.
So the first step I tought about was to locate pair of zeros (or just 1 if there is only 1) and set them as 2 indexes (z1, z2). Then I set another index i
that check everytime which zero is the closest to him (absolute value) and then the diffrence between i and z1 or z2 would be the new value.
I have the plan but things are not going exactly as I planned. Basicly I deleted the code (it wasn't good anyway) so I would appreciate any help. thanks!
This problem is based on two things
Keep an array left[i] which has the distance of nearest 0 from index i from left to right.
Keep an array right[i] which has the distance of nearest 0 from index i from right to left.
Both can be calculate in single loop iteration. O(n).
Then for each position get the minimum value of left[i] and right[i]. That will be the answer for 1 staying in position i.
Overall the time complexity is O(n).
Related
I want to sum over tuples of length n, i.e. I have a vector (m_1,...,m_n) where mi is an integer greater or equal to zero with the constraint that the sum of all vector elements is equal to k.
What is the most efficient way to implement this?
My naive approach would be to iterate through all combinations with m_i between 0 and k and check if they satisfy the criterion, but this seems inefficient.
For instance, if k=2 and n=2, then
(2,0),(1,1),(0,2) would be the possible values of m1,m2 that I would like to have. Is there a way to generate these numbers efficiently (I don't necessarily have to store them all in an array, but I want to iterate over all possible combinations)
Ok, random stuff I deleted.
If you look at FXT book/library by J.Arndt, there is on page 342 section 16.3 "Partition into m parts"
Here is algorithm and reference to the code to generate exactly m-vector of partitioning of n.
You'll probably need to modify it, he doesn't have bins with zeros, starts with ones.
And some thoughts on the matter. n is sum, and you have k bins. Start with |n|0|...|0| combination. Define operation "distribute 1" which is take one from the leftmost bin and distribute it into all other bins.
E.g. D1(|n|0|...|0|)=tuple(|n-1|1|...|0|, ..., |n-1|0|...|1|)
Then you apply D1() to the tuple, and get tuple of tuples. And so on and so forth, till first bin is exhausted.
You could think this as a tree:
root |n|0|...|0|
D1 applied once, k-1 leaves |n-1|1|...|0| ... |n-1|0|...|1|
Next tree level, D1 applied once to previous level, each node getting k-1 children.
THe only thing left is how to traverse it - DFS, BFS, or anything else from https://en.wikipedia.org/wiki/Tree_traversal
I have to interleave a given array of the form
{a1,a2,....,an,b1,b2,...,bn}
as
{a1,b1,a2,b2,a3,b3}
in O(n) time and O(1) space.
Example:
Input - {1,2,3,4,5,6}
Output- {1,4,2,5,3,6}
This is the arrangement of elements by indices:
Initial Index Final Index
0 0
1 2
2 4
3 1
4 3
5 5
By observation after taking some examples, I found that ai (i<n/2) goes from index (i) to index (2i) & bi (i>=n/2) goes from index (i) to index (((i-n/2)*2)+1). You can verify this yourselves. Correct me if I am wrong.
However, I am not able to correctly apply this logic in code.
My pseudo code:
for (i = 0 ; i < n ; i++)
if(i < n/2)
swap(arr[i],arr[2*i]);
else
swap(arr[i],arr[((i-n/2)*2)+1]);
It's not working.
How can I write an algorithm to solve this problem?
Element bn is in the correct position already, so lets forget about it and only worry about the other N = 2n-1 elements. Notice that N is always odd.
Now the problem can be restated as "move the element at each position i to position 2i % N"
The item at position 0 doesn't move, so lets start at position 1.
If you start at position 1 and move it to position 2%N, you have to remember the item at position 2%N before you replace it. The the one from position 2%N goes to position 4%N, the one from 4%N goes to 8%N, etc., until you get back to position 1, where you can put the remaining item into the slot you left.
You are guaranteed to return to slot 1, because N is odd and multiplying by 2 mod an odd number is invertible. You are not guaranteed to cover all positions before you get back, though. The whole permutation will break into some number of cycles.
If you can start this process at one element from each cycle, then you will do the whole job. The trouble is figuring out which ones are done and which ones aren't, so you don't cover any cycle twice.
I don't think you can do this for arbitrary N in a way that meets your time and space constraints... BUT if N = 2x-1 for some x, then this problem is much easier, because each cycle includes exactly the cyclic shifts of some bit pattern. You can generate single representatives for each cycle (called cycle leaders) in constant time per index. (I'll describe the procedure in an appendix at the end)
Now we have the basis for a recursive algorithm that meets your constraints.
Given [a1...an,b1...bn]:
Find the largest x such that 2x <= 2n
Rotate the middle elements to create [a1...ax,b1...bx,ax+1...an,bx+1...bn]
Interleave the first part of the array in linear time using the above-described procedure, since it will have modulus 2x-1
Recurse to interleave the last part of the array.
Since the last part of the array we recurse on is guaranteed to be at most half the size of the original, we have this recurrence for the time complexity:
T(N) = O(N) + T(N/2)
= O(N)
And note that the recursion is a tail call, so you can do this in constant space.
Appendix: Generating cycle leaders for shifts mod 2x-1
A simple algorithm for doing this is given in a paper called "An algorithm for generating necklaces of beads in 2 colors" by Fredricksen and Kessler. You can get a PDF here: https://core.ac.uk/download/pdf/82148295.pdf
The implementation is easy. Start with x 0s, and repeatedly:
Set the lowest order 0 bit to 1. Let this be bit y
Copy the lower order bits starting from the top
The result is a cycle leader if x-y divides x
Repeat until you have all x 1s
For example, if x=8 and we're at 10011111, the lowest 0 is bit 5. We switch it to 1 and then copy the remainder from the top to give 10110110. 8-5=3, though, and 3 does not divide 8, so this one is not a cycle leader and we continue to the next.
The algorithm I'm going to propose is probably not o(n).
It's not based on swapping elements but on moving elements which probably could be O(1) if you have a list and not an array.
Given 2N elements, at each iteration (i) you take the element in position N/2 + i and move it to position 2*i
a1,a2,a3,...,an,b1,b2,b3,...,bn
| |
a1,b1,a2,a3,...,an,b2,b3,...,bn
| |
a1,b1,a2,b2,a3,...,an,b3,...,bn
| |
a1,b1,a2,b2,a3,b3,...,an,...,bn
and so on.
example with N = 4
1,2,3,4,5,6,7,8
1,5,2,3,4,6,7,8
1,5,2,6,3,4,7,8
1,5,2,6,3,7,4,8
One idea which is a little complex is supposing each location has the following value:
1, 3, 5, ..., 2n-1 | 2, 4, 6, ..., 2n
a1,a2, ..., an | b1, b2, ..., bn
Then using inline merging of two sorted arrays as explained in this article in O(n) time an O(1) space complexity. However, we need to manage this indexing during the process.
There is a practical linear time* in-place algorithm described in this question. Pseudocode and C code are included.
It involves swapping the first 1/2 of the items into the correct place, then unscrambling the permutation of the 1/4 of the items that got moved, then repeating for the remaining 1/2 array.
Unscrambling the permutation uses the fact that left items move into the right side with an alternating "add to end, swap oldest" pattern. We can find the i'th index in this permutation with this this rule:
For even i, the end was at i/2.
For odd i, the oldest was added to the end at step (i-1)/2
*The number of data moves is definitely O(N). The question asks for the time complexity of the unscramble index calculation. I believe it is no worse than O(lg lg N).
I recently came through an interesting coding problem, which is as follows:
There are n boxes, let us assume this is an array of n boxes.
For each index i of this array, three values are given -
1.) Weight(i)
2.) Left(i)
3.) Right(i)
left(i) means - if weight[i] is chosen, we are not allowed to choose left[i] elements from the left of this ith element.
Similarly, right[i] means if arr[i] is chosen, we are not allowed to choose right[i] elements from the right of it.
Example :
Weight[2] = 5
Left[2] = 1
Right[2] = 3
Then, if I pick element at position 2, I get weight of 5 units. But, I cannot pick elements at position {1} (due to left constraint). And cannot pick elements at position {3,4,5} (due to right constraint).
Objective - We need to calculate the maximum sum of the weights we can pick.
Sample Test Case :-
**Input: **
5
2 0 3
4 0 0
3 2 0
7 2 1
9 2 0
**Output: **
13
Note - First column is weights, Second column is left constraints, Third column is right constraints
I used Dynamic Programming approach(similar to Longest Increasing Subsequence) to reach a O(n^2) solution. But, not able to think of a O(n*logn) solution. (n can be up to 10^5.)
I also tried to use priority queue, in which elements with lower value of (right[i] + i) are given higher priority(assigned higher priority to element with lower value of "i", in case primary key value is equal). But, it is also giving timeout error.
Any other approach for this? or any optimization in priority queue method? I can post both of my codes if needed.
Thanks.
One approach is to use a binary indexed tree to create a data structure that makes it easy to do two operations in O(logn) time each:
Insert number into an array
Find maximum in a given range
We will use this data structure to hold the maximum weight that can be achieved by selecting box i along with an optimal selection of boxes to the left.
The key is that we will only insert values into this data structure when we reach a point where the right constraint has been met.
To find the best value for box i, we need to find the maximum value in the data structure for all points up to location i-left[i], which can be done in O(logn).
The final algorithm is to loop over i=0..n-1 and for each i:
Compute result for box i by finding maximum in range 0..(i-left[i])
Schedule the result to be added when we reach location i+right[i]
Add any previously scheduled results into our data structure
The final result is the maximum value in the whole data structure.
Overall, the complexity is o(nlogn) because each value of i results in one lookup and one update operation.
I have a bit of a technical issue, but I feel like it should be possible with MATLAB's powerful toolset.
What I have is a random n by n matrix of 0's and w's, say generated with
A=w*(rand(n,n)<p);
A typical value of w would be 3000, but that should not matter too much.
Now, this matrix has two important quantities, the vectors
c = sum(A,1);
r = sum(A,2)';
These are two row vectors, the first denotes the sum of each column and the second the sum of each row.
What I want to do next is randomize each value of w, for example between 0.5 and 2. This I would do as
rand_M = (0.5-2).*rand(n,n) + 0.5
A_rand = rand_M.*A;
However, I don't want to just pick these random numbers: I want them to be such that for every column and row, the sums are still equal to the elements of c and r. So to clean up the notation a bit, say we define
A_rand_c = sum(A_rand,1);
A_rand_r = sum(A_rand,2)';
I want that for all j = 1:n, A_rand_c(j) = c(j) and A_rand_r(j) = r(j).
What I'm looking for is a way to redraw the elements of rand_M in a sort of algorithmic fashion I suppose, so that these demands are finally satisfied.
Now of course, unless I have infinite amounts of time this might not really happen. I therefore accept these quantities to fall into a specific range: A_rand_c(j) has to be an element of [(1-e)*c(j),(1+e)*c(j)] and A_rand_r(j) of [(1-e)*r(j),(1+e)*r(j)]. This e I define beforehand, say like 0.001 or something.
Would anyone be able to help me in the process of finding a way to do this? I've tried an approach where I just randomly repick the numbers, but this really isn't getting me anywhere. It does not have to be crazy efficient either, I just need it to work in finite time for networks of size, say, n = 50.
To be clear, the final output is the matrix A_rand that satisfies these constraints.
Edit:
Alright, so after thinking a bit I suppose it might be doable with some while statement, that goes through every element of the matrix. The difficult part is that there are four possibilities: if you are in a specific element A_rand(i,j), it could be that A_rand_c(j) and A_rand_r(i) are both too small, both too large, or opposite. The first two cases are good, because then you can just redraw the random number until it is smaller than the current value and improve the situation. But the other two cases are problematic, as you will improve one situation but not the other. I guess it would have to look at which criteria is less satisfied, so that it tries to fix the one that is worse. But this is not trivial I would say..
You can take advantage of the fact that rows/columns with a single non-zero entry in A automatically give you results for that same entry in A_rand. If A(2,5) = w and it is the only non-zero entry in its column, then A_rand(2,5) = w as well. What else could it be?
You can alternate between finding these single-entry rows/cols, and assigning random numbers to entries where the value doesn't matter.
Here's a skeleton for the process:
A_rand=zeros(size(A)) is the matrix you are going to fill
entries_left = A>0 is a binary matrix showing which entries in A_rand you still need to fill
col_totals=sum(A,1) is the amount you still need to add in every column of A_rand
row_totals=sum(A,2) is the amount you still need to add in every row of A_rand
while sum( entries_left(:) ) > 0
% STEP 1:
% function to fill entries in A_rand if entries_left has rows/cols with one nonzero entry
% you will need to keep looping over this function until nothing changes
% update() A_rand, entries_left, row_totals, col_totals every time you loop
% STEP 2:
% let (i,j) be the indeces of the next non-zero entry in entries_left
% assign a random number to A_rand(i,j) <= col_totals(j) and <= row_totals(i)
% update() A_rand, entries_left, row_totals, col_totals
end
update()
A_rand(i,j) = random_value;
entries_left(i,j) = 0;
col_totals(j) = col_totals(j) - random_value;
row_totals(i) = row_totals(i) - random_value;
end
Picking the range for random_value might be a little tricky. The best I can think of is to draw it from a relatively narrow distribution centered around N*w*p where p is the probability of an entry in A being nonzero (this would be the average value of row/column totals).
This doesn't scale well to large matrices as it will grow with n^2 complexity. I tested it for a 200 by 200 matrix and it worked in about 20 seconds.
Given an array , each element is one more or one less than its preceding element .find an element in it.(better than O(n) approach)
I have a solution for this but I have no way to tell formally if it is the correct solution:
Let us assume we have to find n.
From the given index, find the distance to n; d = |a[0] - n|
The desired element will be atleast d elements apart and jump d elements
repeat above till d = 0
Yes, your approach will work.
If you can only increase / decrease by one at each following index, there's no way a value at an index closer than d could be a distance d from the current value. So there's no way you can skip over the target value. And, unless the value is found, the distance will always be greater than 0, thus you'll keep moving right. Thus, if the value exists, you'll find it.
No, you can't do better than O(n) in the worst case.
Consider an array 1,2,1,2,1,2,1,2,1,2,1,2 and you're looking for 0. Any of the 2's can be changed to a 0 without having to change any of the other values, thus we have to look at all the 2's and there are n/2 = O(n) 2's.
Prepocessing can help here.
Find Minimum and Maximum element of array in O(n) time complexity.
If element to be queried is between Minimum and Maximum of array, then that element is present in array, else that element is not present in that array.So any query will take O(1) time. If that array is queried multiple times, than amortized time complexity will be lesser that O(n).