Related
I would like to solve the transient diffusion equation for two compounds A and B as shown in image. I think the image is a better way to show my problem.
Diffusion equations and boundary conditions.
As you can see, the reaction only occurs at the surface and the flux of A is equal to flux of B. So, this two equations are coupled only at surface. The boundary condition is similar to ROBIN boundary condition, explained in Fipy manual. However, the main difference is the existence of the second variable in boundary condition. Does anybody have any idea how to formulate this boundary condition in Fipy?
I guess I need to add some extra term to ROBIN boundary condition, but I couldn't figure it out.
I really appreciate your help.
This is the code which solves the mentioned equation with ROBIN boundary condition # x=0.
-D(dC_A/dx) = -kC_A
-D(dC_B/dx) = -kC_B
In this condition, I can easily use ROBIN boundary condition to solve equations. The results seem reasonable for this boundary condition.
"""
Question for StackOverflow
"""
#%%
from fipy import Variable, FaceVariable, CellVariable, Grid1D, TransientTerm, DiffusionTerm, Viewer, ImplicitSourceTerm
from fipy.tools import numerix
#%%
##### Model parameters
L= 8.4853e-4 # m boundary layer thickness
dx= 1e-8 # mesh size
nx = int(L/dx)+1 # number of meshes
D = 1e-9 # m^2/s diffusion coefficient
k = 1e-4 # m/s reaction coefficient R = k [c_A],
c_inf = 0. # ROBIN general condition, once can think R = k ([c_A]-[c_inf])
c_init = 1. # Initial concentration of compound A, mol/m^3
#%%
###### Meshing and variable definition
mesh = Grid1D(nx=nx, dx=dx)
c_A = CellVariable(name="c_A", hasOld = True,
mesh=mesh,
value=c_init)
c_B = CellVariable(name="c_B", hasOld = True,
mesh=mesh,
value=0.)
#%%
##### Right boundary condition
valueRight = c_init
c_A.constrain(valueRight, mesh.facesRight)
c_B.constrain(0., mesh.facesRight)
#%%
### ROBIN BC requirements, defining cellDistanceVectors
## This code is for fixing celldistance via this link:
## https://stackoverflow.com/questions/60073399/fipy-problem-with-grid2d-celltofacedistancevectors-gives-error-uniformgrid2d
MA = numerix.MA
tmp = MA.repeat(mesh._faceCenters[..., numerix.NewAxis,:], 2, 1)
cellToFaceDistanceVectors = tmp - numerix.take(mesh._cellCenters, mesh.faceCellIDs, axis=1)
tmp = numerix.take(mesh._cellCenters, mesh.faceCellIDs, axis=1)
tmp = tmp[..., 1,:] - tmp[..., 0,:]
cellDistanceVectors = MA.filled(MA.where(MA.getmaskarray(tmp), cellToFaceDistanceVectors[:, 0], tmp))
#%%
##### Defining mask and Robin BC at left boundary
mask = mesh.facesLeft
Gamma0 = D
Gamma = FaceVariable(mesh=mesh, value=Gamma0)
Gamma.setValue(0., where=mask)
dPf = FaceVariable(mesh=mesh,
value=mesh._faceToCellDistanceRatio * cellDistanceVectors)
n = mesh.faceNormals
a = FaceVariable(mesh=mesh, value=k, rank=1)
b = FaceVariable(mesh=mesh, value=D, rank=0)
g = FaceVariable(mesh=mesh, value= k * c_inf, rank=0)
RobinCoeff = (mask * Gamma0 * n / (-dPf.dot(a)+b))
#%%
#### Making a plot
viewer = Viewer(vars=(c_A, c_B),
datamin=-0.2, datamax=c_init * 1.4)
viewer.plot()
#%% Time step and simulation time definition
time = Variable()
t_simulation = 4 # seconds
timeStepDuration = .05
steps = int(t_simulation/timeStepDuration)
#%% PDE Equations
eqcA = (TransientTerm(var=c_A) == DiffusionTerm(var=c_A, coeff=Gamma) +
(RobinCoeff * g).divergence
- ImplicitSourceTerm(var=c_A, coeff=(RobinCoeff * a.dot(-n)).divergence))
eqcB = (TransientTerm(var=c_B) == DiffusionTerm(var=c_B, coeff=Gamma) -
(RobinCoeff * g).divergence
+ ImplicitSourceTerm(var=c_B, coeff=(RobinCoeff * a.dot(-n)).divergence))
#%% A loop for solving PDE equations
while time() <= (t_simulation):
time.setValue(time() + timeStepDuration)
c_B.updateOld()
c_A.updateOld()
res1=res2 = 1e10
viewer.plot()
while (res1 > 1e-6) & (res2 > 1e-6):
res1 = eqcA.sweep(var=c_A, dt=timeStepDuration)
res2 = eqcB.sweep(var=c_B, dt=timeStepDuration)
It's possible to solve this as a fully implicit system. The code below simplifies the problem to have a unity domain size and diffusion coefficient. k is set to 0.2. It captures the analytical solution quite well with some caveats (see below).
from fipy import (
CellVariable,
TransientTerm,
DiffusionTerm,
ImplicitSourceTerm,
Grid1D,
Viewer,
)
L = 1.0
nx = 1000
dx = L / nx
konstant = 0.2
coeff = 1.0
mesh = Grid1D(nx=nx, dx=dx)
var_a = CellVariable(mesh=mesh, value=1.0, hasOld=True)
var_b = CellVariable(mesh=mesh, value=0.0, hasOld=True)
var_a.constrain(1.0, mesh.facesRight)
var_b.constrain(0.0, mesh.facesRight)
coeff_mask = ~mesh.facesLeft * coeff
boundary_coeff = konstant * (mesh.facesLeft * mesh.faceNormals).divergence
eqn_a = TransientTerm(var=var_a) == DiffusionTerm(
coeff_mask, var=var_a
) - ImplicitSourceTerm(boundary_coeff, var=var_a) + ImplicitSourceTerm(
boundary_coeff, var=var_b
)
eqn_b = TransientTerm(var=var_b) == DiffusionTerm(
coeff_mask, var=var_b
) - ImplicitSourceTerm(boundary_coeff, var=var_b) + ImplicitSourceTerm(
boundary_coeff, var=var_a
)
eqn = eqn_a & eqn_b
for _ in range(5):
var_a.updateOld()
var_b.updateOld()
eqn.sweep(dt=1e10)
Viewer((var_a, var_b)).plot()
print("var_a[0] (expected):", (1 + konstant) / (1 + 2 * konstant))
print("var_b[0] (expected):", konstant / (1 + 2 * konstant))
print("var_a[0] (actual):", var_a[0])
print("var_b[0] (actual):", var_b[0])
input("wait")
Note the following:
As written the boundary condition is only first order accurate, which doesn't really matter for this problem, but might hurt you for in higher dimensions. There might be ways to fix this such as having a small cell near the boundary or adding in an explicit second order correction for the boundary condition.
The equations are coupled here. If uncoupled it would probably require loads of iterations to reach equilibrium.
It did require a few iterations to reach equilibrium, but it shouldn't. That's probably due to the solver not converging adequately without a few tries. It might be that coupled equations have some bad conditioning.
My code has a problem. I know what the problem is.
I cant append an array to another array with the append method.
I need to find something else. What is an effective and not complicated way to append an array to an array?
This code should plot the trajectory of a ball that is fired from different angles ( 5 to 85 degrees).
import numpy as np
import matplotlib.pyplot as plt
alpha = np.arange(5,86,5)
v0 = 30
Cd = 1.2
A = 0.02
M = 1.5
gvec = np.array([0,-9.813])
rho = 1.225
dt = 0.01
for a in alpha:
xvec = np.array([0.0,0.0])
vvec = v0 * np.array([np.cos(a),np.sin(a)])
xall = []
while xvec[1] > 0:
V = np.sqrt(np.sum(vvec*vvec))
Dvec = -0.5 * rho * Cd * A * V**2 * vvec /V
accvec = gvec + Dvec/M
vvec = vvec + accvec*dt
xvec = xvec + vvec*dt
xall.append(xvec)
xall = np.array(xall)
plt.plot(xall[:,0] ,xall[:,1])
plt.show()
I would like to create an array " xall" in the following format.
xall are all the coordinates. so this is what i want.
xall = array([x1,y1], [x2,y2], ....... , [xn, yn])
Your code is ok, but the condition of while is somehow wrong.
xvec = np.array([0.0,0.0])
vvec = v0 * np.array([np.cos(a),np.sin(a)])
xall = []
while xvec[1] > 0:
Since you define xvec as many 0's array, the condition for while is not met and just passed. Once you include xvec[1] = 0, you can obtain a plot.
Btw, the sin and cos function treats the angle as radian, so you have to modify a bit
vvec = v0 * np.array([np.cos(np.pi * a / 180), np.sin(np.pi * a / 180)])
and the result will be:
The start data: 2d array (620x480) is contained image, where shows human face, and 2d array (30x20) which is contained eye image. Face image includes eye image.
How I can expand eye image to 36x60 to include pixels from face image? Are there ready-made solutions?
Another similar task: the eye image have 37x27 size. How I can expand eye image to target(closest to 36x60) size, e.g. 39x65 i.e maintain the aspect ratio required before resizing and then resize to 36x60.
Code for testing (project is available by reference):
import dlib
import cv2 as cv
from imutils.face_utils import shape_to_np
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('res/model.dat')
frame = cv.imread('photo.jpg')
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
img = frame.copy()
dets = detector(gray, 0)
for i, det in enumerate(dets):
shape = shape_to_np(predictor(gray, det))
shape_left_eye = shape[36:42]
x, y, h, w = cv.boundingRect(shape_left_eye)
cv.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 1)
cv.imwrite('file.png', frame[y: y+w, x: x+h])
The image 42x13:
For the first part you can use cv2.matchTemplate to find the eye region in the face and then according to the size you want you can enlarge it. You can read more about it here.
FACE IMAGE USED
EYE IMAGE USED
The size of eye I have (12, 32).
face = cv2.imread('face.jpg', 0)
eye = cv2.imread('eye.jpg', 0)
w, h = eye.shape[::-1]
res = cv2.matchTemplate(face,eye,cv2.TM_CCOEFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(face ,top_left, bottom_right, 255, 2)
cv2.imshow('image', face)
cv2.waitKey(0)
cv2.destroyAllWindows()
The result with this code is:
Now I have the top left and bottom right co-ordinates of the eye that is matched where top_left = (112, 108) and bottom_right = (144, 120). Now to expand them to dimensions of 36x60 I simply subtract the required values from top_left and add the required values in bottom_right.
EDIT 1
The question has been edited which suggests that dlib has been used along with a model trained to perform left eye detection. Using the same code I obtained
After that as proposed above I find top_left = (x,y) and bottom_right = (x+w, y+h).
Now if the eye size is smaller 36x60 then we just have to take the area around it to expand it to 36x60 otherwise we have to expand it as such that the aspect ratio is not disturbed and then resized and it cannot be hard coded. The full code used is:
import dlib
from imutils.face_utils import shape_to_np
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('res/model.dat')
face = cv2.imread('face.jpg', 0)
img = face.copy()
dets = detector(img, 0)
for i, det in enumerate(dets):
shape = shape_to_np(predictor(img, det))
shape_left_eye = shape[36:42]
x, y, w, h = cv2.boundingRect(shape_left_eye)
cv2.rectangle(face, (x, y), (x + w, y + h), (255, 255, 255), 1)
top_left = (x, y)
bottom_right = (x + w, y + h)
if w <= 36 and h <= 60:
x = int((36 - w)/2)
y = int((60 - h)/2)
else:
x1 = w - 36
y1 = h - 60
if x1 > y1:
x = int((w % 3)/2)
req = (w+x) * 5 / 3
y = int((req - h)/2)
else:
y = int((h % 5)/2)
req = (y+h) * 3 / 5
x = int((req - w)/2)
top_left = (top_left[0] - x, top_left[1] - y)
bottom_right = (bottom_right[0] + x, bottom_right[1] + y)
extracted = face[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
result = cv2.resize(extracted, (36, 60), interpolation = cv2.INTER_LINEAR)
cv2.imshow('image', face)
cv2.imshow('imag', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Which gives us a 36x60 region of the eye:
This takes care of the case when size of eye is smaller than 36x60. For the second case when the size of eye is larger than 36x60 region I used face = cv2.resize(face, None, fx=4, fy=4, interpolation = cv2.INTER_CUBIC). The result was:
The size of eye detected is (95, 33) and the extracted region is (97, 159) which is very close to the aspect ration of 3:5 before resizing which also satisfies that second task.
I would like to create a realistic pool game and to implement at least some basic ball effects. I started from scratch with SceneKit and at this point I'm just studying the proper technology to go with it.SceneKit would be the ideal.
I managed to achieve an acceptable ball effect for sidespin and some sort of forward spin. The one I'm struggle with is backspin. I'm playing around with the position parameter of applyForce method, but it seems that alone will not give me the result I'm looking for. Either I'm missing something (I've got limited knowledge of physics) or SceneKit's physics simulation is just not enough for what I want. Basically I have a sphere of 1.5 radius and I went from -1.5 to 1.5 on Y component for the position vector and the result is either the white ball or the ball I'm hitting jumps when collision occurs.
The first screenshot shows the moment of impact whilst the latter shows after the collision and how it jumps.
The two spheres are configured like this
let sphereGeometry = SCNSphere(radius: 1.5)
sphere1 = SCNNode(geometry: sphereGeometry)
sphere1.position = SCNVector3(x: -15, y: 0, z: 0)
sphere2 = SCNNode(geometry: sphereGeometry)
sphere2.position = SCNVector3(x: 15, y: 0, z: 0)
And the code that gives me that effect is the following:
sphere1.physicsBody?.applyForce(SCNVector3Make(350, 0, 0), atPosition:SCNVector3Make(1.5, -0.25, 0), impulse: true)
What I'm trying to do in that code is to hit the ball roughly a bit below the center. How I got to -0.25 was to get an angle of 10 degrees and calculate its sin function. Then I multiplied it by sphere radius so I can get a point that lies right on the sphere's surface.
So I've been reading several papers/chapters about pool physics and I think I found something that at least proves me I can do it with SceneKit. So what I was missing was i. right formulae ii. angular velocity. The physics still need a lot of polish but at least it seems to get roughly the trajectory one would expect when applying these effects. Here's the code in case anyone's interested in:
//Cue strength
let strength : Float = 1000
//Cue mass expressed in terms of ball's mass
let cueMass : Float = self.balls[0].mass * 1.25
//White ball
let whiteBall = self.balls[0]
//The ball we are trying to hit
let targetBall = self.balls[1]
//White ball radius
let ballRadius = whiteBall.radius
//This should be in the range of {-R, R} where R is the ball radius. It determines how much off the center we would like to hit the ball along the z-axis. Produces left/right spin
let a : Float = 0
//This should be in the range of {-R, R} where R is the ball radius. It determines how much off the center we would like to hit the ball along the y-axis. Produces top/back spin
let b : Float = -ballRadius * 0.7
//This is calculated based off a and b and it is the position that we will be hitting the ball along the x-axis.
let c : Float = sqrt(ballRadius * ballRadius - a * a - b * b)
//This is the angle of the cue expressed in degrees. Values greater than zero will produce jump shots
let cueAngle : Float = 0
//Cue angle in radians for math functions
let cueAngleInRadians : Float = (cueAngle * 3.14) / 180
let cosAngle = cos(cueAngleInRadians)
let sinAngle = sin(cueAngleInRadians)
//Values to calculate the magnitude to be applied given the above variables
let m0 = a * a
let m1 = b * b * cosAngle * cosAngle
let m2 = c * c * sinAngle * sinAngle
let m3 = 2 * b * c * cosAngle * sinAngle
let w = (5 / (2 * ballRadius * ballRadius)) * (m0 + m1 + m2 + m3)
let n = 2 * whiteBall.mass * strength
let magnitude = n / (1 + whiteBall.mass / cueMass + w)
//We would like to point to the target ball
let targetVector = targetBall.position
//Get the unit vector of our target
var target = (targetVector - whiteBall.position).normal
//Multiply our direction by the force's magnitude. Y-axis component reflects the angle of the cue
target.x *= magnitude
target.y = (magnitude / whiteBall.mass) * sinAngle
target.z *= magnitude
//Apply the impulse at the given position by c, b, a
whiteBall.physicsBody?.applyForce(target, atPosition: SCNVector3Make(c, b, a), impulse: true)
//Values to calculate angular force
let i = ((2 / 5) * whiteBall.mass * ballRadius * ballRadius)
let wx = a * magnitude * sinAngle
let wy = -a * magnitude * cosAngle
let wz = -c * magnitude * sinAngle + b * magnitude * cosAngle
let wv = SCNVector3Make(wx, wy, wz) * (1 / i)
//Apply a torque
whiteBall.physicsBody?.applyTorque(SCNVector4Make(wv.x, wv.y, wv.z, 0.4), impulse: true)
Note that values of a, b, c should take into account the target vector's direction.
I am trying to model heat conduction within a wood cylinder using implicit finite difference methods. The general heat equation that I'm using for cylindrical and spherical shapes is:
Where p is the shape factor, p = 1 for cylinder and p = 2 for sphere. Boundary conditions include convection at the surface. For more details about the model, please see the comments in the Matlab code below.
The main m-file is:
%--- main parameters
rhow = 650; % density of wood, kg/m^3
d = 0.02; % wood particle diameter, m
Ti = 300; % initial particle temp, K
Tinf = 673; % ambient temp, K
h = 60; % heat transfer coefficient, W/m^2*K
% A = pre-exponential factor, 1/s and E = activation energy, kJ/mol
A1 = 1.3e8; E1 = 140; % wood -> gas
A2 = 2e8; E2 = 133; % wood -> tar
A3 = 1.08e7; E3 = 121; % wood -> char
R = 0.008314; % universal gas constant, kJ/mol*K
%--- initial calculations
b = 1; % shape factor, b = 1 cylinder, b = 2 sphere
r = d/2; % particle radius, m
nt = 1000; % number of time steps
tmax = 840; % max time, s
dt = tmax/nt; % time step spacing, delta t
t = 0:dt:tmax; % time vector, s
m = 20; % number of radius nodes
steps = m-1; % number of radius steps
dr = r/steps; % radius step spacing, delta r
%--- build initial vectors for temperature and thermal properties
i = 1:m;
T(i,1) = Ti; % column vector of temperatures
TT(1,i) = Ti; % row vector to store temperatures
pw(1,i) = rhow; % initial density at each node is wood density, rhow
pg(1,i) = 0; % initial density of gas
pt(1,i) = 0; % inital density of tar
pc(1,i) = 0; % initial density of char
%--- solve system of equations [A][T]=[C] where T = A\C
for i = 2:nt+1
% kinetics at n
[rww, rwg, rwt, rwc] = funcY(A1,E1,A2,E2,A3,E3,R,T',pw(i-1,:));
pw(i,:) = pw(i-1,:) + rww.*dt; % update wood density
pg(i,:) = pg(i-1,:) + rwg.*dt; % update gas density
pt(i,:) = pt(i-1,:) + rwt.*dt; % update tar density
pc(i,:) = pc(i-1,:) + rwc.*dt; % update char density
Yw = pw(i,:)./(pw(i,:) + pc(i,:)); % wood fraction
Yc = pc(i,:)./(pw(i,:) + pc(i,:)); % char fraction
% thermal properties at n
cpw = 1112.0 + 4.85.*(T'-273.15); % wood heat capacity, J/(kg*K)
kw = 0.13 + (3e-4).*(T'-273.15); % wood thermal conductivity, W/(m*K)
cpc = 1003.2 + 2.09.*(T'-273.15); % char heat capacity, J/(kg*K)
kc = 0.08 - (1e-4).*(T'-273.15); % char thermal conductivity, W/(m*K)
cpbar = Yw.*cpw + Yc.*cpc; % effective heat capacity
kbar = Yw.*kw + Yc.*kc; % effective thermal conductivity
pbar = pw(i,:) + pc(i,:); % effective density
% temperature at n+1
Tn = funcACbar(pbar,cpbar,kbar,h,Tinf,b,m,dr,dt,T);
% kinetics at n+1
[rww, rwg, rwt, rwc] = funcY(A1,E1,A2,E2,A3,E3,R,Tn',pw(i-1,:));
pw(i,:) = pw(i-1,:) + rww.*dt;
pg(i,:) = pg(i-1,:) + rwg.*dt;
pt(i,:) = pt(i-1,:) + rwt.*dt;
pc(i,:) = pc(i-1,:) + rwc.*dt;
Yw = pw(i,:)./(pw(i,:) + pc(i,:));
Yc = pc(i,:)./(pw(i,:) + pc(i,:));
% thermal properties at n+1
cpw = 1112.0 + 4.85.*(Tn'-273.15);
kw = 0.13 + (3e-4).*(Tn'-273.15);
cpc = 1003.2 + 2.09.*(Tn'-273.15);
kc = 0.08 - (1e-4).*(Tn'-273.15);
cpbar = Yw.*cpw + Yc.*cpc;
kbar = Yw.*kw + Yc.*cpc;
pbar = pw(i,:) + pc(i,:);
% revise temperature at n+1
Tn = funcACbar(pbar,cpbar,kbar,h,Tinf,b,m,dr,dt,T);
% store temperature at n+1
T = Tn;
TT(i,:) = T';
end
%--- plot data
figure(1)
plot(t./60,TT(:,1),'-b',t./60,TT(:,m),'-r')
hold on
plot([0 tmax/60],[Tinf Tinf],':k')
hold off
xlabel('Time (min)'); ylabel('Temperature (K)');
sh = num2str(h); snt = num2str(nt); sm = num2str(m);
title(['Cylinder Model, d = 20mm, h = ',sh,', nt = ',snt,', m = ',sm])
legend('Tcenter','Tsurface',['T\infty = ',num2str(Tinf),'K'],'location','southeast')
figure(2)
plot(t./60,pw(:,1),'--',t./60,pw(:,m),'-','color',[0 0.7 0])
hold on
plot(t./60,pg(:,1),'--b',t./60,pg(:,m),'b')
hold on
plot(t./60,pt(:,1),'--k',t./60,pt(:,m),'k')
hold on
plot(t./60,pc(:,1),'--r',t./60,pc(:,m),'r')
hold off
xlabel('Time (min)'); ylabel('Density (kg/m^3)');
The function m-file, funcACbar, that creates the system of equations to solve is:
% Finite difference equations for cylinder and sphere
% for 1D transient heat conduction with convection at surface
% general equation is:
% 1/alpha*dT/dt = d^2T/dr^2 + p/r*dT/dr for r ~= 0
% 1/alpha*dT/dt = (1 + p)*d^2T/dr^2 for r = 0
% where p is shape factor, p = 1 for cylinder, p = 2 for sphere
function T = funcACbar(pbar,cpbar,kbar,h,Tinf,b,m,dr,dt,T)
alpha = kbar./(pbar.*cpbar); % effective thermal diffusivity
Fo = alpha.*dt./(dr^2); % effective Fourier number
Bi = h.*dr./kbar; % effective Biot number
% [A] is coefficient matrix at time level n+1
% {C} is column vector at time level n
A(1,1) = 1 + 2*(1+b)*Fo(1);
A(1,2) = -2*(1+b)*Fo(2);
C(1,1) = T(1);
for k = 2:m-1
A(k,k-1) = -Fo(k-1)*(1 - b/(2*(k-1))); % Tm-1
A(k,k) = 1 + 2*Fo(k); % Tm
A(k,k+1) = -Fo(k+1)*(1 + b/(2*(k-1))); % Tm+1
C(k,1) = T(k);
end
A(m,m-1) = -2*Fo(m-1);
A(m,m) = 1 + 2*Fo(m)*(1 + Bi(m) + (b/(2*m))*Bi(m));
C(m,1) = T(m) + 2*Fo(m)*Bi(m)*(1 + b/(2*m))*Tinf;
% solve system of equations [A]{T} = {C} where temperature T = [A]\{C}
T = A\C;
end
And finally the function that deals with the kinetic reactions, funcY, is:
% Kinetic equations for reactions of wood, first-order, Arrhenious type equations
% K = A*exp(-E/RT) where A = pre-exponential factor, 1/s
% and E = activation energy, kJ/mol
function [rww, rwg, rwt, rwc] = funcY(A1,E1,A2,E2,A3,E3,R,T,pww)
K1 = A1.*exp(-E1./(R.*T)); % wood -> gas (1/s)
K2 = A2.*exp(-E2./(R.*T)); % wood -> tar (1/s)
K3 = A3.*exp(-E3./(R.*T)); % wood -> char (1/s)
rww = -(K1+K2+K3).*pww; % rate of wood consumption (rho/s)
rwg = K1.*pww; % rate of gas production from wood (rho/s)
rwt = K2.*pww; % rate of tar production from wood (rho/s)
rwc = K3.*pww; % rate of char production from wood (rho/s)
end
Running the above code gives a temperature profile at the center and surface of the wood cylinder:
As you can see from this plot, for some reason the center and surface temperatures rapidly converge at the 2 min mark which isn't correct.
Any suggestions on how to fix this or create a more efficient way to solve the problem?
It looks like you are using a backward Euler implicit method of discretization of a diffusion PDE. A more accurate approach is the Crank-Nicolson method. Both methods are unconditionally stable.
The introduction of a T-dependent diffusion coefficient requires special treatment, best probably in the form of linearization, as explained briefly here. It would be useful to identify stability criteria to ensure that the time and distance step lengths are appropriate following introduction of T-dependent coefficients.
Note that matlab offers a PDE toolbox which might be useful to you, although I have not checked how you might use it in detail.