C - parallelize recurrence omp - c

I have a problem: I have to parallelize this piece of code with OMP.
There is a problem of data dependencies and I don't know how to solve it.
Any suggestions?
for (n = 2; n < N+1; n++) {
dz = *(dynamic_d + n-1)*z;
*(dynamic_A + n) = *(dynamic_A + n-1) + dz * (*(dynamic_A + n-2));
*(dynamic_B + n) = *(dynamic_B + n-1) + dz * (*(dynamic_B + n-2));
}

You cannot parallelize the loop iterations due to the depdency, but you can split the computation of dynamic_A vs dynamic_B using sections:
#pragma omp parallel sections
{
#pragma omp section
{
// NOTE: Declare n and dz locally so that it is private!
for (int n = 2; n < N+1; n++) {
my_type dz = dynamic_d[n-1] * z;
dynamic_A[n] = dynamic_A[n-1] + dz * dynamic_A[n-2];
}
}
#pragma omp section
{
for (int n = 2; n < N+1; n++) {
my_type dz = dynamic_d[n-1] * z;
dynamic_B[n] = dynamic_B[n-1] + dz * dynamic_B[n-2];
}
}
}
Please use array indexing instead of the unholy pointer arithmetic referencing abnormity.

Related

Parallelise 2 for loops with OpenMP

So I have this function that I have to parallelize with OpenMP static scheduling for n threads
void computeAccelerations(){
int i,j;
for(i=0;i<bodies;i++){
accelerations[i].x = 0; accelerations[i].y = 0; accelerations[i].z = 0;
for(j=0;j<bodies;j++){
if(i!=j){
//accelerations[i] = addVectors(accelerations[i],scaleVector(GravConstant*masses[j]/pow(mod(subtractVectors(positions[i],positions[j])),3),subtractVectors(positions[j],positions[i])));
vector sij = {positions[i].x-positions[j].x,positions[i].y-positions[j].y,positions[i].z-positions[j].z};
vector sji = {positions[j].x-positions[i].x,positions[j].y-positions[i].y,positions[j].z-positions[i].z};
double mod = sqrt(sij.x*sij.x + sij.y*sij.y + sij.z*sij.z);
double mod3 = mod * mod * mod;
double s = GravConstant*masses[j]/mod3;
vector S = {s*sji.x,s*sji.y,s*sji.z};
accelerations[i].x+=S.x;accelerations[i].y+=S.y;accelerations[i].z+=S.z;
}
}
}
}
I tried to do something like:
void computeAccelerations_static(int num_of_threads){
int i,j;
#pragma omp parallel for num_threads(num_of_threads) schedule(static)
for(i=0;i<bodies;i++){
accelerations[i].x = 0; accelerations[i].y = 0; accelerations[i].z = 0;
for(j=0;j<bodies;j++){
if(i!=j){
//accelerations[i] = addVectors(accelerations[i],scaleVector(GravConstant*masses[j]/pow(mod(subtractVectors(positions[i],positions[j])),3),subtractVectors(positions[j],positions[i])));
vector sij = {positions[i].x-positions[j].x,positions[i].y-positions[j].y,positions[i].z-positions[j].z};
vector sji = {positions[j].x-positions[i].x,positions[j].y-positions[i].y,positions[j].z-positions[i].z};
double mod = sqrt(sij.x*sij.x + sij.y*sij.y + sij.z*sij.z);
double mod3 = mod * mod * mod;
double s = GravConstant*masses[j]/mod3;
vector S = {s*sji.x,s*sji.y,s*sji.z};
accelerations[i].x+=S.x;accelerations[i].y+=S.y;accelerations[i].z+=S.z;
}
}
}
It comes naturally to just add the #pragma omp parallel for num_threads(num_of_threads) schedule(static) but it isn't correct.
I think there is some kind of false sharing with the accelerations[i] but I don't know how to approach it. I appreciate any kind of help. Thank you.
In your loop nest, only the iterations of the outer loop are parallelized. Because i is the loop-control variable, each thread gets its own, private copy, but as a matter of style, it would be better to declare i in the loop control block.
j is another matter. It is declared outside the parallel region and it is not the control variable of a parallelized loop. As a result, it is shared among the threads. Because each of the threads executing i-loop iterations manipulates shared variable j, you have a huge problem with data races. This would be resolved (among other alternatives) by moving the declaration of j into the parallel region, preferrably into the control block of its associated loop.
Overall, then:
// int i, j;
#pragma omp parallel for num_threads(num_of_threads) schedule(static)
for (int i = 0; i < bodies; i++) {
accelerations[i].x = 0;
accelerations[i].y = 0;
accelerations[i].z = 0;
for (int j = 0; j < bodies; j++) {
if (i != j) {
//accelerations[i] = addVectors(accelerations[i],scaleVector(GravConstant*masses[j]/pow(mod(subtractVectors(positions[i],positions[j])),3),subtractVectors(positions[j],positions[i])));
vector sij = { positions[i].x - positions[j].x,
positions[i].y - positions[j].y,
positions[i].z - positions[j].z };
vector sji = { positions[j].x - positions[i].x,
positions[j].y - positions[i].y,
positions[j].z - positions[i].z };
double mod = sqrt(sij.x * sij.x + sij.y * sij.y + sij.z * sij.z);
double mod3 = mod * mod * mod;
double s = GravConstant * masses[j] / mod3;
vector S = { s * sji.x, s * sji.y, s * sji.z };
accelerations[i].x += S.x;
accelerations[i].y += S.y;
accelerations[i].z += S.z;
}
}
}
Note also that computing sji appears to be wasteful, as in mathematical terms it is just -sij, and neither sji nor sij is modified. I would probably reduce the above to something more like this:
#pragma omp parallel for num_threads(num_of_threads) schedule(static)
for (int i = 0; i < bodies; i++) {
accelerations[i].x = 0;
accelerations[i].y = 0;
accelerations[i].z = 0;
for (int j = 0; j < bodies; j++) {
if (i != j) {
vector sij = { positions[i].x - positions[j].x,
positions[i].y - positions[j].y,
positions[i].z - positions[j].z };
double mod = sqrt(sij.x * sij.x + sij.y * sij.y + sij.z * sij.z);
double mod3 = mod * mod * mod;
double s = GravConstant * masses[j] / mod3;
accelerations[i].x -= s * sij.x;
accelerations[i].y -= s * sij.y;
accelerations[i].z -= s * sij.z;
}
}
}

Cuda - 2D Multiple double sums in each Matrix element

Same issue as post (Cuda - Multiple sums in each vector element). How do you perform 2D block striding in both x- and y-direction with varying summation limits. The 2D algorithm can be seen in the CPU and monolithic kernel. I included openmp for the CPU so as to get a more fair speedup result. If there is a way to increase the speed of the CPU function as well I would be happy to find out.
This version of the code takes a 2D array and flattens it to a 1D array. I still use the 2D thread dim3 indexing so I can index the double summations more intuitively.
(p.s. all credit to user Robert Crovella for the 1D striding code.)
The code so far is,
#include <stdio.h>
#include <iostream>
#include <cuda.h>
#include <sys/time.h>
typedef double df;
#define USECPSEC 1000000ULL
#define BSX 1<<5
#define BSY 1<<5
#define N 100
#define M 100
const bool sync = true;
const bool nosync = false;
unsigned long long dtime_usec(unsigned long long start, bool use_sync = nosync){
if (use_sync == sync) cudaDeviceSynchronize();
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
int divUp(int a, int b) {return (a + b - 1) / b;}
float cpu_sum(int n, int m, df *a, df *b, df *c) {
df q, r;
#pragma omp parallel for collapse(2)
for (int x = 0; x < n; x++) {
for (int y = 0; y < m; y++) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
return 0;
}
const int P2 = 5;
const int TPB = 1<<P2;
const unsigned row_mask = ~((0xFFFFFFFFU>>P2)<<P2);
__global__ void chebyprod_imp(int n, int m, df *a, df *b, df *c){
__shared__ df sdata[TPB*TPB];
int x = blockIdx.x;
int y = blockIdx.y;
int row_width_x = (((x)>(n-x))?(x):(n-x))+1;
int row_width_y = (((y)>(m-y))?(y):(m-y))+1;
int strides_x = (row_width_x>>P2) + ((row_width_x&row_mask)?1:0);
int strides_y = (row_width_y>>P2) + ((row_width_y&row_mask)?1:0);
int i = threadIdx.x;
df tmp_a;
df sum = 0.0f;
for (int s=0; s < strides_x; s++) { // block-stride x loop
int j = threadIdx.y;
for (int u=0; u < strides_y; u++) { // block-stride y loop
if (i < n && j < m) {tmp_a = a[i * n + j];}
if (i <= x) {
if (j <= y) {sum += tmp_a * b[(x - i) * n + y - j];}
if ((j > 0) && (j < (m-y))) {sum += tmp_a * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];}
}
if ((i > 0) && (i < (n-x))) {
if (j <= y) {sum += tmp_a * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];}
if ((j > 0) && (j < (m-y))) {sum += tmp_a * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+ a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];}
}
j += TPB;
}
i += TPB;
}
sdata[threadIdx.x * TPB + threadIdx.y] = sum;
for (int s = TPB>>1; s > 0; s>>=1) { // sweep reduction in x
for (int u = TPB>>1; u > 0; u>>=1) { // sweep reduction in x
__syncthreads();
if (threadIdx.x < s && threadIdx.y < u) {
sdata[threadIdx.x * TPB + threadIdx.y] += sdata[(threadIdx.x + s) * TPB + threadIdx.y + u];
}
}
}
if (!threadIdx.x && !threadIdx.y) c[x * n + y] = 0.25f*sdata[0];
}
__global__ void chebyprod(int n, int m, df *a, df *b, df *c){
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
df q, r;
if (x < n && y < m) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
int main(void){
int size = N*M*sizeof(df);
df *a, *b, *c, *cc, *ci, *d_a, *d_b, *d_c, *d_ci;
a = (df*)malloc(size);
b = (df*)malloc(size);
c = (df*)malloc(size);
cc = (df*)malloc(size);
ci = (df*)malloc(size);
cudaMalloc(&d_a, size);
cudaMalloc(&d_b, size);
cudaMalloc(&d_c, size);
cudaMalloc(&d_ci, size);
#pragma omp parallel for collapse (2)
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
a[i * M + j] = 0.1f;
b[i * M + j] = 0.2f;
}
}
unsigned long long dt = dtime_usec(0);
// Perform chebyprod on N elements
cpu_sum(N, M, a, b, cc);
dt = dtime_usec(dt,sync);
printf("Time taken 2D CPU: %fs\n", dt/(float)USECPSEC);
df dtc = dt/(float)USECPSEC;
std::cout << "Vector cc: [ ";
for (int k = 0; k < 10; ++k)
std::cout << cc[k] << " ";
std::cout <<"]\n";
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
dim3 dimBlock(BSX, BSY);
dim3 dimGrid(divUp(N, BSX), divUp(M, BSY));
//std::cout << "dimBlock: " << dimBlock << "\n dimGrid: " << dimGrid << "\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
chebyprod<<< dimBlock, dimGrid >>>(N, M, d_a, d_b, d_c);
dt = dtime_usec(dt,sync);
printf("Time taken 2D monolithic kernel: %fs\n", dt/(float)USECPSEC);
printf("Speedup: %fs\n", dtc/(dt/(float)USECPSEC));
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
std::cout << "Vector c: [ ";
for (int k = 0; k < 10; ++k)
std::cout << c[k] << " ";
std::cout <<"]\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
chebyprod_imp<<< dimBlock, dimGrid >>>(N, M, d_a, d_b, d_ci);
dt = dtime_usec(dt,sync);
printf("Time taken 2D stride kernel: %fs\n", dt/(float)USECPSEC);
cudaMemcpy(ci, d_ci, size, cudaMemcpyDeviceToHost);
std::cout << "Vector ci: [ ";
for (int k = 0; k < 10; ++k)
std::cout << ci[k] << " ";
std::cout <<"]\n";
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
cudaFree(d_ci);
free(a);
free(b);
free(c);
free(cc);
free(ci);
}
For me, anyway, the results for the CPU code don't match between the cases where I compile with OpenMP support and without, if I omit -O3. I seem to get the correct results with OpenMP compilation if I also specify -O3. I'm not sure why that should matter for correctness, although it obviously has an impact on CPU code performance.
You seem to have gotten your grid and block sizing backwards:
chebyprod<<< dimBlock, dimGrid >>>(....
the first kernel config parameter is the grid dimension, not the block dimension. I'm not sure how this came about since you had it done correctly in your previous question.
As in the previous question, we need to pick a thread strategy and implement it correctly. You seemed to be confused about striding, so hopefully the code below will clarify things. The thread strategy I will use here is one warp per output point. A warp is a group of threads with a dimension of 32 (threads) in the x direction, and 1 in the y direction. Therefore the loop striding will be by an increment of 32 in the x direction, but only 1 in the y direction, to cover the entire space. The choice of thread strategy also affects grid sizing.
You seem to have jumbled the relationships that I think should exist for the two dimensions. The x direction, N, and n should all be connected. Likewise the y direction, M and m should all be connected (for example, M is the dimension in the y direction).
When it comes to 2D threadblocks, we want to arrange indexing for coalescing on the GPU such that the index that includes threadIdx.x is not multiplied by anything. (A simplified statement of coalescing is that we want adjacent threads in the warp to access adjacent elements in memory. Since threadIdx.x increases by 1 as we go from thread to thread in the warp, we want to use this characteristic to generate adjacent memory indexing. If we multiply threadIdx.x by anything except 1, we break the pattern.) You have this reversed - where the index including threadIdx.x is typically multiplied by the row dimension (N, or n). This really cannot be correct, and also does not make for good coalesced access. To solve this, we want to transpose our indexing and also transpose the data storage for a and b (and therefore c). In the code below, I have tranposed the indexing for the data setup for a and b, and also the relevant indexing has been transposed in the striding kernel (only). In your non-striding kernel and also your CPU version, I have not transposed the indexing, I leave that as an exercise for you, if needed. For the results, numerically, it does not matter, because your entire a matrix has the same value at every location, and a similar statement can be made about your b matrix. Numerically, then, for this example code, transposing (or not) has no bearing on the result. But it matters for performance (of the striding kernel, at least). Also note that I believe performing the indexing "transpose" on the "monolithic" kernel should also improve its performance. I don't know if it would affect the performance of the CPU version.
I've also added back in the const __restrict__ usage that I included in my previous answer. According to my testing, on "smaller" GPUs this provides noticeable performance benefit. It's not strictly necessary for correctness, however. Here's a worked example with the above changes that gives numerically matching results for all 3 test cases:
$ cat t1498.cu
#include <stdio.h>
#include <iostream>
#include <cuda.h>
#include <time.h>
#include <sys/time.h>
typedef double df;
#define USECPSEC 1000000ULL
#define BSX 1<<5
#define BSY 1<<5
#define N 100
#define M 100
const bool sync = true;
const bool nosync = false;
unsigned long long dtime_usec(unsigned long long start, bool use_sync = nosync){
if (use_sync == sync) cudaDeviceSynchronize();
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
int divUp(int a, int b) {return (a + b - 1) / b;}
void cpu_sum(int n, int m, df *a, df *b, df *c) {
df q, r;
#pragma omp parallel for collapse(2)
for (int x = 0; x < n; x++) {
for (int y = 0; y < m; y++) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
}
// choose one warp per output point
const int P2 = 5; // assumes warp size is 32
const unsigned row_mask = ~((0xFFFFFFFFU>>P2)<<P2);
__global__ void chebyprod_imp(int n, int m, const df * __restrict__ a, const df * __restrict__ b, df * __restrict__ c){
int x = blockIdx.x;
int y = threadIdx.y+blockDim.y*blockIdx.y;
int width_x = (((x)>(n-x))?(x):(n-x))+1;
int height_y = (((y)>(m-y))?(y):(m-y))+1;
int strides_x = (width_x>>P2) + ((width_x&row_mask)?1:0);
int strides_y = height_y;
int i = threadIdx.x;
df tmp_a;
df sum = 0.0f;
if ((x < n) && (y < m)){
for (int s=0; s < strides_x; s++) { // warp-stride x loop
for (int j=0; j < strides_y; j++) { // y loop
if (i < n && j < m) {tmp_a = a[j * n + i];}
if (i <= x) {
if (j <= y) {sum += tmp_a * b[(y - j) * n + x - i];}
if ((j > 0) && (j < (m-y))) {sum += tmp_a * b[(y+j) * n + x - i] + a[(y+j)* n + i] * b[j*n+(x - i)];}
}
if ((i > 0) && (i < (n-x))) {
if (j <= y) {sum += tmp_a * b[(y-j) * n + x+i] + a[j*n + (x + i)] * b[(y - j)*n + i];}
if ((j > 0) && (j < (m-y)))
{sum += tmp_a * b[(y+j) * n + x+i]
+ a[(y+j) * n + x + i] * b[j*n+(x + i)]
+ a[j*n + (x + i)] * b[(y+j)*n + i]
+ a[(y+j)*n + x + i] * b[j*n+i];}
}
}
i += 32;
}
// warp-shuffle reduction
for (int offset = warpSize>>1; offset > 0; offset >>= 1)
sum += __shfl_down_sync(0xFFFFFFFFU, sum, offset);
if (!threadIdx.x) c[y*m+x] = 0.25f*sum;}
}
__global__ void chebyprod(int n, int m, df *a, df *b, df *c){
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
df q, r;
if (x < n && y < m) {
q = 0.0f;
for (int i = 0; i <= x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x - i) * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x - i) * n + y + j]
+ a[i * n + y + j] * b[(x - i) * n + j];
}
q += r;
}
for (int i = 1; i < n-x; i++) {
r = 0.0f;
for (int j = 0; j <= y; j++) {
r += a[i * n + j] * b[(x + i) * n + y - j]
+ a[(x + i) * n + j] * b[ i * n + y - j];
}
for (int j = 1; j < m - y; j++) {
r += a[i * n + j] * b[(x + i) * n + y + j]
+ a[(x + i) * n + y + j] * b[(x + i) * n + j]
+a[(x + i) * n + j] * b[i * n + y + j]
+ a[(x + i) * n + y + j] * b[i * n + j];
}
q += r;
}
c[x * N + y] = 0.25f*q;
}
}
int main(void){
int size = N*M*sizeof(df);
df *a, *b, *c, *cc, *ci, *d_a, *d_b, *d_c, *d_ci;
a = (df*)malloc(size);
b = (df*)malloc(size);
c = (df*)malloc(size);
cc = (df*)malloc(size);
ci = (df*)malloc(size);
cudaMalloc(&d_a, size);
cudaMalloc(&d_b, size);
cudaMalloc(&d_c, size);
cudaMalloc(&d_ci, size);
#pragma omp parallel for collapse (2)
for (int j = 0; j < M; j++) {
for (int i = 0; i < N; i++) {
a[j * N + i] = 0.1f;
b[j * N + i] = 0.2f;
}
}
unsigned long long dt = dtime_usec(0);
// Perform chebyprod on N elements
cpu_sum(N, M, a, b, cc);
dt = dtime_usec(dt,sync);
printf("Time taken 2D CPU: %fs\n", dt/(float)USECPSEC);
df dtc = dt/(float)USECPSEC;
std::cout << "Vector cc: [ ";
for (int k = 0; k < 10; ++k)
std::cout << cc[k] << " ";
std::cout <<"]\n";
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
dim3 dimBlock(BSX, BSY);
dim3 dimGrid(divUp(N, BSX), divUp(M, BSY));
//std::cout << "dimBlock: " << dimBlock << "\n dimGrid: " << dimGrid << "\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
chebyprod<<< dimGrid, dimBlock >>>(N, M, d_a, d_b, d_c);
dt = dtime_usec(dt,sync);
printf("Time taken 2D monolithic kernel: %fs\n", dt/(float)USECPSEC);
printf("Speedup: %fs\n", dtc/(dt/(float)USECPSEC));
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
std::cout << "Vector c: [ ";
for (int k = 0; k < 10; ++k)
std::cout << c[k] << " ";
std::cout <<"]\n";
dt = dtime_usec(0);
// Perform chebyprod on N elements
dim3 dimGrid2(N, (M+dimBlock.y-1)/dimBlock.y);
chebyprod_imp<<< dimGrid2, dimBlock >>>(N, M, d_a, d_b, d_ci);
dt = dtime_usec(dt,sync);
printf("Time taken 2D stride kernel: %fs\n", dt/(float)USECPSEC);
printf("Speedup: %fs\n", dtc/(dt/(float)USECPSEC));
cudaMemcpy(ci, d_ci, size, cudaMemcpyDeviceToHost);
std::cout << "Vector ci: [ ";
for (int k = 0; k < 10; ++k)
std::cout << ci[k] << " ";
std::cout <<"]\n";
df max_error = 0;
for (int k = 0; k < N*M; k++)
max_error = fmax(max_error, fabs(c[k] - ci[k]));
std::cout << "Max diff = " << max_error << std::endl;
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
cudaFree(d_ci);
free(a);
free(b);
free(c);
free(cc);
free(ci);
}
$ nvcc -O3 -Xcompiler -fopenmp -arch=sm_52 -o t1498 t1498.cu
$ ./t1498
Time taken 2D CPU: 0.034830s
Vector cc: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Time taken 2D monolithic kernel: 0.033687s
Speedup: 1.033930s
Vector c: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Time taken 2D stride kernel: 0.013526s
Speedup: 2.575041s
Vector ci: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Max diff = 8.52651e-13
$
CUDA 10.1.105, Fedora 29, GTX 960
Note that when we run this same test on a Tesla V100, which can take the most advantage of the "extra" threads available in the striding kernel case, the benefit is more obvious:
$ OMP_NUM_THREADS=32 ./t1498
Time taken 2D CPU: 0.031610s
Vector cc: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Time taken 2D monolithic kernel: 0.018228s
Speedup: 1.734145s
Vector c: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Time taken 2D stride kernel: 0.000731s
Speedup: 43.242137s
Vector ci: [ 198.005 197.01 196.015 195.02 194.025 193.03 192.035 191.04 190.045 189.05 ]
Max diff = 8.52651e-13
If you perform the indexing "transpose" on your monolithic kernel similar to what I have done in the striding kernel, I think you'll end up in a performance situation that is roughly similar to where you ended up in the last question. Little or no performance benefit for the striding kernel over your monolithic kernel on a "small" GPU. ~5x improvement on a "large" GPU.

How to optimize Median Filter with OpenMP (C)?

I wrote a program that has two versions of a median filter implemented using OpenCV in C, one is sequential and the other is parallelized with OpenMP. My problem lies in that the OpenMP version seems to be running slower than my sequential one, no matter the chunk size or the number of threads.
Any ideas/advice is very much welcomed!
Here is my sequential code:
void medianFilter (const IplImage* img){
IplImage* output = cvCloneImage(img);
int rows, cols, step;
uchar *data;
rows = output->height;
cols = output->width;
step = output->widthStep;
data = (uchar *)output->imageData;
if(!data)
{ return; }
//create a sliding window of size 9
int window[9];
for(int y = 1; y < rows - 1; y++){
for(int x = 1; x < cols - 1; x++){
// Pick up window element
window[0] = data[(y - 1) * step + (x - 1)];
window[1] = data[y * step + (x - 1)];
window[2] = data[(y + 1) * step + (x - 1)];
window[3] = data[(y - 1) * step + x];
window[4] = data[y * step + x];
window[5] = data[(y + 1) * step + x];
window[6] = data[(y - 1) * step + (x + 1)];
window[7] = data[y * step + (x + 1)];
window[8] = data[(y + 1) * step + (x + 1)];
// Sort the window to find median
insertionSort(window);
// Assign the median to centered element of the matrix
data[y * step + x] = window[4];
}
}
cvNamedWindow("Post-filter", CV_WINDOW_AUTOSIZE);
cvShowImage("Post-filter", output);
cvReleaseImage(&output);
}
Here is my parallelized code:
void omp_medianFilter (const IplImage* img){
IplImage* output = cvCloneImage(img);
int rows, cols, step, nthreads;
uchar *data;
rows = output->height;
cols = output->width;
step = output->widthStep;
data = (uchar *)output->imageData;
if(!data)
{ return; }
// Create a sliding window of size 9
int window[9], x, y;
// Set the number of threads to use
omp_set_num_threads(NUM_THREADS);
// Parallel code segment. Window, x and y are private variables for each thread
#pragma omp parallel private(window, x, y)
{
//if(omp_get_thread_num() == 0){
//nthreads = omp_get_num_threads();
//printf("Numer of threads running: %d \n", nthreads);
//}
// Parallel for loop with dynamic scheduling and collapsing nested loops
#pragma omp for schedule(dynamic, CHUNK) collapse(2)
for(y = 1; y < rows - 1; y++){
for(x = 1; x < cols - 1; x++){
// Pick up 3x3 window elements
window[0] = data[(y - 1) * step + (x - 1)];
window[1] = data[y * step + (x - 1)];
window[2] = data[(y + 1) * step + (x - 1)];
window[3] = data[(y - 1) * step + x];
window[4] = data[y * step + x];
window[5] = data[(y + 1) * step + x];
window[6] = data[(y - 1) * step + (x + 1)];
window[7] = data[y * step + (x + 1)];
window[8] = data[(y + 1) * step + (x + 1)];
// Sort the window to find median
insertionSort(window);
// Assign the median to centered element of the matrix
data[y * step + x] = window[4];
}
}
}
cvNamedWindow("Post-filter (OMP)", CV_WINDOW_AUTOSIZE);
cvShowImage("Post-filter (OMP)", output);
cvReleaseImage(&output);
}
Full Code:
#include <stdio.h>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/highgui/highgui_c.h>
#include <opencv2/core/types_c.h>
#include <sys/time.h>
#include <omp.h>
#define NUM_THREADS 8
#define CHUNK 15000
//Function to measure time
double get_walltime() {
struct timeval tp; gettimeofday(&tp, NULL);
return (double) (tp.tv_sec + tp.tv_usec*1e-6);
}
//Sort the window elements using insertion sort
void insertionSort(int window[])
{
int temp, i , j;
for(i = 0; i < 9; i++){
temp = window[i];
for(j = i-1; j >= 0 && temp < window[j]; j--){
window[j+1] = window[j];
}
window[j+1] = temp;
}
}
void medianFilter (const IplImage* img){
IplImage* output = cvCloneImage(img);
int rows, cols, step;
uchar *data;
rows = output->height;
cols = output->width;
step = output->widthStep;
data = (uchar *)output->imageData;
if(!data)
{ return; }
//create a sliding window of size 9
int window[9];
for(int y = 1; y < rows - 1; y++){
for(int x = 1; x < cols - 1; x++){
// Pick up window element
window[0] = data[(y - 1) * step + (x - 1)];
window[1] = data[y * step + (x - 1)];
window[2] = data[(y + 1) * step + (x - 1)];
window[3] = data[(y - 1) * step + x];
window[4] = data[y * step + x];
window[5] = data[(y + 1) * step + x];
window[6] = data[(y - 1) * step + (x + 1)];
window[7] = data[y * step + (x + 1)];
window[8] = data[(y + 1) * step + (x + 1)];
// Sort the window to find median
insertionSort(window);
// Assign the median to centered element of the matrix
data[y * step + x] = window[4];
}
}
cvNamedWindow("Post-filter", CV_WINDOW_AUTOSIZE);
cvShowImage("Post-filter", output);
cvReleaseImage(&output);
}
// Parallelized implementation of median filter
void omp_medianFilter (const IplImage* img){
IplImage* output = cvCloneImage(img);
int rows, cols, step, nthreads;
uchar *data;
rows = output->height;
cols = output->width;
step = output->widthStep;
data = (uchar *)output->imageData;
if(!data)
{ return; }
// Create a sliding window of size 9
int window[9], x, y, j, k, min;
// Set the number of threads to use
omp_set_num_threads(NUM_THREADS);
// Parallel code segment. Window, x and y are private variables for each thread
#pragma omp parallel private(window, x, y, j, k, min)
{
//if(omp_get_thread_num() == 0){
//nthreads = omp_get_num_threads();
//printf("Numer of threads running: %d \n", nthreads);
//}
// Parallel for loop with dynamic scheduling and collapsing nested loops
#pragma omp for schedule(dynamic, CHUNK) collapse(2)
for(y = 1; y < rows - 1; y++){
for(x = 1; x < cols - 1; x++){
// Pick up 3x3 window elements
window[0] = data[(y - 1) * step + (x - 1)];
window[1] = data[y * step + (x - 1)];
window[2] = data[(y + 1) * step + (x - 1)];
window[3] = data[(y - 1) * step + x];
window[4] = data[y * step + x];
window[5] = data[(y + 1) * step + x];
window[6] = data[(y - 1) * step + (x + 1)];
window[7] = data[y * step + (x + 1)];
window[8] = data[(y + 1) * step + (x + 1)];
// Sort the window to find median
//insertionSort(window);
for (int j = 0; j < 5; ++j)
{
// Find position of minimum element
int min = j;
for (int l = j + 1; l < 9; ++l)
if (window[l] < window[min])
min = l;
// Put found minimum element in its place
const int temp = window[j];
window[j] = window[min];
window[min] = temp;
}
// Assign the median to centered element of the matrix
data[y * step + x] = window[4];
}
}
}
cvNamedWindow("Post-filter (OMP)", CV_WINDOW_AUTOSIZE);
cvShowImage("Post-filter (OMP)", output);
cvReleaseImage(&output);
}
int main(int argc, char *argv[])
{
IplImage* src;
double time1, time2;
if(argc<2){
printf("Usage: main <image-file-name>\n\7");
exit(0);
}
// Load a source image
src = cvLoadImage(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
cvNamedWindow("Original", CV_WINDOW_AUTOSIZE);
cvShowImage("Original", src);
/*time1 = get_walltime();
medianFilter(src);
time2 = get_walltime();
printf("Sequential Code Performance: %fs\n", time2 - time1);*/
time1 = get_walltime();
omp_medianFilter(src);
time2 = get_walltime();
printf("Parallel Code Performance: %fs\n", time2 - time1);
cvWaitKey(0);
cvReleaseImage(&src);
return 0;
}
Fixed:
I did apply much of the advice given, and I did see performance improvemets, but the things mentioned weren't the problem.
Turns out it was something pretty stupid. I was running this on a VM with Ubuntu 16.04, and I had accidentally forgotten to increase the number of cores, therefore it was only using 1, which might as well mean it wasn't parallelized at all.

OpenMP C Normal Random Generator

I was doing a C assignment for parallel computing, where I have to implement some sort of Monte Carlo simulations with efficient tread safe normal random generator using Box-Muller transform. I generate 2 vectors of uniform random numbers X and Y, with condition that X in (0,1] and Y in [0,1].
But I'm not sure that my way of sampling uniform random numbers from the halfopen interval (0,1] is right.
Did anyone encounter something similar?
I'm using following Code:
double* StandardNormalRandom(long int N){
double *X = NULL, *Y = NULL, *U = NULL;
X = vUniformRandom_0(N / 2);
Y = vUniformRandom(N / 2);
#pragma omp parallel for
for (i = 0; i<N/2; i++){
U[2*i] = sqrt(-2 * log(X[i]))*sin(Y[i] * 2 * pi);
U[2*i + 1] = sqrt(-2 * log(X[i]))*cos(Y[i] * 2 * pi);
}
return U;
}
double* NormalRandom(long int N, double mu, double sigma2)
{
double *U = NULL, stdev = sqrt(sigma2);
U = StandardNormalRandom(N);
#pragma omp parallel for
for (int i = 0; i < N; i++) U[i] = mu + stdev*U[i];
return U;
}
here is the bit of my UniformRandom function also implemented in parallel:
#pragma omp parallel for firstprivate(i)
for (long int j = 0; j < N;j++)
{
if (i == 0){
int tn = omp_get_thread_num();
I[tn] = S[tn];
i++;
}
else
{
I[j] = (a*I[j - 1] + c) % m;
}
}
}
#pragma omp parallel for
for (long int j = 0; j < N; j++)
U[j] = (double)I[j] / (m+1.0);
In the StandardNormalRandom function, I will assume that the pointer U has been allocated to the size N, in which case this function looks fine to me.
As well as the function NormalRandom.
However for the function UniformRandom (which is missing some parts, so I'll have to assume some stuff), if the following line I[j] = (a*I[j - 1] + c) % m + 1; is the body of a loop with a omp parallel for, then you will have some issues. As you can't know the order of execution of the thread, the current thread (with a fixed value of j) can't rely on the value of I[j - 1] as this value could be modified at any time (I should be shared by default).
Hope it helps!

Optimization of C code

For an assignment of a course called High Performance Computing, I required to optimize the following code fragment:
int foobar(int a, int b, int N)
{
int i, j, k, x, y;
x = 0;
y = 0;
k = 256;
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 4*(2*i+j)*(i+2*k);
if (i > j){
y = y + 8*(i-j);
}else{
y = y + 8*(j-i);
}
}
}
return x;
}
Using some recommendations, I managed to optimize the code (or at least I think so), such as:
Constant Propagation
Algebraic Simplification
Copy Propagation
Common Subexpression Elimination
Dead Code Elimination
Loop Invariant Removal
bitwise shifts instead of multiplication as they are less expensive.
Here's my code:
int foobar(int a, int b, int N) {
int i, j, x, y, t;
x = 0;
y = 0;
for (i = 0; i <= N; i++) {
t = i + 512;
for (j = i + 1; j <= N; j++) {
x = x + ((i<<3) + (j<<2))*t;
}
}
return x;
}
According to my instructor, a well optimized code instructions should have fewer or less costly instructions in assembly language level.And therefore must be run, the instructions in less time than the original code, ie calculations are made with::
execution time = instruction count * cycles per instruction
When I generate assembly code using the command: gcc -o code_opt.s -S foobar.c,
the generated code has many more lines than the original despite having made ​​some optimizations, and run-time is lower, but not as much as in the original code. What am I doing wrong?
Do not paste the assembly code as both are very extensive. So I'm calling the function "foobar" in the main and I am measuring the execution time using the time command in linux
int main () {
int a,b,N;
scanf ("%d %d %d",&a,&b,&N);
printf ("%d\n",foobar (a,b,N));
return 0;
}
Initially:
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 4*(2*i+j)*(i+2*k);
if (i > j){
y = y + 8*(i-j);
}else{
y = y + 8*(j-i);
}
}
}
Removing y calculations:
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 4*(2*i+j)*(i+2*k);
}
}
Splitting i, j, k:
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 8*i*i + 16*i*k ; // multiple of 1 (no j)
x = x + (4*i + 8*k)*j ; // multiple of j
}
}
Moving them externally (and removing the loop that runs N-i times):
for (i = 0; i <= N; i++) {
x = x + (8*i*i + 16*i*k) * (N-i) ;
x = x + (4*i + 8*k) * ((N*N+N)/2 - (i*i+i)/2) ;
}
Rewritting:
for (i = 0; i <= N; i++) {
x = x + ( 8*k*(N*N+N)/2 ) ;
x = x + i * ( 16*k*N + 4*(N*N+N)/2 + 8*k*(-1/2) ) ;
x = x + i*i * ( 8*N + 16*k*(-1) + 4*(-1/2) + 8*k*(-1/2) );
x = x + i*i*i * ( 8*(-1) + 4*(-1/2) ) ;
}
Rewritting - recalculating:
for (i = 0; i <= N; i++) {
x = x + 4*k*(N*N+N) ; // multiple of 1
x = x + i * ( 16*k*N + 2*(N*N+N) - 4*k ) ; // multiple of i
x = x + i*i * ( 8*N - 20*k - 2 ) ; // multiple of i^2
x = x + i*i*i * ( -10 ) ; // multiple of i^3
}
Another move to external (and removal of the i loop):
x = x + ( 4*k*(N*N+N) ) * (N+1) ;
x = x + ( 16*k*N + 2*(N*N+N) - 4*k ) * ((N*(N+1))/2) ;
x = x + ( 8*N - 20*k - 2 ) * ((N*(N+1)*(2*N+1))/6);
x = x + (-10) * ((N*N*(N+1)*(N+1))/4) ;
Both the above loop removals use the summation formulas:
Sum(1, i = 0..n) = n+1
Sum(i1, i = 0..n) = n(n + 1)/2
Sum(i2, i = 0..n) = n(n + 1)(2n + 1)/6
Sum(i3, i = 0..n) = n2(n + 1)2/4
y does not affect the final result of the code - removed:
int foobar(int a, int b, int N)
{
int i, j, k, x, y;
x = 0;
//y = 0;
k = 256;
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 4*(2*i+j)*(i+2*k);
//if (i > j){
// y = y + 8*(i-j);
//}else{
// y = y + 8*(j-i);
//}
}
}
return x;
}
k is simply a constant:
int foobar(int a, int b, int N)
{
int i, j, x;
x = 0;
for (i = 0; i <= N; i++) {
for (j = i + 1; j <= N; j++) {
x = x + 4*(2*i+j)*(i+2*256);
}
}
return x;
}
The inner expression can be transformed to: x += 8*i*i + 4096*i + 4*i*j + 2048*j. Use math to push all of them to the outer loop: x += 8*i*i*(N-i) + 4096*i*(N-i) + 2*i*(N-i)*(N+i+1) + 1024*(N-i)*(N+i+1).
You can expand the above expression, and apply sum of squares and sum of cubes formula to obtain a close form expression, which should run faster than the doubly nested loop. I leave it as an exercise to you. As a result, i and j will also be removed.
a and b should also be removed if possible - since a and b are supplied as argument but never used in your code.
Sum of squares and sum of cubes formula:
Sum(x2, x = 1..n) = n(n + 1)(2n + 1)/6
Sum(x3, x = 1..n) = n2(n + 1)2/4
This function is equivalent with the following formula, which contains only 4 integer multiplications, and 1 integer division:
x = N * (N + 1) * (N * (7 * N + 8187) - 2050) / 6;
To get this, I simply typed the sum calculated by your nested loops into Wolfram Alpha:
sum (sum (8*i*i+4096*i+4*i*j+2048*j), j=i+1..N), i=0..N
Here is the direct link to the solution. Think before coding. Sometimes your brain can optimize code better than any compiler.
Briefly scanning the first routine, the first thing you notice is that expressions involving "y" are completely unused and can be eliminated (as you did). This further permits eliminating the if/else (as you did).
What remains is the two for loops and the messy expression. Factoring out the pieces of that expression that do not depend on j is the next step. You removed one such expression, but (i<<3) (ie, i * 8) remains in the inner loop, and can be removed.
Pascal's answer reminded me that you can use a loop stride optimization. First move (i<<3) * t out of the inner loop (call it i1), then calculate, when initializing the loop, a value j1 that equals (i<<2) * t. On each iteration increment j1 by 4 * t (which is a pre-calculated constant). Replace your inner expression with x = x + i1 + j1;.
One suspects that there may be some way to combine the two loops into one, with a stride, but I'm not seeing it offhand.
A few other things I can see. You don't need y, so you can remove its declaration and initialisation.
Also, the values passed in for a and b aren't actually used, so you could use these as local variables instead of x and t.
Also, rather than adding i to 512 each time through you can note that t starts at 512 and increments by 1 each iteration.
int foobar(int a, int b, int N) {
int i, j;
a = 0;
b = 512;
for (i = 0; i <= N; i++, b++) {
for (j = i + 1; j <= N; j++) {
a = a + ((i<<3) + (j<<2))*b;
}
}
return a;
}
Once you get to this point you can also observe that, aside from initialising j, i and j are only used in a single mutiple each - i<<3 and j<<2. We can code this directly in the loop logic, thus:
int foobar(int a, int b, int N) {
int i, j, iLimit, jLimit;
a = 0;
b = 512;
iLimit = N << 3;
jLimit = N << 2;
for (i = 0; i <= iLimit; i+=8) {
for (j = i >> 1 + 4; j <= jLimit; j+=4) {
a = a + (i + j)*b;
}
b++;
}
return a;
}
OK... so here is my solution, along with inline comments to explain what I did and how.
int foobar(int N)
{ // We eliminate unused arguments
int x = 0, i = 0, i2 = 0, j, k, z;
// We only iterate up to N on the outer loop, since the
// last iteration doesn't do anything useful. Also we keep
// track of '2*i' (which is used throughout the code) by a
// second variable 'i2' which we increment by two in every
// iteration, essentially converting multiplication into addition.
while(i < N)
{
// We hoist the calculation '4 * (i+2*k)' out of the loop
// since k is a literal constant and 'i' is a constant during
// the inner loop. We could convert the multiplication by 2
// into a left shift, but hey, let's not go *crazy*!
//
// (4 * (i+2*k)) <=>
// (4 * i) + (4 * 2 * k) <=>
// (2 * i2) + (8 * k) <=>
// (2 * i2) + (8 * 512) <=>
// (2 * i2) + 2048
k = (2 * i2) + 2048;
// We have now converted the expression:
// x = x + 4*(2*i+j)*(i+2*k);
//
// into the expression:
// x = x + (i2 + j) * k;
//
// Counterintuively we now *expand* the formula into:
// x = x + (i2 * k) + (j * k);
//
// Now observe that (i2 * k) is a constant inside the inner
// loop which we can calculate only once here. Also observe
// that is simply added into x a total (N - i) times, so
// we take advantange of the abelian nature of addition
// to hoist it completely out of the loop
x = x + (i2 * k) * (N - i);
// Observe that inside this loop we calculate (j * k) repeatedly,
// and that j is just an increasing counter. So now instead of
// doing numerous multiplications, let's break the operation into
// two parts: a multiplication, which we hoist out of the inner
// loop and additions which we continue performing in the inner
// loop.
z = i * k;
for (j = i + 1; j <= N; j++)
{
z = z + k;
x = x + z;
}
i++;
i2 += 2;
}
return x;
}
The code, without any of the explanations boils down to this:
int foobar(int N)
{
int x = 0, i = 0, i2 = 0, j, k, z;
while(i < N)
{
k = (2 * i2) + 2048;
x = x + (i2 * k) * (N - i);
z = i * k;
for (j = i + 1; j <= N; j++)
{
z = z + k;
x = x + z;
}
i++;
i2 += 2;
}
return x;
}
I hope this helps.
int foobar(int N) //To avoid unuse passing argument
{
int i, j, x=0; //Remove unuseful variable, operation so save stack and Machine cycle
for (i = N; i--; ) //Don't check unnecessary comparison condition
for (j = N+1; --j>i; )
x += (((i<<1)+j)*(i+512)<<2); //Save Machine cycle ,Use shift instead of Multiply
return x;
}

Resources