Microservices and database - database

What is the best practice to deploy database in microservices architecture, more precisely in distributed environment, such as docker swarm? Microservices principles states each service should be stateless to enable scaling. As database obviously has a state, should it live at fixed position outside of cluster, deployed and configured before the cluster is initialized?
I'm confused, because all docker compose examples includes database container in the service definition. But things aren't that simple. Often the database needs a lot of configuration before it's ready to use. Also, docker sucks at coordinating the service starting order.
If it's really a good practice to deploy the database alongside with services to docker swarm, how to ensure consistency and persistence of cricial data?

This is a good question and one I think a lot of people are still thinking through as far as best practices are concerned. The answer really depends on your needs. There are several ways to crack this nut but these are the two I'm using right now:
Running the database in the typical manner on dedicated machine(s) with replication, etc
I am currently experimenting with running the database as a service on a Docker Swarm cluster with the data persisted across the cluster with GlusterFS
I have three machines in the cluster labeled as database machines
These database machines all run a GlusterFS container providing the GlusterFS capabilities
When the database service is started I map the GlusterFS share into the container and specify that the service should only run on a machine labeled as a database node. With this setup it doesn't matter which node the database service starts on and if a machine fails the database service is automatically migrated to another node labeled as a database node. The GlusterFS replication of data ensures the integrity of the persisted data.
As mentioned, it is my understanding that there is still a lot of experimentation going on with this and 'best practices' are not entirely established. Those best practices will ultimately depend on your needs and risk tolerances.

Related

Is it recommended to use Database as a container in Production environment?

Assuming we are using a micro service architecture for a product and we decide to use 'Database per service' model, and deploy in cloud servers by provider like AWS.
It is convenient to have databases running as a container for development and test environments.
But can same be implemented for Production environment! If so, how safe it would be?
Or is it proper to go with cloud solution as AWS RDS-DB instead!!
This blog post lists some reasons why you should not run production databases in containers. It also references another blog post describing problems with updating docker and unstable storage drivers.
The main points here for me boil down to this:
Dodgy storage drivers. This may be less of a problem when you write your database state to the host system but Docker for example explicitly encourages users to use volumes for exactly that (see the docs: Citation: "Volumes are the best way to persist data in Docker"). It may just work fine under normal circumstances, but what about the edge-cases like power-failures or read-errors for example?
Managing databases in production is hard. Many companies employ full-time DBAs to ensure smooth operation of production databases. The devops paradigm (every dev creates a plethora of DB servers in containers) makes it nearly impossible for a DBA to do his job. That is if the DBA even has access to these DBs.
In conclusion: Containers are fine for certain tasks and a bad idea for others. Running production databases in containers is one of those bad ideas.
We containerise our db in production (on-premises enterprise application). Many do. It's perfectly stable and the deployment is much simplified. Of course our db is not under stress; we're dealing with hundreds of concurrent users, not tens of thousands. We just make sure that the container has enough RAM and is monitored well.
If we did need to dedicate an entire VM to the db alone, then yes I would skip docker.
According to link below, it is not a good idea to use database container in Production.
But as I have experienced; if you isolate your container from your app and update your container regularly and also manage networking stuff, there seems to be no problem.
Link: https://www.quora.com/Is-it-not-advisable-to-use-database-in-Docker-container
As you are using Database Per Service Model for Microservice, in Production perfect solution can be AWS RDS instance for database, Now you have 2 approaches :
You can create single RDS Instance and can have different databases for different services on same RDS insatnce, it will save cost a lot but you need to take care of database connections and load you will be having on database based on that you have to choose RDS instance type like 4xlarge etc, better the instance type more connection it will provide and more database load it can handle effectively.
Second solution can be creating several RDS instance and number of RDS instance will be equivalent to your microservice count as each service will be using one RDS instance for its database independently, this is not the effective solution, it will incur lot of cost and this solution will under utilize AWS RDS instances.

How does Docker Swarm handle database (PostgreSQL) replication?

I'm learning Docker Swarm mode and I managed to create a Swarm locally with a web application and a PostgreSQL database. I can scale them and I see Swarm creating replicas.
I think I understand how Docker Swarm can load balance regular web servers, but how does it deal out of the box with database containers?
Outside of the Swarm context, usually databases have their own ways to deal with replication, in the form of plugins or extended products like MySQL cluster. Other databases like Cassandra have replication built directly into their product.
On a Swarm context, do we still need to rely on those database plugins and features?
What is the expected pattern to handle data consistency between replicas of a database container?
I know it's a very open-ended question, but Docker's documentation is very open-ended too and I can't seem to find anything specific to this.
How does it deal out of the box with database containers?
It doesn't.
There is a pretty good description of Swarm services here: How services work (emphasis mine)
When you deploy the service to the swarm, the swarm manager accepts your service definition as the desired state for the service. Then it schedules the service on nodes in the swarm as one or more replica tasks.
Swarm has no idea what's inside the task, all it knows is how many instances of it there are, whether those instances are passing their health checks, and if there are enough of them to satisfy the task definition you gave it. The word overlap between this and database replicas is a little unfortunate, but they are different concepts.
What is the expected pattern to handle data consistency between replicas of a database container?
Setting up data replication is on you. These are probably as good a place to start as any
How to Set Up PostgreSQL for High Availability and Replication with Hot Standby
PostgreSQL Replication Example
Docker swarm currently scales well for the stateless applications. For database replication, you have to rely on every database's own replication mechanism. Swarm could not manage the datatbase replication. The volume or file system level replication could provide the protection for a single instance database, but are not aware of database replication/cluster.
For databases such as PostgreSQL, the additional works are required. There are a few options:
Use host's local directory. You will need to create one service for every replica, and use constraint to schedule the container to one specific host. You will also need custom postgresql docker image to set up the postgresql replication among replicas. While, when one node goes down, one PostgreSQL replica will go down. You will need to work to bring up another replica. See crunchydata's example.
Use the volume plugin, such as flocker, REX-Ray. You will still need to create one service for every replica, and bind one volume to one service. You need to create all services in the same overlay network and configure the PostgreSQL replicas to talk with each other via the dns name (the docker service name of the replica). You will still need to set up the postgresql replication among replicas.

Load-Balancing Database in Heroku

I have an application in Rails that displays a lot of information to the user.
Using new relic, I notice that the database is working intensively and that this will probably limit my ability to scale (assume for now that the SQL is fine)
Is there a way I can have several databases which will be in sync, and the requests will be load-balanced between them?
Does Heroku provide such a system?
Maybe more importantly - Should I rely on Heroku for an app which needs to scale? (is the architecture one web server connects to one database server or can it do more?)
Look in to heroku follower database.
https://devcenter.heroku.com/articles/heroku-postgres-follower-databases
It will keep your database sync and for load balancing you will need to configure octopus.
Moreover regarding scalability its quite easy (application level scalability just increase the dynos) and on database they are having multiple models (with different cache sizes) and its quite ease with to switch between these models (with ignoreable down time)
thanks

Cloud Architecture

I'm researching cloud services to host an e-commerce site. And I'm trying to understand some basics on how they are able to scale things.
From what I can gather from AWS, Rackspace, etc documentation:
Setup 1:
You can get an instance of a webserver (AWS - EC2, Rackspace - Cloud Server) up. Then you can grow that instance to have more resources or make replicas of that instance to handle more traffic. And it seems like you can install a database local to these instances.
Setup 2:
You can have instance(s) of a webserver (AWS - EC2, Rackspace - Cloud Server) up. You can also have instance(s) of a database (AWS - RDS, Rackspace - Cloud Database) up. So the webserver instances can communicate with the database instances through a single access point.
When I use the term instances, I'm just thinking of replicas that can be access through a single access point and data is synchronized across each replica in the background. This could be the wrong mental image, but it's the best I got right now.
I can understand how setup 2 can be scalable. Webserver instances don't change at all since it's just the source code. So all the http requests are distributed to the different webserver instances and is load balanced. And the data queries have a single access point and are then distributed to the different database instances and is load balanced and all the data writes are sync'd between all database instances that is transparent to the application/webserver instance(s).
But for setup 1, where there is a database setup locally within each webserver instance, how is the data able to be synchronized across the other databases local to the other web server instances? Since the instances of each webserver can't talk to each other, how can you spin up multiple instances to scale the app? Is this setup mainly for sites with static content where the data inside the database is not getting changed? So with an e-commerce site where orders are written to the database, this architecture will just not be feasible? Or is there some way to get each webserver instance to update their local database to some master copy?
Sorry for such a simple question. I'm guessing the documentation doesn't say it plainly because it's so simple or I just wasn't able to find the correct document/page.
Thank you for your time!
Update:
Moved question to here:
https://webmasters.stackexchange.com/questions/32273/cloud-architecture
We have one server setup to be the application server, and our database installed across a cluster of separate machines on AWS in the same availability zone (initially three but scalable). The way we set it up is with a "k-safe" replication. This is scalable as the data is distributed across the machines, and duplicated such that one machine could disappear entirely and the site continues to function. THis also allows queries to be distributed.
(Another configuration option was to duplicate all the data on each of the database machines)
Relating to setup #1, you're right, if you duplicate the entire database on each machine with load balancing, you need to worry about replicating the data between the nodes, this will be complex and will take a toll on performance, or you'll need to sacrifice consistency, or synchronize everything to a single big database and then you lose the effect of clustering. Also keep in mind that when throughput increases, adding an additional server is a manual operation that can take hours, so you can't respond to throughput on-demand.
Relating to setup #2, here scaling the application is easy and the cloud providers do that for you automatically, but the database will become the bottleneck, as you are aware. If the cloud provider scales up your application and all those application instances talk to the same database, you'll get more throughput for the application, but the database will quickly run out of capacity. It has been suggested to solve this by setting up a MySQL cluster on the cloud, which is a valid option but keep in mind that if throughput suddenly increases you will need to reconfigure the MySQL cluster which is complex, you won't have auto scaling for your data.
Another way to do this is a cloud database as a service, there are several options on both the Amazon and RackSpace clouds. You mentioned RDS but it has the same issue because in the end it's limited to one database instance with no auto-scaling. Another MySQL database service is Xeround, which spreads the load over several database nodes, and there is a load balancer that manages the connection between those nodes and synchronizes the data between the partitions automatically. There is a single access point and a round-robin DNS that sends the requests to up to thousands of database nodes. So this might answer your need for a single access point and scalability of the database, without needing to setup a cluster or change it every time there is a scale operation.

Caching to a local SQL instance on a web server

I run a very high traffic(10m impressions a day)/high revenue generating web site built with .net. The core meta data is stored on a SQL server. My team and I have a unique caching strategy that involves querying the database for new meta data at regular intervals from a middle tier server, serializing the data to files and sending those to the web nodes. The web application uses the data in these files (some are actually serialized objects) to instantiate objects and caches those in memory to use for real time requests.
The advantage of this model is that it:
Allows the web nodes to cache all data in memory and not incur any IO overhead querying a database.
If the database ever goes down either unexpectedly or for maintenance windows, the web servers will continue to run and generate revenue. You can even fire up a web server without having to retrieve its initial data from the DB because all the data it needs are in files on its own disks.
Allows us to be completely horizontally scalable. If throughput suffers, we can just add a web server.
The disadvantages are that this caching and persistense layers adds complexity in the code that queries the database, packages the data and unpackages it on the web server. Any time our domain model requires us to add entities, more of this "plumbing" has to be coded. This architecture has been in place for four years and there are probably better ways to tackle this.
One strategy I have been considering is using replication to replicate our master sql server database to local database instances installed on each web server. The web server application would use normal sql/ORM techniques to instantiate objects. Here, we can still sustain a master database outage and we would not have to code up specialized caching code and could instead use nHibernate to handle the persistence.
This seems like a more elegant solution and would like to see what others think or if anyone else has any alternatives to suggest.
I think you're overthinking this. SQL Server already has mechanisms available to you to handle these kinds of things.
First, implement a SQL Server cluster to protect your main database. You can fail over from node to node in the cluster without losing data, and downtime is a matter of seconds, max.
Second, implement database mirroring to protect from a cluster failure. Depending on whether you use synchronous or asynchronous mirroring, your mirrored server will either be updated in realtime or a few minutes behind. If you do it in realtime, you can fail over to the mirror automatically inside your app - SQL Server 2005 & above support embedding the mirror server's name in the connection string, so you don't even have to lift a finger. The app just connects to whatever server's live.
Between these two things, you're protected from just about any main database failure short of a datacenter-wide power outage or network outage, and there's none of the complexity of the replication stuff. That covers your high availability issue, and lets you answer the scaling question separately.
My favorite starting point for scaling is using three separate connection strings in your application, and choose the right one based on the needs of your query:
Realtime - Points directly at the one master server. All writes go to this connection string, and only the most mission-critical reads go here.
Near-Realtime - Points at a load balanced pool of read-only SQL Servers that are getting updated by replication or log shipping. In your original design, these lived on the web servers, but that's dangerous practice and a maintenance nightmare. SQL Server needs a lot of memory (not to mention money for licensing) and you don't want to be tied into adding a database server for every single web server.
Delayed Reporting - In your environment right now, it's going to point to the same load-balanced pool of subscribers, but down the road you can use a technology like log shipping to have a pool of servers 8-24 hours behind. These scale out really well, but the data's far behind. It's great for reporting, search, long-term history, and other non-realtime needs.
If you design your app to use those 3 connection strings from the start, scaling is a lot easier, and doesn't involve any coding complexity - just pick the right connection string.
Have you considered memcached? Since it is:
in memory
can run locally
fully scalable horizontally
prevents the need to re-cache on each web server
It may fit the bill. Check out Google for lots of details and usage stories.
Just some addition to what RickNZ proposed above..
Since your master data which you are caching currently won't change so frequently and probably over some maintenance window, here is what should you do first on database side:
Create a SNAPSHOT replication for the master tables which you want to cache. Adding new entities will be equally easy.
On all the webservers, install SQL Express and subscribe to this Publication.
Since, this is not a frequently changing data, you can rest assure, no much server resource usage issue minus network trips for master data.
All your caching which was available via previous mechanism is still availbale minus all headache which comes when you add new entities.
Next, you can leverage .NET mechanisms as suggested above. You won't face memcached cluster failure unless your webserver itself goes down. There is a lot availble in .NET which a .NET pro can point out after this stage.
It seems to me that Windows Server AppFabric is exactly what you are looking for. (AKA "Velocity"). From the introductory documentation:
Windows Server AppFabric provides a
distributed in-memory application
cache platform for developing
scalable, available, and
high-performance applications.
AppFabric fuses memory across multiple
computers to give a single unified
cache view to applications.
Applications can store any
serializable CLR object without
worrying about where the object gets
stored. Scalability can be achieved by
simply adding more computers on
demand. The cache also allows for
copies of data to be stored across the
cluster, thus protecting data against
failures. It runs as a service
accessed over the network. In
addition, Windows Server AppFabric
provides seamless integration with
ASP.NET that enables ASP.NET session
objects to be stored in the
distributed cache without having to
write to databases. This increases
both the performance and scalability
of ASP.NET applications.
Have you considered using SqlDependency caching?
You could also write the data to the local disk at the web tier, if you're concerned about initial start-up time or DB outages. But at least with a SqlDependency, you shouldn't have to poll the DB to look for changes. It can also be made relatively transparent.
In my experience, adding a DB instance on web servers generally doesn't work out too well from a scalability or performance perspective.
If you're concerned about performance and scalability, you might consider partitioning your data tier. The specifics depend on your app, but as an example, you could move read-only data onto a couple of SQL Express servers that are populated with replication.
In case it helps, I talk about this subject at length in my book (Ultra-Fast ASP.NET).

Resources