I would like to know the difference between 2 codes in performance. What are the advantages and disadvantages?
Code 1:
temp = a;
a = b;
b = temp;
Code 2:
a = a + b;
b = a - b;
a = a - b;
The advantages of the first technique are that it is a universal idiom which is obvious and correct. It will work everywhere, on variables of any type. It is quite likely to be recognized by an optimizing compiler and replaced by an actual 'swap' instruction, if available. So besides being more clear and more correct, the first technique is likely to be more efficient, also.
The advantages of the second technique are that it avoids the use of a temporary variable, and that it is a deliciously obscure trick which is beloved by those who incessantly collect obscure tricks, and pose misguided "gotcha" interview questions involving obscure tricks, and (for all I know) who make their own programs less maintainable, less portable, and less reliable by cluttering them with obscure tricks.
The disadvantages of the first technique are: None.
(Theoretically, one might say there's a disadvantage in that it uses a temporary variable, but really, that's no disadvantage at all, because temporary variables are free. I don't think there's anyone on the planet who is still coding for a processor so limited in memory and registers that "saving" a temporary variable in this sort of way is something to actually worry about.)
The disadvantages of the second technique are that it is harder to write, harder for the reader to understand, and likely less efficient (perhaps significantly so). It "works" only on arithmetic types, not structures or other types. It won't work (it will quietly corrupt data) if it should happen be used in an attempt to swap data with itself. (More on this possibility later.) And if those aren't all bad enough, it is likely to be fundamentally buggy even under "ordinary" circumstances, since it could overflow, and with floating-point types it could alter one or both values slightly due to roundoff error, and with pointer types it's undefined if the pointers being swapped do not point within the same object.
You asked specifically about performance, so let's say a few more words about that. (Disclaimer: I am not an expert on microoptimization; I tend to think about instruction-level performance in rather abstract, handwavey terms.)
The first technique uses three assignments. The second technique uses an addition and two subtractions. On many machines an arithmetic operation takes the same number of cycles as a simple value assignment, so in many cases the performance of the two techniques will be identical. But it's hard to imagine how the second technique could ever be more efficient, while it's easy to imagine how the first technique could be more efficient. In particular, as I mentioned already, the first technique is easier for a compiler to recognize and turn into a more-efficient SWP instruction, if the target processor has one.
And now, some digressions. The second technique as presented here is a less-delicious variant of the traditional, deliciously obscure trick for swapping two variables without using a temporary. The traditional, deliciously obscure trick for swapping two variables without using a temporary is:
a ^= b;
b ^= a;
a ^= b;
Once upon a time it was fashionable in some circles to render these techniques in an even more deliciously obscure way:
a ^= b ^= a ^= b; /* WRONG */
a += b -= a -= b; /* WRONG */
But these renditions (while, yes, being absolutely exquisitely deliciously obscure if you like that sort of thing) have the additional crashing disadvantage that they represent undefined behavior, since they try to modify a multiple times in the same expression without an intervening sequence point. (See also the canonical SO question on that topic.)
In fairness, I have to mention that there is one actual circumstance under which the first technique's use of a temporary variable can be a significant disadvantage, and the second technique's lack of one can be therefore be an actual advantage. That one circumstance is if you are trying to write a generic 'swap' macro, along the lines of
#define Swap(a, b) (a = a + b, b = a - b, a = a - b)
The idea is that you can use this macro anywhere, and on variables of any type, and (since it's a macro, and therefore magic) you don't even have to use & on the arguments you call it with, as you would if it were a function. But in traditional C, at least, if you wanted to write a Swap macro like this, it was essentially impossible to do so using technique 1, because there was no way to declare the necessary temporary variable.
You weren't asking about this sub-problem, but since I brought it up, I have to say that the solution (although it is eternally frustrating to the lovers of delicious obscurity) is to just not attempt to write a "generic" macro to swap two values in the first place. You can't do it in C. (As a matter of fact, you could do it in C++, with the new definition of auto, and these days I guess C has some new way of writing generic macros, too.)
And there is actually an additional, crashing problem when you try to write a 'swap' macro this way, which is that it will not work — it will set one or both variables to 0 instead of swapping the values — if the caller ever tries to swap a value with itself. You might say that's not a problem, since maybe nobody would ever write Swap(x, x), but in a less-than-perfectly-optimal sorting routine they might very easily write Swap(a[i], a[j]) where sometimes i happened to be equal to j, or Swap(*p, *q) where sometimes the pointer p happened to be equal to q.
See also the C FAQ List, questions 3.3b, 10.3 and 20.15c.
Always use the first one. The second one can introduce subtle bugs. If the variables are of type int and a+b is greater than INT_MAX then the addition will yield undefined behavior.
When it comes to performance, the difference is likely barely measurable.
Many years ago, C compilers were not particularly smart. As a workaround K&R invented the register keyword, to hint to the compiler, that maybe it would be a good idea to keep this variable in an internal register. They also made the tertiary operator to help generate better code.
As time passed, the compilers matured. They became very smart in that their flow analysis allowing them to make better decisions about what values to hold in registers than you could possibly do. The register keyword became unimportant.
FORTRAN can be faster than C for some sorts of operations, due to alias issues. In theory with careful coding, one can get around this restriction to enable the optimizer to generate faster code.
What coding practices are available that may enable the compiler/optimizer to generate faster code?
Identifying the platform and compiler you use, would be appreciated.
Why does the technique seem to work?
Sample code is encouraged.
Here is a related question
[Edit] This question is not about the overall process to profile, and optimize. Assume that the program has been written correctly, compiled with full optimization, tested and put into production. There may be constructs in your code that prohibit the optimizer from doing the best job that it can. What can you do to refactor that will remove these prohibitions, and allow the optimizer to generate even faster code?
[Edit] Offset related link
Here's a coding practice to help the compiler create fast code—any language, any platform, any compiler, any problem:
Do not use any clever tricks which force, or even encourage, the compiler to lay variables out in memory (including cache and registers) as you think best. First write a program which is correct and maintainable.
Next, profile your code.
Then, and only then, you might want to start investigating the effects of telling the compiler how to use memory. Make 1 change at a time and measure its impact.
Expect to be disappointed and to have to work very hard indeed for small performance improvements. Modern compilers for mature languages such as Fortran and C are very, very good. If you read an account of a 'trick' to get better performance out of code, bear in mind that the compiler writers have also read about it and, if it is worth doing, probably implemented it. They probably wrote what you read in the first place.
Write to local variables and not output arguments! This can be a huge help for getting around aliasing slowdowns. For example, if your code looks like
void DoSomething(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
for (int i=0; i<numFoo, i++)
{
barOut.munge(foo1, foo2[i]);
}
}
the compiler doesn't know that foo1 != barOut, and thus has to reload foo1 each time through the loop. It also can't read foo2[i] until the write to barOut is finished. You could start messing around with restricted pointers, but it's just as effective (and much clearer) to do this:
void DoSomethingFaster(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
Foo barTemp = barOut;
for (int i=0; i<numFoo, i++)
{
barTemp.munge(foo1, foo2[i]);
}
barOut = barTemp;
}
It sounds silly, but the compiler can be much smarter dealing with the local variable, since it can't possibly overlap in memory with any of the arguments. This can help you avoid the dreaded load-hit-store (mentioned by Francis Boivin in this thread).
The order you traverse memory can have profound impacts on performance and compilers aren't really good at figuring that out and fixing it. You have to be conscientious of cache locality concerns when you write code if you care about performance. For example two-dimensional arrays in C are allocated in row-major format. Traversing arrays in column major format will tend to make you have more cache misses and make your program more memory bound than processor bound:
#define N 1000000;
int matrix[N][N] = { ... };
//awesomely fast
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[i][j];
}
}
//painfully slow
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[j][i];
}
}
Generic Optimizations
Here as some of my favorite optimizations. I have actually increased execution times and reduced program sizes by using these.
Declare small functions as inline or macros
Each call to a function (or method) incurs overhead, such as pushing variables onto the stack. Some functions may incur an overhead on return as well. An inefficient function or method has fewer statements in its content than the combined overhead. These are good candidates for inlining, whether it be as #define macros or inline functions. (Yes, I know inline is only a suggestion, but in this case I consider it as a reminder to the compiler.)
Remove dead and redundant code
If the code isn't used or does not contribute to the program's result, get rid of it.
Simplify design of algorithms
I once removed a lot of assembly code and execution time from a program by writing down the algebraic equation it was calculating and then simplified the algebraic expression. The implementation of the simplified algebraic expression took up less room and time than the original function.
Loop Unrolling
Each loop has an overhead of incrementing and termination checking. To get an estimate of the performance factor, count the number of instructions in the overhead (minimum 3: increment, check, goto start of loop) and divide by the number of statements inside the loop. The lower the number the better.
Edit: provide an example of loop unrolling
Before:
unsigned int sum = 0;
for (size_t i; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
After unrolling:
unsigned int sum = 0;
size_t i = 0;
**const size_t STATEMENTS_PER_LOOP = 8;**
for (i = 0; i < BYTES_TO_CHECKSUM; **i = i / STATEMENTS_PER_LOOP**)
{
sum += *buffer++; // 1
sum += *buffer++; // 2
sum += *buffer++; // 3
sum += *buffer++; // 4
sum += *buffer++; // 5
sum += *buffer++; // 6
sum += *buffer++; // 7
sum += *buffer++; // 8
}
// Handle the remainder:
for (; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
In this advantage, a secondary benefit is gained: more statements are executed before the processor has to reload the instruction cache.
I've had amazing results when I unrolled a loop to 32 statements. This was one of the bottlenecks since the program had to calculate a checksum on a 2GB file. This optimization combined with block reading improved performance from 1 hour to 5 minutes. Loop unrolling provided excellent performance in assembly language too, my memcpy was a lot faster than the compiler's memcpy. -- T.M.
Reduction of if statements
Processors hate branches, or jumps, since it forces the processor to reload its queue of instructions.
Boolean Arithmetic (Edited: applied code format to code fragment, added example)
Convert if statements into boolean assignments. Some processors can conditionally execute instructions without branching:
bool status = true;
status = status && /* first test */;
status = status && /* second test */;
The short circuiting of the Logical AND operator (&&) prevents execution of the tests if the status is false.
Example:
struct Reader_Interface
{
virtual bool write(unsigned int value) = 0;
};
struct Rectangle
{
unsigned int origin_x;
unsigned int origin_y;
unsigned int height;
unsigned int width;
bool write(Reader_Interface * p_reader)
{
bool status = false;
if (p_reader)
{
status = p_reader->write(origin_x);
status = status && p_reader->write(origin_y);
status = status && p_reader->write(height);
status = status && p_reader->write(width);
}
return status;
};
Factor Variable Allocation outside of loops
If a variable is created on the fly inside a loop, move the creation / allocation to before the loop. In most instances, the variable doesn't need to be allocated during each iteration.
Factor constant expressions outside of loops
If a calculation or variable value does not depend on the loop index, move it outside (before) the loop.
I/O in blocks
Read and write data in large chunks (blocks). The bigger the better. For example, reading one octect at a time is less efficient than reading 1024 octets with one read.
Example:
static const char Menu_Text[] = "\n"
"1) Print\n"
"2) Insert new customer\n"
"3) Destroy\n"
"4) Launch Nasal Demons\n"
"Enter selection: ";
static const size_t Menu_Text_Length = sizeof(Menu_Text) - sizeof('\0');
//...
std::cout.write(Menu_Text, Menu_Text_Length);
The efficiency of this technique can be visually demonstrated. :-)
Don't use printf family for constant data
Constant data can be output using a block write. Formatted write will waste time scanning the text for formatting characters or processing formatting commands. See above code example.
Format to memory, then write
Format to a char array using multiple sprintf, then use fwrite. This also allows the data layout to be broken up into "constant sections" and variable sections. Think of mail-merge.
Declare constant text (string literals) as static const
When variables are declared without the static, some compilers may allocate space on the stack and copy the data from ROM. These are two unnecessary operations. This can be fixed by using the static prefix.
Lastly, Code like the compiler would
Sometimes, the compiler can optimize several small statements better than one complicated version. Also, writing code to help the compiler optimize helps too. If I want the compiler to use special block transfer instructions, I will write code that looks like it should use the special instructions.
The optimizer isn't really in control of the performance of your program, you are. Use appropriate algorithms and structures and profile, profile, profile.
That said, you shouldn't inner-loop on a small function from one file in another file, as that stops it from being inlined.
Avoid taking the address of a variable if possible. Asking for a pointer isn't "free" as it means the variable needs to be kept in memory. Even an array can be kept in registers if you avoid pointers — this is essential for vectorizing.
Which leads to the next point, read the ^#$# manual! GCC can vectorize plain C code if you sprinkle a __restrict__ here and an __attribute__( __aligned__ ) there. If you want something very specific from the optimizer, you might have to be specific.
On most modern processors, the biggest bottleneck is memory.
Aliasing: Load-Hit-Store can be devastating in a tight loop. If you're reading one memory location and writing to another and know that they are disjoint, carefully putting an alias keyword on the function parameters can really help the compiler generate faster code. However if the memory regions do overlap and you used 'alias', you're in for a good debugging session of undefined behaviors!
Cache-miss: Not really sure how you can help the compiler since it's mostly algorithmic, but there are intrinsics to prefetch memory.
Also don't try to convert floating point values to int and vice versa too much since they use different registers and converting from one type to another means calling the actual conversion instruction, writing the value to memory and reading it back in the proper register set.
The vast majority of code that people write will be I/O bound (I believe all the code I have written for money in the last 30 years has been so bound), so the activities of the optimiser for most folks will be academic.
However, I would remind people that for the code to be optimised you have to tell the compiler to to optimise it - lots of people (including me when I forget) post C++ benchmarks here that are meaningless without the optimiser being enabled.
use const correctness as much as possible in your code. It allows the compiler to optimize much better.
In this document are loads of other optimization tips: CPP optimizations (a bit old document though)
highlights:
use constructor initialization lists
use prefix operators
use explicit constructors
inline functions
avoid temporary objects
be aware of the cost of virtual functions
return objects via reference parameters
consider per class allocation
consider stl container allocators
the 'empty member' optimization
etc
Attempt to program using static single assignment as much as possible. SSA is exactly the same as what you end up with in most functional programming languages, and that's what most compilers convert your code to to do their optimizations because it's easier to work with. By doing this places where the compiler might get confused are brought to light. It also makes all but the worst register allocators work as good as the best register allocators, and allows you to debug more easily because you almost never have to wonder where a variable got it's value from as there was only one place it was assigned.
Avoid global variables.
When working with data by reference or pointer pull that into local variables, do your work, and then copy it back. (unless you have a good reason not to)
Make use of the almost free comparison against 0 that most processors give you when doing math or logic operations. You almost always get a flag for ==0 and <0, from which you can easily get 3 conditions:
x= f();
if(!x){
a();
} else if (x<0){
b();
} else {
c();
}
is almost always cheaper than testing for other constants.
Another trick is to use subtraction to eliminate one compare in range testing.
#define FOO_MIN 8
#define FOO_MAX 199
int good_foo(int foo) {
unsigned int bar = foo-FOO_MIN;
int rc = ((FOO_MAX-FOO_MIN) < bar) ? 1 : 0;
return rc;
}
This can very often avoid a jump in languages that do short circuiting on boolean expressions and avoids the compiler having to try to figure out how to handle keeping
up with the result of the first comparison while doing the second and then combining them.
This may look like it has the potential to use up an extra register, but it almost never does. Often you don't need foo anymore anyway, and if you do rc isn't used yet so it can go there.
When using the string functions in c (strcpy, memcpy, ...) remember what they return -- the destination! You can often get better code by 'forgetting' your copy of the pointer to destination and just grab it back from the return of these functions.
Never overlook the oppurtunity to return exactly the same thing the last function you called returned. Compilers are not so great at picking up that:
foo_t * make_foo(int a, int b, int c) {
foo_t * x = malloc(sizeof(foo));
if (!x) {
// return NULL;
return x; // x is NULL, already in the register used for returns, so duh
}
x->a= a;
x->b = b;
x->c = c;
return x;
}
Of course, you could reverse the logic on that if and only have one return point.
(tricks I recalled later)
Declaring functions as static when you can is always a good idea. If the compiler can prove to itself that it has accounted for every caller of a particular function then it can break the calling conventions for that function in the name of optimization. Compilers can often avoid moving parameters into registers or stack positions that called functions usually expect their parameters to be in (it has to deviate in both the called function and the location of all callers to do this). The compiler can also often take advantage of knowing what memory and registers the called function will need and avoid generating code to preserve variable values that are in registers or memory locations that the called function doesn't disturb. This works particularly well when there are few calls to a function. This gets much of the benifit of inlining code, but without actually inlining.
I wrote an optimizing C compiler and here are some very useful things to consider:
Make most functions static. This allows interprocedural constant propagation and alias analysis to do its job, otherwise the compiler needs to presume that the function can be called from outside the translation unit with completely unknown values for the paramters. If you look at the well-known open-source libraries they all mark functions static except the ones that really need to be extern.
If global variables are used, mark them static and constant if possible. If they are initialized once (read-only), it's better to use an initializer list like static const int VAL[] = {1,2,3,4}, otherwise the compiler might not discover that the variables are actually initialized constants and will fail to replace loads from the variable with the constants.
NEVER use a goto to the inside of a loop, the loop will not be recognized anymore by most compilers and none of the most important optimizations will be applied.
Use pointer parameters only if necessary, and mark them restrict if possible. This helps alias analysis a lot because the programmer guarantees there is no alias (the interprocedural alias analysis is usually very primitive). Very small struct objects should be passed by value, not by reference.
Use arrays instead of pointers whenever possible, especially inside loops (a[i]). An array usually offers more information for alias analysis and after some optimizations the same code will be generated anyway (search for loop strength reduction if curious). This also increases the chance for loop-invariant code motion to be applied.
Try to hoist outside the loop calls to large functions or external functions that don't have side-effects (don't depend on the current loop iteration). Small functions are in many cases inlined or converted to intrinsics that are easy to hoist, but large functions might seem for the compiler to have side-effects when they actually don't. Side-effects for external functions are completely unknown, with the exception of some functions from the standard library which are sometimes modeled by some compilers, making loop-invariant code motion possible.
When writing tests with multiple conditions place the most likely one first. if(a || b || c) should be if(b || a || c) if b is more likely to be true than the others. Compilers usually don't know anything about the possible values of the conditions and which branches are taken more (they could be known by using profile information, but few programmers use it).
Using a switch is faster than doing a test like if(a || b || ... || z). Check first if your compiler does this automatically, some do and it's more readable to have the if though.
In the case of embedded systems and code written in C/C++, I try and avoid dynamic memory allocation as much as possible. The main reason I do this is not necessarily performance but this rule of thumb does have performance implications.
Algorithms used to manage the heap are notoriously slow in some platforms (e.g., vxworks). Even worse, the time that it takes to return from a call to malloc is highly dependent on the current state of the heap. Therefore, any function that calls malloc is going to take a performance hit that cannot be easily accounted for. That performance hit may be minimal if the heap is still clean but after that device runs for a while the heap can become fragmented. The calls are going to take longer and you cannot easily calculate how performance will degrade over time. You cannot really produce a worse case estimate. The optimizer cannot provide you with any help in this case either. To make matters even worse, if the heap becomes too heavily fragmented, the calls will start failing altogether. The solution is to use memory pools (e.g., glib slices ) instead of the heap. The allocation calls are going to be much faster and deterministic if you do it right.
A dumb little tip, but one that will save you some microscopic amounts of speed and code.
Always pass function arguments in the same order.
If you have f_1(x, y, z) which calls f_2, declare f_2 as f_2(x, y, z). Do not declare it as f_2(x, z, y).
The reason for this is that C/C++ platform ABI (AKA calling convention) promises to pass arguments in particular registers and stack locations. When the arguments are already in the correct registers then it does not have to move them around.
While reading disassembled code I've seen some ridiculous register shuffling because people didn't follow this rule.
Two coding technics I didn't saw in the above list:
Bypass linker by writing code as an unique source
While separate compilation is really nice for compiling time, it is very bad when you speak of optimization. Basically the compiler can't optimize beyond compilation unit, that is linker reserved domain.
But if you design well your program you can can also compile it through an unique common source. That is instead of compiling unit1.c and unit2.c then link both objects, compile all.c that merely #include unit1.c and unit2.c. Thus you will benefit from all the compiler optimizations.
It's very like writing headers only programs in C++ (and even easier to do in C).
This technique is easy enough if you write your program to enable it from the beginning, but you must also be aware it change part of C semantic and you can meet some problems like static variables or macro collision. For most programs it's easy enough to overcome the small problems that occurs. Also be aware that compiling as an unique source is way slower and may takes huge amount of memory (usually not a problem with modern systems).
Using this simple technique I happened to make some programs I wrote ten times faster!
Like the register keyword, this trick could also become obsolete soon. Optimizing through linker begin to be supported by compilers gcc: Link time optimization.
Separate atomic tasks in loops
This one is more tricky. It's about interaction between algorithm design and the way optimizer manage cache and register allocation. Quite often programs have to loop over some data structure and for each item perform some actions. Quite often the actions performed can be splitted between two logically independent tasks. If that is the case you can write exactly the same program with two loops on the same boundary performing exactly one task. In some case writing it this way can be faster than the unique loop (details are more complex, but an explanation can be that with the simple task case all variables can be kept in processor registers and with the more complex one it's not possible and some registers must be written to memory and read back later and the cost is higher than additional flow control).
Be careful with this one (profile performances using this trick or not) as like using register it may as well give lesser performances than improved ones.
I've actually seen this done in SQLite and they claim it results in performance boosts ~5%: Put all your code in one file or use the preprocessor to do the equivalent to this. This way the optimizer will have access to the entire program and can do more interprocedural optimizations.
Most modern compilers should do a good job speeding up tail recursion, because the function calls can be optimized out.
Example:
int fac2(int x, int cur) {
if (x == 1) return cur;
return fac2(x - 1, cur * x);
}
int fac(int x) {
return fac2(x, 1);
}
Of course this example doesn't have any bounds checking.
Late Edit
While I have no direct knowledge of the code; it seems clear that the requirements of using CTEs on SQL Server were specifically designed so that it can optimize via tail-end recursion.
Don't do the same work over and over again!
A common antipattern that I see goes along these lines:
void Function()
{
MySingleton::GetInstance()->GetAggregatedObject()->DoSomething();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingElse();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingCool();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingReallyNeat();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingYetAgain();
}
The compiler actually has to call all of those functions all of the time. Assuming you, the programmer, knows that the aggregated object isn't changing over the course of these calls, for the love of all that is holy...
void Function()
{
MySingleton* s = MySingleton::GetInstance();
AggregatedObject* ao = s->GetAggregatedObject();
ao->DoSomething();
ao->DoSomethingElse();
ao->DoSomethingCool();
ao->DoSomethingReallyNeat();
ao->DoSomethingYetAgain();
}
In the case of the singleton getter the calls may not be too costly, but it is certainly a cost (typically, "check to see if the object has been created, if it hasn't, create it, then return it). The more complicated this chain of getters becomes, the more wasted time we'll have.
Use the most local scope possible for all variable declarations.
Use const whenever possible
Dont use register unless you plan to profile both with and without it
The first 2 of these, especially #1 one help the optimizer analyze the code. It will especially help it to make good choices about what variables to keep in registers.
Blindly using the register keyword is as likely to help as hurt your optimization, It's just too hard to know what will matter until you look at the assembly output or profile.
There are other things that matter to getting good performance out of code; designing your data structures to maximize cache coherency for instance. But the question was about the optimizer.
Align your data to native/natural boundaries.
I was reminded of something that I encountered once, where the symptom was simply that we were running out of memory, but the result was substantially increased performance (as well as huge reductions in memory footprint).
The problem in this case was that the software we were using made tons of little allocations. Like, allocating four bytes here, six bytes there, etc. A lot of little objects, too, running in the 8-12 byte range. The problem wasn't so much that the program needed lots of little things, it's that it allocated lots of little things individually, which bloated each allocation out to (on this particular platform) 32 bytes.
Part of the solution was to put together an Alexandrescu-style small object pool, but extend it so I could allocate arrays of small objects as well as individual items. This helped immensely in performance as well since more items fit in the cache at any one time.
The other part of the solution was to replace the rampant use of manually-managed char* members with an SSO (small-string optimization) string. The minimum allocation being 32 bytes, I built a string class that had an embedded 28-character buffer behind a char*, so 95% of our strings didn't need to do an additional allocation (and then I manually replaced almost every appearance of char* in this library with this new class, that was fun or not). This helped a ton with memory fragmentation as well, which then increased the locality of reference for other pointed-to objects, and similarly there were performance gains.
A neat technique I learned from #MSalters comment on this answer allows compilers to do copy elision even when returning different objects according to some condition:
// before
BigObject a, b;
if(condition)
return a;
else
return b;
// after
BigObject a, b;
if(condition)
swap(a,b);
return a;
If you've got small functions you call repeatedly, i have in the past got large gains by putting them in headers as "static inline". Function calls on the ix86 are surprisingly expensive.
Reimplementing recursive functions in a non-recursive way using an explicit stack can also gain a lot, but then you really are in the realm of development time vs gain.
Here's my second piece of optimisation advice. As with my first piece of advice this is general purpose, not language or processor specific.
Read the compiler manual thoroughly and understand what it is telling you. Use the compiler to its utmost.
I agree with one or two of the other respondents who have identified selecting the right algorithm as critical to squeezing performance out of a program. Beyond that the rate of return (measured in code execution improvement) on the time you invest in using the compiler is far higher than the rate of return in tweaking the code.
Yes, compiler writers are not from a race of coding giants and compilers contain mistakes and what should, according to the manual and according to compiler theory, make things faster sometimes makes things slower. That's why you have to take one step at a time and measure before- and after-tweak performance.
And yes, ultimately, you might be faced with a combinatorial explosion of compiler flags so you need to have a script or two to run make with various compiler flags, queue the jobs on the large cluster and gather the run time statistics. If it's just you and Visual Studio on a PC you will run out of interest long before you have tried enough combinations of enough compiler flags.
Regards
Mark
When I first pick up a piece of code I can usually get a factor of 1.4 -- 2.0 times more performance (ie the new version of the code runs in 1/1.4 or 1/2 of the time of the old version) within a day or two by fiddling with compiler flags. Granted, that may be a comment on the lack of compiler savvy among the scientists who originate much of the code I work on, rather than a symptom of my excellence. Having set the compiler flags to max (and it's rarely just -O3) it can take months of hard work to get another factor of 1.05 or 1.1
When DEC came out with its alpha processors, there was a recommendation to keep the number of arguments to a function under 7, as the compiler would always try to put up to 6 arguments in registers automatically.
For performance, focus first on writing maintenable code - componentized, loosely coupled, etc, so when you have to isolate a part either to rewrite, optimize or simply profile, you can do it without much effort.
Optimizer will help your program's performance marginally.
You're getting good answers here, but they assume your program is pretty close to optimal to begin with, and you say
Assume that the program has been
written correctly, compiled with full
optimization, tested and put into
production.
In my experience, a program may be written correctly, but that does not mean it is near optimal. It takes extra work to get to that point.
If I can give an example, this answer shows how a perfectly reasonable-looking program was made over 40 times faster by macro-optimization. Big speedups can't be done in every program as first written, but in many (except for very small programs), it can, in my experience.
After that is done, micro-optimization (of the hot-spots) can give you a good payoff.
i use intel compiler. on both Windows and Linux.
when more or less done i profile the code. then hang on the hotspots and trying to change the code to allow compiler make a better job.
if a code is a computational one and contain a lot of loops - vectorization report in intel compiler is very helpful - look for 'vec-report' in help.
so the main idea - polish the performance critical code. as for the rest - priority to be correct and maintainable - short functions, clear code that could be understood 1 year later.
One optimization i have used in C++ is creating a constructor that does nothing. One must manually call an init() in order to put the object into a working state.
This has benefit in the case where I need a large vector of these classes.
I call reserve() to allocate the space for the vector, but the constructor does not actually touch the page of memory the object is on. So I have spent some address space, but not actually consumed a lot of physical memory. I avoid the page faults associated the associated construction costs.
As i generate objects to fill the vector, I set them using init(). This limits my total page faults, and avoids the need to resize() the vector while filling it.
One thing I've done is try to keep expensive actions to places where the user might expect the program to delay a bit. Overall performance is related to responsiveness, but isn't quite the same, and for many things responsiveness is the more important part of performance.
The last time I really had to do improvements in overall performance, I kept an eye out for suboptimal algorithms, and looked for places that were likely to have cache problems. I profiled and measured performance first, and again after each change. Then the company collapsed, but it was interesting and instructive work anyway.
I have long suspected, but never proved that declaring arrays so that they hold a power of 2, as the number of elements, enables the optimizer to do a strength reduction by replacing a multiply by a shift by a number of bits, when looking up individual elements.
Put small and/or frequently called functions at the top of the source file. That makes it easier for the compiler to find opportunities for inlining.
I'm going through O'Reilly's Practical C Programming book, and having read the K&R book on the C programming language, and I am really having trouble grasping the concept behind unions.
They take the size of the largest data type that makes them up...and the most recently assigned one overwrites the rest...but why not just use / free memory as needed?
The book mentions that it's used in communication, where you need to set flags of the same size; and on a googled website, that it can eliminate odd-sized memory chunks...but is it of any use in a modern, non-embedded memory space?
Is there something crafty you can do with it and CPU registers? Is it simply a hold over from an earlier era of programming? Or does it, like the infamous goto, still have some powerful use (possibly in tight memory spaces) that makes it worth keeping around?
Well, you almost answered your question: Memory.
Back in the days memory was rather low, and even saving a few kbytes has been useful.
But even today there are scenarios where unions would be useful. For example, if you'd like to implement some kind of variant datatype. The best way to do this is using a union.
This doesn't sound like much, but let's just assume you want to use a variable either storing a 4 character string (like an ID) or a 4 byte number (which could be some hash or indeed just a number).
If you use a classic struct, this would be 8 bytes long (at least, if you're unlucky there are filling bytes as well). Using an union it's only 4 bytes. So you're saving 50% memory, which isn't a lot for one instance, but imagine having a million of these.
While you can achieve similar things by casting or subclassing a union is still the easiest way to do this.
One use of unions is having two variables occupy the same space, and a second variable in the struct decide what data type you want to read it as.
e.g. you could have a boolean 'isDouble', and a union 'doubleOrLong' which has both a double and a long. If isDouble == true interpret the union as a double else interpret it as a long.
Another use of unions is accessing data types in different representations. For instance, if you know how a double is laid out in memory, you could put a double in a union, access it as a different data type like a long, directly access its bits, its mantissa, its sign, its exponent, whatever, and do some direct manipulation with it.
You don't really need this nowadays since memory is so cheap, but in embedded systems it has its uses.
The Windows API makes use of unions quite a lot. LARGE_INTEGER is an example of such a usage. Basically, if the compiler supports 64-bit integers, use the QuadPart member; otherwise, set the low DWORD and the high DWORD manually.
It's not really a hold over, as the C language was created in 1972, when memory was a real concern.
You could make the argument that in modern, non-embedded space, you might not want to use C as a programming language to begin with. If you've chosen C as your language choice for implementation, you're looking to harness the benefits of C: it's efficient, close-to-metal, which results in tight, fast binaries.
As such, when choosing to use C, you'd still want to take advantage of it's benefits, which includes memory-space efficiency. To which, the Union works very well; allowing you to have some degree of type safety, while enforcing the smallest memory foot print available.
One place where I have seen it used is in the Doom 3/idTech 4 Fast Inverse Square Root implementation.
For those unfamiliar with this algorithm, it essentially requires treating a floating point number as an integer. The old Quake (and earlier) version of the code does this by the following:
float y = 2.0f;
// treat the bits of y as an integer
long i = * ( long * ) &y;
// do some stuff with i
// treat the bits of i as a float
y = * ( float * ) &i;
original source on GitHub
This code takes the address of a floating point number y, casts it to a pointer to a long (ie, a 32 bit integer in Quake days), and derefences it into i. Then it does some incredibly bizarre bit-twiddling stuff, and the reverse.
There are two disadvantages of doing it this way. One is that the convoluted address-of, cast, dereference process forces the value of y to be read from memory, rather than from a register1, and ditto on the way back. On Quake-era computers, however, floating point and integer registers were completely separate so you pretty much had to push to memory and back to deal with this restriction.
The second is that, at least in C++, doing such casting is deeply frowned upon, even when doing what amounts to voodoo such as this function does. I'm sure there are more compelling arguments, however I'm not sure what they are :)
So, in Doom 3, id included the following bit in their new implementation (which uses a different set of bit twiddling, but a similar idea):
union _flint {
dword i;
float f;
};
...
union _flint seed;
seed.i = /* look up some tables to get this */;
double r = seed.f; // <- access the bits of seed.i as a floating point number
original source on GitHub
Theoretically, on an SSE2 machine, this can be accessed through a single register; I'm not sure in practice whether any compiler would do this. It's still somewhat cleaner code in my opinion than the casting games in the earlier Quake version.
1 - ignoring "sufficiently advanced compiler" arguments
I'm writing a matrix library (part of SciRuby) with multiple storage types ('stypes') and multiple data types ('dtypes'). For example, a matrix's stype may currently be dense, yale (AKA 'csr'), or list-of-lists; and its dtype may be int8, int16, int32, int64, float32, float64, complex64, etc.
It's super easy to write a template processor in Ruby or sed which takes a basic function (like sparse matrix multiplication) and creates a custom version for each possible dtype. I could even write such a template to handle two different dtypes, say if we wanted to multiply an int32 by a float64.
The same can be done in certain cases for different stypes. Eventually, though, you could end up with a very large set of functions, many of which never even get used in the course of most people's use.
It's also easy to use function pointer arrays to enable access to these functions -- and imagining even a 3-dimensional function pointer array is not too hard:
MultFuncs[lhs->stype][lhs->dtype][rhs->dtype](lhs->shape[0], rhs->shape[1], lhs->data, rhs->data, result->data);
// This might point to some function like this:
// i32_f64_dense_mult(size_t, size_t, int32_t*, float64*, float64*);
The extreme alternative to function pointer arrays, of course, which would be incredibly complicated to code and maintain, is hierarchical switch or if/else statements:
switch(lhs->stype) {
case STYPE_SPARSE:
switch(lhs->dtype) {
case DTYPE_INT32:
switch(rhs->dtype) {
case DTYPE_FLOAT64:
i32_f64_mult(lhs->shape[0], rhs->shape[1], lhs->ija, rhs->ija, lhs->a, rhs->a, result->data);
break;
// ... and so on ...
It also seems that this would be O(sd2), where s=number of stypes, d=number of dtypes for every operation, whereas the function pointer array would be O(r), where r=number of dimensions in the array.
But there's also a third option.
The third option is to use function pointer arrays for common operations (e.g., copying from one unknown type to another):
SetFuncs[lhs->dtype][rhs->dtype](5, // copy five consecutive items
&to, // destination
dtype_sizeof[lhs->dtype], // dtype_sizeof is a const size_t array giving sizeof(int8_t), sizeof(int16_t), etc.
&from, // source
dtype_sizeof[rhs->dtype]);
And then to call that from a generic sparse matrix multiplication function, which might be declared like this:
void generic_sparse_multiply(size_t* ija, size_t* ijb, void* a, void* b, int dtype_a, int dtype_b);
And that would use SetFuncs[dtype_a][dtype_b] to reference the correct assignment function, for example. The downside, then, is that you might have to implement a whole bunch of these -- IncrementFuncs, DecrementFuncs, MultFuncs, AddFuncs, SubFuncs, etc. -- because you'd never know what types to expect.
So, finally, my questions:
What is the cost, if any, of having enormous multi-dimensional const arrays of function pointers? Large library or executable? Slow load time? etc.
Does use of generics like IncrementFuncs, SetFuncs, etc. (which all probably depend on memcpy or typecasts) present barriers to compile-time optimization?
If one were to use switch statements as described above, would these be optimized out by modern compilers? Or would they be evaluated every single time?
I realize this is an incredibly complicated array of questions.
If you can simply refer me to a good resource and prefer not to answer directly, that's perfectly fine. I used the Google extensively before posting this, but wasn't quite sure what search terms to use.
First of all, try to reduce the complexity of the function(s). You should be able to have a declaration like
Result_t function (Param_t*);
where Param_t is a struct containing all those things you pass around. To use generic types, include an enum in the struct telling which type that is used, and a void* to that type.
1.What is the cost, if any, of having enormous multi-dimensional const arrays of function pointers? Large library or executable? Slow
load time? etc.
Definitely larger executable. Load time depends on what system the code is for. If it is for a RAM-based system (PC etc), then the load time might increase, but it shouldn't have any major impact of performance. Though of course it depends on how large "enormous" is :)
2.Does use of generics like IncrementFuncs, SetFuncs, etc. (which all probably depend on memcpy or typecasts) present barriers to
compile-time optimization?
Probably not, there's just so much that the compiler can optimize. When dealing with generic data types in C, it often boils down to memcpy() in the end, which in itself hopefully is implemented to be as fast as copying gets.
3.If one were to use switch statements as described above, would these be optimized out by modern compilers? Or would they be evaluated
every single time?
Ironically, the compiler would probably optimize it into something like an array of function pointers. The compiler can however likely not predict the nature of the data, especially if it gets set in runtime.