OpenMP parallelization (Block Matrix Mult) - c

I'm attempting to implement block matrix multiplication and making it more parallelized.
This is my code :
int i,j,jj,k,kk;
float sum;
int en = 4 * (2048/4);
#pragma omp parallel for collapse(2)
for(i=0;i<2048;i++) {
for(j=0;j<2048;j++) {
C[i][j]=0;
}
}
for (kk=0;kk<en;kk+=4) {
for(jj=0;jj<en;jj+=4) {
for(i=0;i<2048;i++) {
for(j=jj;j<jj+4;j++) {
sum = C[i][j];
for(k=kk;k<kk+4;k++) {
sum+=A[i][k]*B[k][j];
}
C[i][j] = sum;
}
}
}
}
I've been playing around with OpenMP but still have had no luck in figuring what the best way to have this done in the least amount of time.

Getting good performance from matrix multiplication is a big job. Since "The best code is the code I don't have to write", a much better use of your time would be to understand how to use a BLAS library.
If you are using X86 processors, the Intel Math Kernel Library (MKL) is available free, and includes optimized, parallelized, matrix multiplication operations.
https://software.intel.com/en-us/articles/free-mkl
(FWIW, I work for Intel, but not on MKL :-))

I recently started looking into dense matrix multiplication (GEMM)again. It turns out the Clang compiler is really good at optimization GEMM without needing any intrinsics (GCC still needs intrinsics). The following code gets 60% of the peak FLOPS of my four core/eight hardware thread Skylake system. It uses block matrix multiplication.
Hyper-threading gives worse performance so you make sure you only use threads equal to the number of cores and bind threads to prevent thread migration.
export OMP_PROC_BIND=true
export OMP_NUM_THREADS=4
Then compile like this
clang -Ofast -march=native -fopenmp -Wall gemm_so.c
The code
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <omp.h>
#include <x86intrin.h>
#define SM 80
typedef __attribute((aligned(64))) float * restrict fast_float;
static void reorder2(fast_float a, fast_float b, int n) {
for(int i=0; i<SM; i++) memcpy(&b[i*SM], &a[i*n], sizeof(float)*SM);
}
static void kernel(fast_float a, fast_float b, fast_float c, int n) {
for(int i=0; i<SM; i++) {
for(int k=0; k<SM; k++) {
for(int j=0; j<SM; j++) {
c[i*n + j] += a[i*n + k]*b[k*SM + j];
}
}
}
}
void gemm(fast_float a, fast_float b, fast_float c, int n) {
int bk = n/SM;
#pragma omp parallel
{
float *b2 = _mm_malloc(sizeof(float)*SM*SM, 64);
#pragma omp for collapse(3)
for(int i=0; i<bk; i++) {
for(int j=0; j<bk; j++) {
for(int k=0; k<bk; k++) {
reorder2(&b[SM*(k*n + j)], b2, n);
kernel(&a[SM*(i*n+k)], b2, &c[SM*(i*n+j)], n);
}
}
}
_mm_free(b2);
}
}
static int doublecmp(const void *x, const void *y) { return *(double*)x < *(double*)y ? -1 : *(double*)x > *(double*)y; }
double median(double *x, int n) {
qsort(x, n, sizeof(double), doublecmp);
return 0.5f*(x[n/2] + x[(n-1)/2]);
}
int main(void) {
int cores = 4;
double frequency = 3.1; // i7-6700HQ turbo 4 cores
double peak = 32*cores*frequency;
int n = SM*10*2;
int mem = sizeof(float) * n * n;
float *a = _mm_malloc(mem, 64);
float *b = _mm_malloc(mem, 64);
float *c = _mm_malloc(mem, 64);
memset(a, 1, mem), memset(b, 1, mem);
printf("%dx%d matrix\n", n, n);
printf("memory of matrices: %.2f MB\n", 3.0*mem*1E-6);
printf("peak SP GFLOPS %.2f\n", peak);
puts("");
while(1) {
int r = 10;
double times[r];
for(int j=0; j<r; j++) {
times[j] = -omp_get_wtime();
gemm(a, b, c, n);
times[j] += omp_get_wtime();
}
double flop = 2.0*1E-9*n*n*n; //GFLOP
double time_mid = median(times, r);
double flops_low = flop/times[r-1], flops_mid = flop/time_mid, flops_high = flop/times[0];
printf("%.2f %.2f %.2f %.2f\n", 100*flops_low/peak, 100*flops_mid/peak, 100*flops_high/peak, flops_high);
}
}
This does GEMM 10 times per iteration of an infinite loop and prints the low, median, and high ratio of FLOPS to peak_FLOPS and finally the median FLOPS.
You will need to adjust the following lines
int cores = 4;
double frequency = 3.1; // i7-6700HQ turbo 4 cores
double peak = 32*cores*frequency;
to the number of physical cores, frequency for all cores (with turbo if enabled), and the number of floating pointer operations per core which is 16 for Core2-Ivy Bridge, 32 for Haswell-Kaby Lake, and 64 for the Xeon Phi Knights Landing.
This code may be less efficient with NUMA systems. It does not do nearly as well with Knight Landing (I just started looking into this).

Related

Does mingw32-pthreads-w32 not work on windows properly

I am on a Windows 10 machine with a processor Intel(R) Core(TM) i5-8265U CPU # 1.60GHz, 1800 Mhz, 4 Core(s), 8 Logical Processor(s) and 8 GB RAM. I have been running this small openmp code to compare the performance of a normal sequential program and an omp program.
#include<stdio.h>
#include<omp.h>
void normal(unsigned int num_steps){
double step = 1.0/(double)(num_steps);
double sum = 0.0;
double start=omp_get_wtime();
for (long i = 0; i < num_steps;i++){
double x = i * step;
sum += (4.0 / (1.0 + x * x));
}
double pi = step * sum;
double end=omp_get_wtime();
printf("Time taken : %0.9lf\n",end-start);
printf("The value of pi is : %0.9lf\n",pi);
}
void parallel(unsigned int num_steps,unsigned int thread_cnt){
double pi=0.0;
double sum[thread_cnt];
for(unsigned int i=0;i<thread_cnt;i++)
sum[i]=0.0;
omp_set_num_threads(thread_cnt);
double start=omp_get_wtime();
#pragma omp parallel
{
double x;
double sum_temp=0.0;
double step = 1.0 / (double)(num_steps);
int num_threads = omp_get_num_threads();
int thread_no = omp_get_thread_num();
if(thread_no==0){
thread_cnt = num_threads;
printf("Number of threads assigned is : %d\n",num_threads);
}
for (unsigned int i = thread_no; i < num_steps;i+=thread_cnt){
x=(i*step);
sum_temp+=(4.0/(1+x*x))*step;
}
#pragma omp critical
{
sum[thread_no]=sum_temp;
}
}
double end=omp_get_wtime();
printf("Time taken : %0.9lf\n",end-start);
for(unsigned int i=0;i<thread_cnt;i++){
pi+=sum[i];
}
printf("The value of pi is : %0.9lf\n",pi);
}
int main(){
unsigned int num_steps=1000000;
unsigned int thread_cnt=4;
scanf("%d",&thread_cnt);
normal(num_steps);
parallel(num_steps,thread_cnt);
return 0;
}
I am using mingw's GCC compiler and to run openmp programs which require pthread library i had downloaded the mingw32-pthreads-w32 library. So is it not working, because I don't seem to be able to beat the normal sequential execution despite using so many threads and also handling race conditions and false sharing using the critical pragma.
Reference :
I have been following the OPENMP playlist on youtube by Intel.

Is using pragma omp simd like this correct?

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define pow(x) ((x) * (x))
#define NUM_THREADS 8
#define wmax 1000
#define Nv 2
#define N 5
int b=0;
float Points[N][Nv]={ {0,1}, {3,4}, {1,2}, {5,1} ,{8,9}};
float length[wmax+1]={0};
float EuclDist(float* Ne, float* Pe) {
int i;
float s = 0;
for (i = 0; i < Nv; i++) {
s += pow(Ne[i] - Pe[i]);
}
return s;
}
void DistanceFinder(float* a[]){
int i;
#pragma omp simd
for (i=1;i<N+1;i++){
length[b] += EuclDist(&a[i],&a[i-1]);
}
//printf(" %f\n", length[b]);
}
void NewRoute(){
//some irrelevant things
DistanceFinder(Points);
}
int main(){
omp_set_num_threads(NUM_THREADS);
do{
b+=1;
NewRoute();
} while (b<wmax);
}
Trying to parallelize this loop and trying different things, tried this one.
Seems to be the fastest, however is it correct to use SIMD like that? Because I'm using a previous iteration (i and i - 1). The results I see though are correct weirdly or not.
Seems to be the fastest, however is it correct to use SIMD like that?
First, there is a race condition that needs to be fixed, namely during the updates of the array length[b]. Moreover, you are accessing memory outside the array a; (iterating from 1 to N + 1), and you are passing &a[i]. You can fix the race condition by using OpenMP reduction clause:
void DistanceFinder(float* a[]){
int i;
float sum = 0;
float tmp;
#pragma omp simd private(tmp) reduction(+:sum)
for (i=1;i<N;i++){
tmp = EuclDist(a[i], a[i-1]);
sum += tmp;
}
length[b] += sum;
}
Furthermore, you need to provide a version of EuclDist as follows:
#pragma omp declare simd uniform(Ne, Pe)
float EuclDist(float* Ne, float* Pe) {
int i;
float s = 0;
for (i = 0; i < Nv; i++)
s += pow(Ne[i] - Pe[i]);
return s;
}
Because I'm using a previous iteration (i and i - 1).
In your case, it is okay, since the array a is just being read.
The results I see though are correct weirdly or not.
Very-likely there was no vectorization taking place. Regardless, it would still be undefined behavior due to the aforementioned race condition.
You can simplify your code so that it increases the likelihood of the vectorization actually happening, for instance:
void DistanceFinder(float* a[]){
int i;
float sum = 0;
float tmp;
#pragma omp simd private(tmp) reduction(+:sum)
for (i=1;i<N;i++){
tmp = pow(a[i][0] - a[i-1][0]) + pow(a[i][1] - a[i-1][1])
sum += tmp;
}
length[b] += sum;
}
A further change that you can do to improve the performance of your code is to allocate the matrix (that is passed as a parameter of the function DistanceFinder) in a manner that when you iterate over its rows (i.e., a[i]) you would be iterating over continuous memory address.
For instance, you could pass two arrays a1 and a2 to represent the first and second columns of the matrix a:
void DistanceFinder(float a1[], float a2[]){
int i;
float sum = 0;
float tmp;
#pragma omp simd private(tmp) reduction(+:sum)
for (i=1;i<N;i++){
tmp = pow(a1[i] - a1[i-1]) + pow(a2[i][1] - a2[i-1][1])
sum += tmp;
}
length[b] += sum;
}

Is _mm256_store_ps() function is atomic ? while using alongside openmp

I am trying to create a simple program that uses Intel's AVX technology and perform vector multiplication and addition. Here I am using Open MP alongside this. But it is getting segmentation fault due to the function call _mm256_store_ps().
I have tried with OpenMP atomic features like atomic, critical, etc so that if this function is atomic in nature and multiple cores are attempting to execute at the same time, but it is not working.
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<immintrin.h>
#include<omp.h>
#define N 64
__m256 multiply_and_add_intel(__m256 a, __m256 b, __m256 c) {
return _mm256_add_ps(_mm256_mul_ps(a, b),c);
}
void multiply_and_add_intel_total_omp(const float* a, const float* b, const float* c, float* d)
{
__m256 a_intel, b_intel, c_intel, d_intel;
#pragma omp parallel for private(a_intel,b_intel,c_intel,d_intel)
for(long i=0; i<N; i=i+8) {
a_intel = _mm256_loadu_ps(&a[i]);
b_intel = _mm256_loadu_ps(&b[i]);
c_intel = _mm256_loadu_ps(&c[i]);
d_intel = multiply_and_add_intel(a_intel, b_intel, c_intel);
_mm256_store_ps(&d[i],d_intel);
}
}
int main()
{
srand(time(NULL));
float * a = (float *) malloc(sizeof(float) * N);
float * b = (float *) malloc(sizeof(float) * N);
float * c = (float *) malloc(sizeof(float) * N);
float * d_intel_avx_omp = (float *)malloc(sizeof(float) * N);
int i;
for(i=0;i<N;i++)
{
a[i] = (float)(rand()%10);
b[i] = (float)(rand()%10);
c[i] = (float)(rand()%10);
}
double time_t = omp_get_wtime();
multiply_and_add_intel_total_omp(a,b,c,d_intel_avx_omp);
time_t = omp_get_wtime() - time_t;
printf("\nTime taken to calculate with AVX2 and OMP : %0.5lf\n",time_t);
}
free(a);
free(b);
free(c);
free(d_intel_avx_omp);
return 0;
}
I expect that I will get d = a * b + c but it is showing segmentation fault. I have tried to perform the same task without OpenMP and it working errorless. Please let me know if there is any compatibility issue or I am missing any part.
gcc version 7.3.0
Intel® Core™ i3-3110M Processor
OS Ubuntu 18.04
Open MP 4.5, I have executed the command $ echo |cpp -fopenmp -dM |grep -i open and it showed #define _OPENMP 201511
Command to compile, gcc first_int.c -mavx -fopenmp
** UPDATE **
As per the discussions and suggestions, the new code is,
float * a = (float *) aligned_alloc(N, sizeof(float) * N);
float * b = (float *) aligned_alloc(N, sizeof(float) * N);
float * c = (float *) aligned_alloc(N, sizeof(float) * N);
float * d_intel_avx_omp = (float *)aligned_alloc(N, sizeof(float) * N);
This working without perfectly.
Just a note, I was trying to compare general calculations, avx calculation and avx+openmp calculation. This is the result I got,
Time taken to calculate without AVX : 0.00037
Time taken to calculate with AVX : 0.00024
Time taken to calculate with AVX and OMP : 0.00019
N = 50000
The documentation for _mm256_store_ps says:
Store 256-bits (composed of 8 packed single-precision (32-bit) floating-point elements) from a into memory. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
You can use _mm256_storeu_si256 instead for unaligned stores.
A better option is to align all your arrays on a 32-byte boundary (for 256-bit avx registers) and use aligned load and stores for maximum performance because unaligned loads/stores crossing a cache line boundary incur performance penalty.
Use std::aligned_alloc (or C11 aligned_alloc, memalign, posix_memalign, whatever you have available) instead of malloc(size), e.g.:
float* allocate_aligned(size_t n) {
constexpr size_t alignment = alignof(__m256);
return static_cast<float*>(aligned_alloc(alignment, sizeof(float) * n));
}
// ...
float* a = allocate_aligned(N);
float* b = allocate_aligned(N);
float* c = allocate_aligned(N);
float* d_intel_avx_omp = allocate_aligned(N);
In C++-17 new can allocate with alignment:
float* allocate_aligned(size_t n) {
constexpr auto alignment = std::align_val_t{alignof(__m256)};
return new(alignment) float[n];
}
Alternatively, use Vc: portable, zero-overhead C++ types for explicitly data-parallel programming that aligns heap-allocated SIMD vectors for you:
#include <cstdio>
#include <memory>
#include <chrono>
#include <Vc/Vc>
Vc::float_v random_float_v() {
alignas(Vc::VectorAlignment) float t[Vc::float_v::Size];
for(unsigned i = 0; i < Vc::float_v::Size; ++i)
t[i] = std::rand() % 10;
return Vc::float_v(t, Vc::Aligned);
}
unsigned reverse_crc32(void const* vbegin, void const* vend) {
unsigned const* begin = reinterpret_cast<unsigned const*>(vbegin);
unsigned const* end = reinterpret_cast<unsigned const*>(vend);
unsigned r = 0;
while(begin != end)
r = __builtin_ia32_crc32si(r, *--end);
return r;
}
int main() {
constexpr size_t N = 65536;
constexpr size_t M = N / Vc::float_v::Size;
std::unique_ptr<Vc::float_v[]> a(new Vc::float_v[M]);
std::unique_ptr<Vc::float_v[]> b(new Vc::float_v[M]);
std::unique_ptr<Vc::float_v[]> c(new Vc::float_v[M]);
std::unique_ptr<Vc::float_v[]> d_intel_avx_omp(new Vc::float_v[M]);
for(unsigned i = 0; i < M; ++i) {
a[i] = random_float_v();
b[i] = random_float_v();
c[i] = random_float_v();
}
auto t0 = std::chrono::high_resolution_clock::now();
for(unsigned i = 0; i < M; ++i)
d_intel_avx_omp[i] = a[i] * b[i] + c[i];
auto t1 = std::chrono::high_resolution_clock::now();
double seconds = std::chrono::duration_cast<std::chrono::duration<double>>(t1 - t0).count();
unsigned crc = reverse_crc32(d_intel_avx_omp.get(), d_intel_avx_omp.get() + M); // Make sure d_intel_avx_omp isn't optimized out.
std::printf("crc: %u, time: %.09f seconds\n", crc, seconds);
}
Parallel version:
#include <tbb/parallel_for.h>
// ...
auto t0 = std::chrono::high_resolution_clock::now();
tbb::parallel_for(size_t{0}, M, [&](unsigned i) {
d_intel_avx_omp[i] = a[i] * b[i] + c[i];
});
auto t1 = std::chrono::high_resolution_clock::now();
You must use aligned memory for these intrinsics. Change your malloc(...) to aligned_alloc(sizeof(float) * 8, ...) (C11).
This is completely unrelated to atomics. You are working on entirely separate pieces of data (even on different cache lines), so there is no need for any protection.

Matrix and vector multiplication optimization algorithm

Assume that the dimensions are very large (up to 1 billion elements in a matrix). How would I implement a cache oblivious algorithm for matrix-vector product? Based on wikipedia I will need to recursively divide and conquer however I feel like there would be a lot of overhead.. Would it be efficient to do so?
Follow up question and answer: OpenMP with matrices and vectors
So the answer to the question, "how do I make this basic linear algebra operation fast", is always and everywhere to find and link to a tuned BLAS library for your platform. Eg, GotoBLAS (whose work is being continued in OpenBLAS), or the slower autotuned ATLAS, or commercial packages like Intel's MKL. Linear algebra is so fundamental to so many other operations that enormous amounts of effort goes into optimizing these packages for various platforms, and there's just no chance you're going to come up with something in a few afternoon's work that will compete. The particular subroutine calls you're looking for for general dense matrix-vector multiplicaiton is SGEMV/DGEMV/CGEMV/ZGEMV.
Cache-oblivious algorithms, or autotuning, are for when you can't be bothered tuning for the specific cache architecture of your system - which might be fine, normally, but since people are willing to do that for BLAS routines, and then make the tuned results available, means that you're best off just using those routines.
The memory access pattern for GEMV is straightforward enough that you don't really need divide and conquer (same for the standard case of matrix transpose) - you just find the cache blocking size and use it. In GEMV (y = Ax), you still have to scan through the entire matrix once, so there's nothing to be done for reuse (and thus effective cache use) there, but you can try reuse x as much as possible so you load it once instead of (number of rows) times - and you still want access to A to be cache friendly. So the obvious cache blocking thing to do is to break along blocks:
A x -> [ A11 | A12 ] | x1 | = | A11 x1 + A12 x2 |
[ A21 | A22 ] | x2 | | A21 x1 + A22 x2 |
And you can certainly do that recursively. But doing a naive implementation, it's slower than the simple double-loop, and way slower than a proper SGEMV library call:
$ ./gemv
Testing for N=4096
Double Loop: time = 0.024995, error = 0.000000
Divide and conquer: time = 0.299945, error = 0.000000
SGEMV: time = 0.013998, error = 0.000000
The code follows:
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "mkl.h"
float **alloc2d(int n, int m) {
float *data = malloc(n*m*sizeof(float));
float **array = malloc(n*sizeof(float *));
for (int i=0; i<n; i++)
array[i] = &(data[i*m]);
return array;
}
void tick(struct timeval *t) {
gettimeofday(t, NULL);
}
/* returns time in seconds from now to time described by t */
double tock(struct timeval *t) {
struct timeval now;
gettimeofday(&now, NULL);
return (double)(now.tv_sec - t->tv_sec) + ((double)(now.tv_usec - t->tv_usec)/1000000.);
}
float checkans(float *y, int n) {
float err = 0.;
for (int i=0; i<n; i++)
err += (y[i] - 1.*i)*(y[i] - 1.*i);
return err;
}
/* assume square matrix */
void divConquerGEMV(float **a, float *x, float *y, int n,
int startr, int endr, int startc, int endc) {
int nr = endr - startr + 1;
int nc = endc - startc + 1;
if (nr == 1 && nc == 1) {
y[startc] += a[startr][startc] * x[startr];
} else {
int midr = (endr + startr+1)/2;
int midc = (endc + startc+1)/2;
divConquerGEMV(a, x, y, n, startr, midr-1, startc, midc-1);
divConquerGEMV(a, x, y, n, midr, endr, startc, midc-1);
divConquerGEMV(a, x, y, n, startr, midr-1, midc, endc);
divConquerGEMV(a, x, y, n, midr, endr, midc, endc);
}
}
int main(int argc, char **argv) {
const int n=4096;
float **a = alloc2d(n,n);
float *x = malloc(n*sizeof(float));
float *y = malloc(n*sizeof(float));
struct timeval clock;
double eltime;
printf("Testing for N=%d\n", n);
for (int i=0; i<n; i++) {
x[i] = 1.*i;
for (int j=0; j<n; j++)
a[i][j] = 0.;
a[i][i] = 1.;
}
/* naive double loop */
tick(&clock);
for (int i=0; i<n; i++) {
y[i] = 0.;
for (int j=0; j<n; j++) {
y[i] += a[i][j]*x[j];
}
}
eltime = tock(&clock);
printf("Double Loop: time = %lf, error = %f\n", eltime, checkans(y,n));
for (int i=0; i<n; i++) y[i] = 0.;
/* naive divide and conquer */
tick(&clock);
divConquerGEMV(a, x, y, n, 0, n-1, 0, n-1);
eltime = tock(&clock);
printf("Divide and conquer: time = %lf, error = %f\n", eltime, checkans(y,n));
/* decent GEMV implementation */
tick(&clock);
float alpha = 1.;
float beta = 0.;
int incrx=1;
int incry=1;
char trans='N';
sgemv(&trans,&n,&n,&alpha,&(a[0][0]),&n,x,&incrx,&beta,y,&incry);
eltime = tock(&clock);
printf("SGEMV: time = %lf, error = %f\n", eltime, checkans(y,n));
return 0;
}

OpenMP and reduction()

I've got simply 3 functions, one is control function aan the next 2 function are done in a bit different way using OpenMP. But function thread1 gives another score than thread2 and control and I have no idea why?
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
float function(float x){
return pow(x,pow(x,sin(x)));
}
float integrate(float begin, float end, int count){
float score = 0 , width = (end-begin)/(1.0*count), i=begin, y1, y2;
for(i = 0; i<count; i++){
score += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
return score;
}
float thread1(float begin, float end, int count){
float score = 0 , width = (end-begin)/(1.0*count), y1, y2;
int i;
#pragma omp parallel for reduction(+:score) private(y1,i) shared(count)
for(i = 0; i<count; i++){
y1 = ((function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0);
score = score + y1;
}
return score;
}
float thread2(float begin, float end, int count){
float score = 0 , width = (end-begin)/(1.0*count), y1, y2;
int i;
float * tab = (float*)malloc(count * sizeof(float));
#pragma omp parallel for
for(i = 0; i<count; i++){
tab[i] = (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
for(i=0; i<count; i++)
score += tab[i];
return score;
}
unsigned long long int rdtsc(void){
unsigned long long int x;
unsigned a, d;
__asm__ volatile("rdtsc" : "=a" (a), "=d" (d));
return ((unsigned long long)a) | (((unsigned long long)d) << 32);
}
int main(int argc, char** argv){
unsigned long long counter = 0;
//test
counter = rdtsc();
printf("control: %f \n ",integrate (atof(argv[1]), atof(argv[2]), atoi(argv[3])));
printf("control count: %lld \n",rdtsc()-counter);
counter = rdtsc();
printf("thread1: %f \n ",thread1(atof(argv[1]), atof(argv[2]), atoi(argv[3])));
printf("thread1 count: %lld \n",rdtsc()-counter);
counter = rdtsc();
printf("thread2: %f \n ",thread2(atof(argv[1]), atof(argv[2]), atoi(argv[3])));
printf("thread2 count: %lld \n",rdtsc()-counter);
return 0;
}
Here are simple answears :
gcc -fopenmp zad2.c -o zad -pg -lm
env OMP_NUM_THREADS=2 ./zad 3 13 100000
control: 5407308.500000
control count: 138308058
thread1: 5407494.000000
thread1 count: 96525618
thread2: 5407308.500000
thread2 count: 104770859
Update:
Ok, I tried to do this more quickly, and not count values for periods twice.
double thread3(double begin, double end, int count){
double score = 0 , width = (end-begin)/(1.0*count), yp, yk;
int i,j, k;
#pragma omp parallel private (yp,yk)
{
int thread_num = omp_get_num_threads();
k = count / thread_num;
#pragma omp for private(i) reduction(+:score)
for(i=0; i<thread_num; i++){
yp = function(begin + i*k*width);
yk = function(begin + (i*k+1)*width);
score += (yp + yk) * width / 2.0;
for(j=i*k +1; j<(i+1)*k; j++){
yp = yk;
yk = function(begin + (j+1)*width);
score += (yp + yk) * width / 2.0;
}
}
#pragma omp for private(i) reduction(+:score)
for(i = k*thread_num; i<count; i++)
score += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
return score;
}
But after few tests I found that the scores are near the right value, but not equal. Sometimes one of the threads doesn't start. When I'm not using OpenMp, the value is correct.
You're integrating a very strongly peaked function - x(xsin(x)) - which covers over 7 orders of magnitude in the range you're integrating it. That's about the limit for a 32-bit floating point number, so there are going to be issues depending on the order you sum the numbers. This isn't an OpenMP thing -- its just a numerical sensitivity thing.
So for instance, consider this completely serial code doing the same integral:
#include <stdio.h>
#include <math.h>
float function(float x){
return pow(x,pow(x,sin(x)));
}
int main(int argc, char **argv) {
const float begin=3., end=13.;
const int count = 100000;
const float width=(end-begin)/(1.*count);
float integral1=0., integral2=0., integral3=0.;
/* left to right */
for (int i=0; i<count; i++) {
integral1 += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
/* right to left */
for (int i=count-1; i>=0; i--) {
integral2 += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
/* centre outwards, first right-to-left, then left-to-right */
for (int i=count/2; i<count; i++) {
integral3 += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
for (int i=count/2-1; i>=0; i--) {
integral3 += (function(begin+(i*width)) + function(begin+(i+1)*width)) * width/2.0;
}
printf("Left to right: %lf\n", integral1);
printf("Right to left: %lf\n", integral2);
printf("Centre outwards: %lf\n", integral3);
return 0;
}
Running this, we get:
$ ./reduce
Left to right: 5407308.500000
Right to left: 5407430.000000
Centre outwards: 5407335.500000
-- the same sort of differences you see. Doing the summation with two threads necessarily changes the order of the summation, and so your answer changes.
There's a few options here. If this was just a test proble, and this function doesn't actually represent what you'll be integrating, you might be fine already. Otherwise, using a different numerical method may help.
But also here, there is a simple solution - the range of the numbers exceeds the range of a float, making the answer very sensitive to summation order, but fits comfortably within the range of a double, making the problem much less severe. Note that changing to doubles is not a magic solution to everything; some cases it just postpones the problem or allows you to paper over a flaw in your numerical method. But here it actually addresses the underlying problem fairly well. Changing all the floats above to doubles gives:
$ ./reduce
Left to right: 5407589.272885
Right to left: 5407589.272885
Centre outwards: 5407589.272885
On the other hand, even doubles wouldn't save you if you needed to integrate this function in the range (18,23).

Resources