Why should this be a while statement and not an if statement? - loops

Did a test for class.. and they provided a sample test. One of the questions gave the following code which calculates the average of the items in a list , they then asked us to find all the errors:
# brightness levels –maximum is 100
shape_brightness = [15,92,38,42]
item_no = 0
total = 0
if (item_no < len(shape_brightness):
total = shape_brightness[item_no]
item_no = item_no + 1
average = total / item_no
print(“The average brightness level is “+str(averge))
However, in the solution they said the biggest error was that it should actually be a while statement .. and i dont understand why? Any explanation as to why??

You need to iterate over all elements to calculate the average. The if statement only visits the first element in this array.
When your code accesses shape_brightness[item_no], item_no is the index, so as it is 0, shape_brightness[item_no] is just the number 15. In order to include all the other values of shape_brightness in your average calculation, you want to access them as well, so to do that you increase your index item_no as many times as the number of elements you want to access by using a loop.
A while loop would be one way of iterating over all elements, and changing the 'if' to 'while' would be the fastest correction to this code, but a for loop, with additional changes, would also work. E.g.
for item in range(len(shape_brightness)):
execute
in which case the item_no counter becomes unnecessary.

Simple:
Because you need to iterate an array. That tranlates: you need some form of looping!
And if statement does not have that repetitive part required here!

You need to use a while loop because for calculating the sum and number of values for average. You need to repetitively add the values of shape brightness until you have added all the values. Currently, you are using an if block which is considering only first value of shape_brightness array. You need to put
total = shape_brightness[item_no]
item_no = item_no + 1
inside while loop
while(item_no < len(shape_brightness))

Related

How to select values in an array until a threshold value?

I will explain my problem. I have a 1x1701 sampled array "resampled_WF", once I found the max value of this array ("peak_WF"), I set a threshold 0.7*peak_WF, and I would like to select the farthest value in the array that gets nearer to this threshold.
Example:
power_vs_time_threshold
As you can see, I was able to select ony the first value that resembles... but I would like to get the last one (around t=2 sec).
I tried to flip the array with "flip" function:
WF_threshold_input = 0.7*peak_WF;
flip_resampled_WF = flip(resampled_WF);
diff_peak_threshold = peak_WF - WF_threshold_input; %power loss at 70% power reduction
diff_peak_WF = peak_WF - flip_resampled_WF;
min_diff_threshold = min(abs(diff_peak_WF-diff_peak_threshold));
Doing that, MATLAB computes minimum difference on the whole array, I would like to stop at the first value, not considering further values.
I tried to select values with values <= WF_threshold_input, but again it selects over the whole dataset.
How can I select the value properly?
Thanks!!
Using operations on the matrix will call the operation on every element in the matrix. What you want to do is use a loop so that you can control exactly what elements are examined and then break out of the loop.
index = length(resampled_WF);
your_threshold = ...
while resampled_WF(index) < your_threshold
index = index - 1;
end
The while loop will continue iteration until it reaches a value that is outside of your defined threshold.
After execution, the value of index will be the index of the furthest value in the array which is outside of your threshold. You can access the furthest value outside the threshold by looking at resampled_wf(index) after execution of the code.
We don't have to worry about the values of index leaving the bounds of the array, ie <1, since the condition resampled_wf < your_threshold is guaranteed to be met by the maximal value that you originally generated the threshold with.

Matlab: average each element in 2D array based on neighbors [duplicate]

I've written code to smooth an image using a 3x3 averaging filter, however the output is strange, it is almost all black. Here's my code.
function [filtered_img] = average_filter(noisy_img)
[m,n] = size(noisy_img);
filtered_img = zeros(m,n);
for i = 1:m-2
for j = 1:n-2
sum = 0;
for k = i:i+2
for l = j:j+2
sum = sum+noisy_img(k,l);
end
end
filtered_img(i+1,j+1) = sum/9.0;
end
end
end
I call the function as follows:
img=imread('img.bmp');
filtered = average_filter(img);
imshow(uint8(filtered));
I can't see anything wrong in the code logic so far, I'd appreciate it if someone can spot the problem.
Assuming you're working with grayscal images, you should replace the inner two for loops with :
filtered_img(i+1,j+1) = mean2(noisy_img(i:i+2,j:j+2));
Does it change anything?
EDIT: don't forget to reconvert it to uint8!!
filtered_img = uint8(filtered_img);
Edit 2: the reason why it's not working in your code is because sum is saturating at 255, the upper limit of uint8. mean seems to prevent that from happening
another option:
f = #(x) mean(x(:));
filtered_img = nlfilter(noisy_img,[3 3],f);
img = imread('img.bmp');
filtered = imfilter(double(img), ones(3) / 9, 'replicate');
imshow(uint8(filtered));
Implement neighborhood operation of sum of product operation between an image and a filter of size 3x3, the filter should be averaging filter.
Then use the same function/code to compute Laplacian(2nd order derivative, prewitt and sobel operation(first order derivatives).
Use a simple 10*10 matrix to perform these operations
need matlab code
Tangentially to the question:
Especially for 5x5 or larger window you can consider averaging first in one direction and then in the other and you save some operations. So, point at 3 would be (P1+P2+P3+P4+P5). Point at 4 would be (P2+P3+P4+P5+P6). Divided by 5 in the end. So, point at 4 could be calculated as P3new + P6 - P2. Etc for point 5 and so on. Repeat the same procedure in other direction.
Make sure to divide first, then sum.
I would need to time this, but I believe it could work a bit faster for larger windows. It is sequential per line which might not seem the best, but you have many lines where you can work in parallel, so it shouldn't be a problem.
This first divide, then sum also prevents saturation if you have integers, so you might use the approach even in 3x3 case, as it is less wrong (though slower) to divide twice by 3 than once by 9. But note that you will always underestimate final value with that, so you might as well add a bit of bias (say all values +1 between the steps).
img=imread('camraman.tif');
nsy-img=imnoise(img,'salt&pepper',0.2);
imshow('nsy-img');
h=ones(3,3)/9;
avg=conv2(img,h,'same');
imshow(Unit8(avg));

How do I subtract a value from each element of an array in Lua?

I am trying to write a function to find the variance of a data set.
I am stuck on a small problem. I have an array, and I want to find how far each element in the array is from the average. Here is a simplified version of what I wrote:
>y={1,2,3}
>y_average=2
>y_diff={}
>for key, value in pairs(y) do y_diff[key]=(y[key]-y_average)
>>return unpack(y_diff)
>>end
-1
what I want to get: -1, 0, 1
Why does it only give me the first value and not all three?
Your return is breaking the loop in the first iteration as mentioned in a comment. Try this:
for i in ipairs(y) do
y_diff[i] = y[i] - y_average
end
print( table.concat(y_diff, '\t') )
table.concat doesn't have a limit on the amount of elements it can handle and it would be what you would use if you wanted to put these elements in a file faster than writing them one by one.

How do I check to see if two (or more) elements of an array/vector are the same?

For one of my homework problems, we had to write a function that creates an array containing n random numbers between 1 and 365. (Done). Then, check if any of these n birthdays are identical. Is there a shorter way to do this than doing several loops or several logical expressions?
Thank you!
CODE SO FAR, NOT DONE YET!!
function = [prob] bdayprob(N,n)
N = input('Please enter the number of experiments performed: N = ');
n = input('Please enter the sample size: n = ');
count = 0;
for(i=1:n)
x(i) = randi(365);
if(x(i)== x)
count = count + 1
end
return
If I'm interpreting your question properly, you want to check to see if generating n integers or days results in n unique numbers. Given your current knowledge in MATLAB, it's as simple as doing:
n = 30; %// Define sample size
N = 10; %// Define number of trials
%// Define logical array where each location tells you whether
%// birthdays were repeated for a trial
check = false(1, N);
%// For each trial...
for idx = 1 : N
%// Generate sample size random numbers
days = randi(365, n, 1);
%// Check to see if the total number of unique birthdays
%// are equal to the sample size
check(idx) = numel(unique(days)) == n;
end
Woah! Let's go through the code slowly shall we? We first define the sample size and the number of trials. We then specify a logical array where each location tells you whether or not there were repeated birthdays generated for that trial. Now, we start with a loop where for each trial, we generate random numbers from 1 to 365 that is of n or sample size long. We then use unique and figure out all unique integers that were generated from this random generation. If all of the birthdays are unique, then the total number of unique birthdays generated should equal the sample size. If we don't, then we have repeats. For example, if we generated a sample of [1 1 1 2 2], the output of unique would be [1 2], and the total number of unique elements is 2. Since this doesn't equal 5 or the sample size, then we know that the birthdays generated weren't unique. However, if we had [1 3 4 6 7], unique would give the same output, and since the output length is the same as the sample size, we know that all of the days are unique.
So, we check to see if this number is equal to the sample size for each iteration. If it is, then we output true. If not, we output false. When I run this code on my end, this is what I get for check. I set the sample size to 30 and the number of trials to be 10.
check =
0 0 1 1 0 0 0 0 1 0
Take note that if you increase the sample size, there is a higher probability that you will get duplicates, because randi can be considered as sampling with replacement. Therefore, the larger the sample size, the higher the chance of getting duplicate values. I made the sample size small on purpose so that we can see that it's possible to get unique days. However, if you set it to something like 100, or 200, you will most likely get check to be all false as there will most likely be duplicates per trial.
Here are some more approaches that avoid loops. Let
n = 20; %// define sample size
x = randi(365,n,1); %// generate n values between 1 and 365
Any of the following code snippets returns true (or 1) if there are two identical values in x, and false (or 0) otherwise:
Sort and then check if any two consecutive elements are the same:
result = any(diff(sort(x))==0);
Do all pairwise comparisons manually; remove self-pairs and duplicate pairs; and check if any of the remaining comparisons is true:
result = nnz(tril(bsxfun(#eq, x, x.'),-1))>0;
Compute the distance between distinct values, considering each pair just once, and then check if any distance is 0:
result = any(pdist(x(:))==0);
Find the number of occurrences of the most common value (mode):
[~, occurs] = mode(x);
result = occurs>1;
I don't know if I'm supposed to solve the problem for you, but perhaps a few hints may lead you in the right direction (besides I'm not a matlab expert so it will be in general terms):
Maybe not, but you have to ask yourself what they expect of you. The solution you propose requires you to loop through the array in two nested loops which will mean n*(n-1)/2 times through the loop (ie quadratic time complexity).
There are a number of ways you can improve the time complexity of the problem. The most straightforward would be to have a 365 element table where you can keep track if a particular number has been seen yet - which would require only a single loop (ie linear time complexity), but perhaps that's not what they're looking for either. But maybe that solution is a little bit ad-hoc? What we're basically looking for is a fast lookup if a particular number has been seen before - there exists more memory efficient structures that allows look up in O(1) time and O(log n) time (if you know these you have an arsenal of tools to use).
Then of course you could use the pidgeonhole principle to provide the answer much faster in some special cases (remember that you only asked to determine whether two or more numbers are equal or not).

Randomize matrix elements between two values while keeping row and column sums fixed (MATLAB)

I have a bit of a technical issue, but I feel like it should be possible with MATLAB's powerful toolset.
What I have is a random n by n matrix of 0's and w's, say generated with
A=w*(rand(n,n)<p);
A typical value of w would be 3000, but that should not matter too much.
Now, this matrix has two important quantities, the vectors
c = sum(A,1);
r = sum(A,2)';
These are two row vectors, the first denotes the sum of each column and the second the sum of each row.
What I want to do next is randomize each value of w, for example between 0.5 and 2. This I would do as
rand_M = (0.5-2).*rand(n,n) + 0.5
A_rand = rand_M.*A;
However, I don't want to just pick these random numbers: I want them to be such that for every column and row, the sums are still equal to the elements of c and r. So to clean up the notation a bit, say we define
A_rand_c = sum(A_rand,1);
A_rand_r = sum(A_rand,2)';
I want that for all j = 1:n, A_rand_c(j) = c(j) and A_rand_r(j) = r(j).
What I'm looking for is a way to redraw the elements of rand_M in a sort of algorithmic fashion I suppose, so that these demands are finally satisfied.
Now of course, unless I have infinite amounts of time this might not really happen. I therefore accept these quantities to fall into a specific range: A_rand_c(j) has to be an element of [(1-e)*c(j),(1+e)*c(j)] and A_rand_r(j) of [(1-e)*r(j),(1+e)*r(j)]. This e I define beforehand, say like 0.001 or something.
Would anyone be able to help me in the process of finding a way to do this? I've tried an approach where I just randomly repick the numbers, but this really isn't getting me anywhere. It does not have to be crazy efficient either, I just need it to work in finite time for networks of size, say, n = 50.
To be clear, the final output is the matrix A_rand that satisfies these constraints.
Edit:
Alright, so after thinking a bit I suppose it might be doable with some while statement, that goes through every element of the matrix. The difficult part is that there are four possibilities: if you are in a specific element A_rand(i,j), it could be that A_rand_c(j) and A_rand_r(i) are both too small, both too large, or opposite. The first two cases are good, because then you can just redraw the random number until it is smaller than the current value and improve the situation. But the other two cases are problematic, as you will improve one situation but not the other. I guess it would have to look at which criteria is less satisfied, so that it tries to fix the one that is worse. But this is not trivial I would say..
You can take advantage of the fact that rows/columns with a single non-zero entry in A automatically give you results for that same entry in A_rand. If A(2,5) = w and it is the only non-zero entry in its column, then A_rand(2,5) = w as well. What else could it be?
You can alternate between finding these single-entry rows/cols, and assigning random numbers to entries where the value doesn't matter.
Here's a skeleton for the process:
A_rand=zeros(size(A)) is the matrix you are going to fill
entries_left = A>0 is a binary matrix showing which entries in A_rand you still need to fill
col_totals=sum(A,1) is the amount you still need to add in every column of A_rand
row_totals=sum(A,2) is the amount you still need to add in every row of A_rand
while sum( entries_left(:) ) > 0
% STEP 1:
% function to fill entries in A_rand if entries_left has rows/cols with one nonzero entry
% you will need to keep looping over this function until nothing changes
% update() A_rand, entries_left, row_totals, col_totals every time you loop
% STEP 2:
% let (i,j) be the indeces of the next non-zero entry in entries_left
% assign a random number to A_rand(i,j) <= col_totals(j) and <= row_totals(i)
% update() A_rand, entries_left, row_totals, col_totals
end
update()
A_rand(i,j) = random_value;
entries_left(i,j) = 0;
col_totals(j) = col_totals(j) - random_value;
row_totals(i) = row_totals(i) - random_value;
end
Picking the range for random_value might be a little tricky. The best I can think of is to draw it from a relatively narrow distribution centered around N*w*p where p is the probability of an entry in A being nonzero (this would be the average value of row/column totals).
This doesn't scale well to large matrices as it will grow with n^2 complexity. I tested it for a 200 by 200 matrix and it worked in about 20 seconds.

Resources