I want to place the binary equivalent number for each element side - by side i.e, the final matrix Concatenated_A would be of size m by nbits*n where [m,n] = size(A);
A = [5, 5, 4, 10, 4;
10, 10, 10, 10, 5;
];
I did an attempt but the result is wrong. I need help in correctly implementing the concatenation. Thank you
[m,n] = size(A);
numbits = 4;
for m = 1:M
Abin = dec2bin(A(m,:),numbits);
for j = 1:size(Abin,1)
Concatenated_A(m,:) = Abin(j,:);
end
end
For first row in A(1,:) = 5, 5, 4, 10, 4 ; its decimal conversion of each element would give a matrix as below.
0 1 0 1
0 1 0 1
0 1 0 0
1 0 1 0
0 1 0 0
Then, how can I do something like this :
Concatenated_A(1,:) = [0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0]
The above operation is repeated for every row in A.
You can transpose the result of dec2bin so that the binary representation goes down the columns and then reshape this into the desired shape so that each row is on it's own row. After reshaping, we take the transpose again so that the rows go across the rows again. Also we need to be sure to transpose A before we start so that we encode along the rows.
out = reshape(dec2bin(A.', numbits).', [], size(A, 1)).'
% 01010101010010100100
% 10101010101010100101
Or if you want a logical matrix instead you can compare your character array to the character '1'
out = reshape(dec2bin(A.', numbits).', [], size(A, 1)).' == '1'
% 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0
% 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
Related
I have a matrix B and I would like to obtain a new matrix C from B by adding its last w*a rows to the first w*a rows (w and a will be defined afterwards).
My matrix B is generally defined by :
I would like to obtain matrix C defined in a general way by:
The characteristics of matrices B and C are:
L and w are defined real values;
B0,B1,...,Bw are of dimension: a by b;
B is of dimension: [(L+w)×a] by (L×b);
C is of dimension: (L×a) by (L×b).
Example: For L = 4 and w = 2 I obtain the following matrix B:
The w*a = 2*1 = 2 last rows of B are:
The w*a = 2*1 = 2 first rows of B are:
By adding the two matrices we have:
The matrix C thus obtained is then:
For B0 = [1 0], B1 = [0 1] and B2 = [1 1]. We obtain :
B0, B1 and B2 are of dimension a by b i.e. 1 by 2;
B is of dimension: [(L+w )×(a)] by (L×b) i.e. [(4+2)×1] by (4×2) i.e. 6 by 8;
C is of dimension: (L×a) by (L×b) i.e. (4×1) by (4×2) i.e. 4 by 8.
The matrices B and C that I get are as follows:
B =
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0
0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1
C =
1 0 0 0 1 1 0 1
0 1 1 0 0 0 1 1
1 1 0 1 1 0 0 0
0 0 1 1 0 1 1 0
I would like to have some suggestions on how to program this construction so that from a given matrix B I can deduce the matrix C.
Matlab's range indexing should help you do this in a few steps. The key things to remember are that ranges are inclusive, i.e. A[1:3] is a three 3x1 matrix, and that you can use the keyword end to automatically index the end of the matrix row or column.
%% Variables from OP example
w = 2;
L = 4;
B0 = [1 0];
B1 = [0 1];
B2 = [1 1];
[a, b] = size(B0);
% Construct B
BX = [B0;B1;B2]
B = zeros((L+w)*a, L*b);
for ii = 0:L-1
B(ii+1:ii+w+1, ii*b+1:ii*b+b) = BX;
end
%% Construct C <- THIS PART IS THE ANSWER TO THE QUESTION
% Grab first rows of B
B_first = B(1:end-w*a, :) % Indexing starts at first row, continues to w*a rows before the end, and gets all columns
% Grab last rows of B
B_last = B(end-w*a+1:end, :); % Indexing starts at w*a rows before the end, continues to end. Plus one is needed to avoid off by one error.
% Initialize C to be the same as B_first
C = B_first;
% Add B_last to the first rows of C
C(1:w*a, :) = C(1:w*a, :) + B_last;
I get the output
C =
1 0 0 0 0 0 1 1 0 1
0 1 1 0 0 0 0 0 1 1
1 1 0 1 1 0 0 0 0 0
0 0 1 1 0 1 1 0 0 0
0 0 0 0 1 1 0 1 1 0
I have a vector
Y = [1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0]
1 occurs 17 times
0 occurs 21 times
How can I randomly remove 0s so that both values have equal amounts, such as 1 (17 times) and 0 (17 times)?
This should also work on much bigger matrix.
Starting with your example
Y = [1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0]
You can do the following:
% Get the indices of the value which is more common (`0` here)
zeroIdx = find(~Y); % equivalent to find(Y==0)
% Get random indices to remove
remIdx = randperm(nnz(~Y), nnz(~Y) - nnz(Y));
% Remove elements
Y(zeroIdx(remIdx)) = [];
You could combine the last two lines, but I think it would be less clear.
The randperm line is choosing the correct number of elements to remove from random indices between 1 and the number of zeros.
If the data can only have two values
Values are assumed to be 0 and 1. The most common value is randomly removed to equalize their counts:
Y = [1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0]; % data
ind0 = find(Y==0); % indices of zeros
ind1 = find(Y==1); % indices of ones
t(1,1:numel(ind0)) = ind0(randperm(numel(ind0))); % random permutation of indices of zeros
t(2,1:numel(ind1)) = ind1(randperm(numel(ind1))); % same for ones. Pads shorter row with 0
t = t(:, all(t,1)); % keep only columns that don't have padding
result = Y(sort(t(:))); % linearize, sort and use those indices into the data
Generalization for more than two values
Values are arbitrary. All values except the least common one are randomly removed to equalize their counts:
Y = [0 1 2 0 2 1 1 2 0 2 1 2 2 0 0]; % data
vals = [0 1 2]; % or use vals = unique(Y), but absent values will not be detected
t = [];
for k = 1:numel(vals) % loop over values
ind_k = find(Y==vals(k));
t(k, 1:numel(ind_k)) = ind_k(randperm(numel(ind_k)));
end
t = t(:, all(t,1));
result = Y(sort(t(:)));
I have a matrix
a =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
and b vector
b =
1 2 3 4 5 5
I want to replace value of each row in a matrix with reference value of b matrix value and finally generate a matrix as follows without using for loop.
a_new =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
if first element of b, b(1) = 1 so change take first row of a vector and make first element as 1 because b(1) = 1.
How can I implement this without using for loop?
Sure. You only need to build a linear index from b and use it to fill the values in a:
a = zeros(6,5); % original matrix
b = [1 2 3 4 5 5]; % row or column vector with column indices into a
ind = (1:size(a,1)) + (b(:).'-1)*size(a,1); % build linear index
a(ind) = 1; % fill value at those positions
Same as Luis Mendo's answer, but using the dedicated function sub2ind:
a( sub2ind(size(a),(1:numel(b)).',b(:)) ) = 1
Also via the subscript to indices conversion way,
a = zeros(6,5);
b = [1 2 3 4 5 5];
idx = sub2ind(size(a), [1:6], b); % 1:6 just to create the row index per b entry
a(idx) = 1
any of these methods works in Octave:
bsxfun(#eq, [1:5 5]',(1:5))
[1:5 5].' == (1:5)
Within the context of writing a certain function, I have the following example matrix:
temp =
1 2 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 1
I want to obtain an array whose each element indicates the number of the element out of all non-zero elements which starts that column. If a column is empty, the element should correspond to the next non-empty column. For the matrix temp, the result would be:
result = [1 3 5 5 5 6]
Because the first non-zero element starts the first column, the third starts the second column, the fifth starts the fifth column and the sixth starts the sixth column.
How can I do this operation for any general matrix (one which may or may not contain empty columns) in a vectorized way?
Code:
temp = [1 2 0 0 1 0; 1 0 0 0 0 0; 0 1 0 0 0 1]
t10 = temp~=0
l2 = cumsum(t10(end:-1:1))
temp2 = reshape(l2(end)-l2(end:-1:1)+1, size(temp))
result = temp2(1,:)
Output:
temp =
1 2 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 1
t10 =
1 1 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 1
l2 =
1 1 1 1 1 2 2 2 2 2 2 2 3 3 4 4 5 6
temp2 =
1 3 5 5 5 6
2 4 5 5 6 6
3 4 5 5 6 6
result =
1 3 5 5 5 6
Printing values of each step may be clearer than my explanation. Basically we use cumsum to get the IDs of the non-zero elements. As you need to know the ID before reaching the element, a reversed cumsum will do. Then the only thing left is to reverse the ID numbers back.
Here's another way:
temp = [1 2 0 0 1 0; 1 0 0 0 0 0; 0 1 0 0 0 1]; % data
[~, c] = find(temp); % col indices of nonzero elements
result = accumarray(c, 1:numel(c), [], #min, NaN).'; % index, among all nonzero
% values, of the first nonzero value of each col; or NaN if none exists
result = cummin(result, 'reverse'); % fill NaN's using backwards cumulative maximum
I have a logical matrix A, and I would like to select all the elements to the left of each of my 1s values given a fixed distant. Let's say my distance is 4, I would like to (for instance) replace with a fixed value (saying 2) all the 4 cells at the left of each 1 in A.
A= [0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 1]
B= [0 2 2 2 2 1 0
2 1 0 0 0 0 0
0 0 0 0 0 0 0
2 2 2 2 2 2 1]
In B is what I would like to have, considering also overwrting (last row in B), and cases where there is only 1 value at the left of my 1 and not 4 as the fixed searching distance (second row).
How about this lovely one-liner?
n = 3;
const = 5;
A = [0 0 0 0 0 1 0;
0 1 0 0 0 0 0;
0 0 0 0 0 0 0;
0 0 0 0 1 0 1]
A(bsxfun(#ne,fliplr(filter(ones(1,1+n),1,fliplr(A),[],2)),A)) = const
results in:
A =
0 0 5 5 5 1 0
5 1 0 0 0 0 0
0 0 0 0 0 0 0
0 5 5 5 5 5 1
here some explanations:
Am = fliplr(A); %// mirrored input required
Bm = filter(ones(1,1+n),1,Am,[],2); %// moving average filter for 2nd dimension
B = fliplr(Bm); %// back mirrored
mask = bsxfun(#ne,B,A) %// mask for constants
A(mask) = const
Here is a simple solution you could have come up with:
w=4; % Window size
v=2; % Desired value
B = A;
for r=1:size(A,1) % Go over all rows
for c=2:size(A,2) % Go over all columns
if A(r,c)==1 % If we encounter a 1
B(r,max(1,c-w):c-1)=v; % Set the four spots before this point to your value (if possible)
end
end
end
d = 4; %// distance
v = 2; %// value
A = fliplr(A).'; %'// flip matrix, and transpose to work along rows.
ind = logical( cumsum(A) ...
- [ zeros(size(A,1)-d+2,size(A,2)); cumsum(A(1:end-d-1,:)) ] - A );
A(ind) = v;
A = fliplr(A.');
Result:
A =
0 2 2 2 2 1 0
2 1 0 0 0 0 0
0 0 0 0 0 0 0
2 2 2 2 2 2 1
Approach #1 One-liner using imdilate available with Image Processing Toolbox -
A(imdilate(A,[ones(1,4) zeros(1,4+1)])==1)=2
Explanation
Step #1: Create a morphological structuring element to be used with imdilate -
morph_strel = [ones(1,4) zeros(1,4+1)]
This basically represents a window extending n places to the left with ones and n places to the right including the origin with zeros.
Step #2: Use imdilate that will modify A such that we would have 1 at all four places to the left of each 1 in A -
imdilate_result = imdilate(A,morph_strel)
Step #3: Select all four indices for each 1 of A and set them to 2 -
A(imdilate_result==1)=2
Thus, one can write a general form for this approach as -
A(imdilate(A,[ones(1,window_length) zeros(1,window_length+1)])==1)=new_value
where window_length would be 4 and new_value would be 2 for the given data.
Approach #2 Using bsxfun-
%// Paramters
window_length = 4;
new_value = 2;
B = A' %//'
[r,c] = find(B)
extents = bsxfun(#plus,r,-window_length:-1)
valid_ind1 = extents>0
jump_factor = (c-1)*size(B,1)
extents_valid = extents.*valid_ind1
B(nonzeros(bsxfun(#plus,extents_valid,jump_factor).*valid_ind1))=new_value
B = B' %// B is the desired output