How to scale a number/range of numbers in c - c

I want to be able to display the altitude in ft ranging from 0ft to 20000ft on my LCD module. The numbers are read from a potentiometer that I can rotate to change the values. At the moment the potentiometer displays from 0 to 1023 but I need to scale these appropriately so they read from 0-20000ft. As well as this I want the line below to display a 'bar graph' to represent the altitude increasing. The LCD has 20 blocks per line so the bar graph can range from 1 block to 20 blocks.
sprintf(buf, "Altitude: %d ", DELVAL2); // display altitude level
lcd_putxy(1,0,buf);
for (delay = 0; delay < 50000; delay++); // introduce a delay
sprintf(buf, "*", DELVAL2 ); // display bar graph
lcd_putxy(2,0,buf);
for (delay = 0; delay < 50000; delay++); // introduce a delay
This is my code so far. It reads the value from the potentiometer DELVAL2 and displays it on the LCD. Can someone please explain a method of how I can scale the data appropriately to produce an altitude and bar graph.

If your DELVAL2 is in range 0-1023 you can scale it to 0-20000, but you cannot get bigger resolution than (1/1024) * 20000. Why? Minimum value (single bit) you can read is 1/1024. Your maximum value is 20000, so one bit change on DELVAL2 will result in 20000/1024 = 19,53 change on scaled value.
You can calculate how to scale it, it's already described on stackoverflow:
How to scale down a range of numbers with a known min and max value
You must keep in mind that you may fall into floating point operation and this is something that you may want to avoid. For example, you can do something like this
scaled = (DELVAL2 * 1953) / 1000;
instead of
scaled = DELVAL2 * 19.53;
Keep in mind that maximum value that you can get inside this computation will be 1024*1953 = 1999872, so you need 32 bit variable. Additional cast may be needed, depending on your architecture and compiler, eg
scaled = (DELVAL2 * (uint32_t)1953) / 1000;
About second question - bar graph - you are on good way. Calculate how many symbols do you need and draw them. It's scaling down instead of up. Simple division should be enough. When you know how many symbols you need, generate them in simple loop
for(int i = 0; i < num; i++)
buf[i] = '*';
buf[i] = 0; //last symbol is 0 to stop drawing
lcd_putxy(2,0,buf);

To scale [0...1023] to [0...20000] multiply by 20,000 and then divide by 1023.
int altitude = (int) ((potentiometer*20000L + 1023/2)/1023);
Code uses long multiplication as int may only be 16-bit on a micro-controller. Not necessary if INT_MAX == 0x7FFFFFFF.
The + 1023/2 is to provide a rounded conversion.

Presumably buf is a 16-bit integer, and contains the pot value. Presumably you can rely on it being limited to the values [0, 1023].
If you do
int scaledbuf;
scaledbuf = buf >> 5;
you'll get a value of scaledbuf in the range [0, 32736]. You could then do
if (scaledbuf > 20000) scaledbuf = 20000;
At the cost of sacrificing some of the range of your pot, this will give you a value in the range [0,20000] without doing any multiplications, only a left shift.
But, you're torching cycles in your delay loops anyway, so you can probably manage the cost of a multiplication by 20.
int scaledbuf;
scaledbuf = buf * 20;
if (scaledbuf > 20000) scaledbuf = 20000;
This preserves considerably more of your pot's range while keeping you in the realm of 16-bit arithmetic.

Related

Endless sine generation in C

I am working on a project which incorporates computing a sine wave as input for a control loop.
The sine wave has a frequency of 280 Hz, and the control loop runs every 30 µs and everything is written in C for an Arm Cortex-M7.
At the moment we are simply doing:
double time;
void control_loop() {
time += 30e-6;
double sine = sin(2 * M_PI * 280 * time);
...
}
Two problems/questions arise:
When running for a long time, time becomes bigger. Suddenly there is a point where the computation time for the sine function increases drastically (see image). Why is this? How are these functions usually implemented? Is there a way to circumvent this (without noticeable precision loss) as speed is a huge factor for us? We are using sin from math.h (Arm GCC).
How can I deal with time in general? When running for a long time, the variable time will inevitably reach the limits of double precision. Even using a counter time = counter++ * 30e-6; only improves this, but it does not solve it. As I am certainly not the first person who wants to generate a sine wave for a long time, there must be some ideas/papers/... on how to implement this fast and precise.
Instead of calculating sine as a function of time, maintain a sine/cosine pair and advance it through complex number multiplication. This doesn't require any trigonometric functions or lookup tables; only four multiplies and an occasional re-normalization:
static const double a = 2 * M_PI * 280 * 30e-6;
static const double dx = cos(a);
static const double dy = sin(a);
double x = 1, y = 0; // complex x + iy
int counter = 0;
void control_loop() {
double xx = dx*x - dy*y;
double yy = dx*y + dy*x;
x = xx, y = yy;
// renormalize once in a while, based on
// https://www.gamedev.net/forums/topic.asp?topic_id=278849
if((counter++ & 0xff) == 0) {
double d = 1 - (x*x + y*y - 1)/2;
x *= d, y *= d;
}
double sine = y; // this is your sine
}
The frequency can be adjusted, if needed, by recomputing dx, dy.
Additionally, all the operations here can be done, rather easily, in fixed point.
Rationality
As #user3386109 points out below (+1), the 280 * 30e-6 = 21 / 2500 is a rational number, thus the sine should loop around after 2500 samples exactly. We can combine this method with theirs by resetting our generator (x=1,y=0) every 2500 iterations (or 5000, or 10000, etc...). This would eliminate the need for renormalization, as well as get rid of any long-term phase inaccuracies.
(Technically any floating point number is a diadic rational. However 280 * 30e-6 doesn't have an exact representation in binary. Yet, by resetting the generator as suggested, we'll get an exactly periodic sine as intended.)
Explanation
Some requested an explanation down in the comments of why this works. The simplest explanation is to use the angle sum trigonometric identities:
xx = cos((n+1)*a) = cos(n*a)*cos(a) - sin(n*a)*sin(a) = x*dx - y*dy
yy = sin((n+1)*a) = sin(n*a)*cos(a) + cos(n*a)*sin(a) = y*dx + x*dy
and the correctness follows by induction.
This is essentially the De Moivre's formula if we view those sine/cosine pairs as complex numbers, in accordance to Euler's formula.
A more insightful way might be to look at it geometrically. Complex multiplication by exp(ia) is equivalent to rotation by a radians. Therefore, by repeatedly multiplying by dx + idy = exp(ia), we incrementally rotate our starting point 1 + 0i along the unit circle. The y coordinate, according to Euler's formula again, is the sine of the current phase.
Normalization
While the phase continues to advance with each iteration, the magnitude (aka norm) of x + iy drifts away from 1 due to round-off errors. However we're interested in generating a sine of amplitude 1, thus we need to normalize x + iy to compensate for numeric drift. The straight forward way is, of course, to divide it by its own norm:
double d = 1/sqrt(x*x + y*y);
x *= d, y *= d;
This requires a calculation of a reciprocal square root. Even though we normalize only once every X iterations, it'd still be cool to avoid it. Fortunately |x + iy| is already close to 1, thus we only need a slight correction to keep it at bay. Expanding the expression for d around 1 (first order Taylor approximation), we get the formula that's in the code:
d = 1 - (x*x + y*y - 1)/2
TODO: to fully understand the validity of this approximation one needs to prove that it compensates for round-off errors faster than they accumulate -- and thus get a bound on how often it needs to be applied.
The function can be rewritten as
double n;
void control_loop() {
n += 1;
double sine = sin(2 * M_PI * 280 * 30e-6 * n);
...
}
That does exactly the same thing as the code in the question, with exactly the same problems. But it can now be simplified:
280 * 30e-6 = 280 * 30 / 1000000 = 21 / 2500 = 8.4e-3
Which means that when n reaches 2500, you've output exactly 21 cycles of the sine wave. Which means that you can set n back to 0.
The resulting code is:
int n;
void control_loop() {
n += 1;
if (n == 2500)
n = 0;
double sine = sin(2 * M_PI * 8.4e-3 * n);
...
}
As long as your code can run for 21 cycles without problems, it'll run forever without problems.
I'm rather shocked at the existing answers. The first problem you detect is easily solved, and the next problem magically disappears when you solve the first problem.
You need a basic understanding of math to see how it works. Recall, sin(x+2pi) is just sin(x), mathematically. The large increase in time you see happens when your sin(float) implementation switches to another algorithm, and you really want to avoid that.
Remember that float has only 6 significant digits. 100000.0f*M_PI+x uses those 6 digits for 100000.0f*M_PI, so there's nothing left for x.
So, the easiest solution is to keep track of x yourself. At t=0 you initialize x to 0.0f. Every 30 us, you increment x+= M_PI * 280 * 30e-06;. The time does not appear in this formula! Finally, if x>2*M_PI, you decrement x-=2*M_PI; (Since sin(x)==sin(x-2*pi)
You now have an x that stays nicely in the range 0 to 6.2834, where sin is fast and the 6 digits of precision are all useful.
How to generate a lovely sine.
DAC is 12bits so you have only 4096 levels. It makes no sense to send more than 4096 samples per period. In real life you will need much less samples to generate a good quality waveform.
Create C file with the lookup table (using your PC). Redirect the output to the file (https://helpdeskgeek.com/how-to/redirect-output-from-command-line-to-text-file/).
#define STEP ((2*M_PI) / 4096.0)
int main(void)
{
double alpha = 0;
printf("#include <stdint.h>\nconst uint16_t sine[4096] = {\n");
for(int x = 0; x < 4096 / 16; x++)
{
for(int y = 0; y < 16; y++)
{
printf("%d, ", (int)(4095 * (sin(alpha) + 1.0) / 2.0));
alpha += STEP;
}
printf("\n");
}
printf("};\n");
}
https://godbolt.org/z/e899d98oW
Configure the timer to trigger the overflow 4096*280=1146880 times per second. Set the timer to generate the DAC trigger event. For 180MHz timer clock it will not be precise and the frequency will be 279.906449045Hz. If you need better precision change the number of samples to match your timer frequency or/and change the timer clock frequency (H7 timers can run up to 480MHz)
Configure DAC to use DMA and transfer the value from the lookup table created in the step 1 to the DAC on the trigger event.
Enjoy beautiful sine wave using your oscilloscope. Note that your microcontroller core will not be loaded at all. You will have it for other tasks. If you want to change the period simple reconfigure the timer. You can do it as many times per second as you wish. To reconfigure the timer use timer DMA burst mode - which will reload PSC & ARR registers on the upddate event automatically not disturbing the generated waveform.
I know it is advanced STM32 programming and it will require register level programming. I use it to generate complex waveforms in our devices.
It is the correct way of doing it. No control loops, no calculations, no core load.
I'd like to address the embedded programming issues in your code directly - #0___________'s answer is the correct way to do this on a microcontroller and I won't retread the same ground.
Variables representing time should never be floating point. If your increment is not a power of two, errors will always accumulate. Even if it is, eventually your increment will be smaller than the smallest increment and the timer will stop. Always use integers for time. You can pick an integer size big enough to ignore roll over - an unsigned 32 bit integer representing milliseconds will take 50 days to roll over, while an unsigned 64 bit integer will take over 500 million years.
Generating any periodic signal where you do not care about the signal's phase does not require a time variable. Instead, you can keep an internal counter which resets to 0 at the end of a period. (When you use DMA with a look-up table, that's exactly what you're doing - the counter is the DMA controller's next-read pointer.)
Whenever you use a transcendental function such as sine in a microcontroller, your first thought should be "can I use a look-up table for this?" You don't have access to the luxury of a modern operating system optimally shuffling your load around on a 4 GHz+ multi-core processor. You're often dealing with a single thread that will stall waiting for your 200 MHz microcontroller to bring the FPU out of standby and perform the approximation algorithm. There is a significant cost to transcendental functions. There's a cost to LUTs too, but if you're hitting the function constantly, there's a good chance you'll like the tradeoffs of the LUT a lot better.
As noted in some of the comments, the time value is continually growing with time. This poses two problems:
The sin function likely has to perform a modulus internally to get the internal value into a supported range.
The resolution of time will become worse and worse as the value increases, due to adding on higher digits.
Making the following changes should improve the performance:
double time;
void control_loop() {
time += 30.0e-6;
if((1.0/280.0) < time)
{
time -= 1.0/280.0;
}
double sine = sin(2 * M_PI * 280 * time);
...
}
Note that once this change is made, you will no longer have a time variable.
Use a look-up table. Your comment in the discussion with Eugene Sh.:
A small deviation from the sine frequency (like 280.1Hz) would be ok.
In that case, with a control interval of 30 µs, if you have a table of 119 samples that you repeat over and over, you will get a sine wave of 280.112 Hz. Since you have a 12-bit DAC, you only need 119 * 2 = 238 bytes to store this if you would output it directly to the DAC. If you use it as input for further calculations like you mention in the comments, you can store it as float or double as desired. On an MCU with embedded static RAM, it only takes a few cycles at most to load from memory.
If you have a few kilobytes of memory available, you can eliminate this problem completely with a lookup table.
With a sampling period of 30 µs, 2500 samples will have a total duration of 75 ms. This is exactly equal to the duration of 21 cycles at 280 Hz.
I haven't tested or compiled the following code, but it should at least demonstrate the approach:
double sin2500() {
static double *table = NULL;
static int n = 2499;
if (!table) {
table = malloc(2500 * sizeof(double));
for (int i=0; i<2500; i++) table[i] = sin(2 * M_PI * 280 * i * 30e-06);
}
n = (n+1) % 2500;
return table[n];
}
How about a variant of others' modulo-based concept:
int t = 0;
int divisor = 1000000;
void control_loop() {
t += 30 * 280;
if (t > divisor) t -= divisor;
double sine = sin(2 * M_PI * t / (double)divisor));
...
}
It calculates the modulo in integer then causes no roundoff errors.
There is an alternative approach to calculating a series of values of sine (and cosine) for angles that increase by some very small amount. It essentially devolves down to calculating the X and Y coordinates of a circle, and then dividing the Y value by some constant to produce the sine, and dividing the X value by the same constant to produce the cosine.
If you are content to generate a "very round ellipse", you can use a following hack, which is attributed to Marvin Minsky in the 1960s. It's much faster than calculating sines and cosines, although it introduces a very small error into the series. Here is an extract from the Hakmem Document, Item 149. The Minsky circle algorithm is outlined.
ITEM 149 (Minsky): CIRCLE ALGORITHM
Here is an elegant way to draw almost circles on a point-plotting display:
NEW X = OLD X - epsilon * OLD Y
NEW Y = OLD Y + epsilon * NEW(!) X
This makes a very round ellipse centered at the origin with its size determined by the initial point. epsilon determines the angular velocity of the circulating point, and slightly affects the eccentricity. If epsilon is a power of 2, then we don't even need multiplication, let alone square roots, sines, and cosines! The "circle" will be perfectly stable because the points soon become periodic.
The circle algorithm was invented by mistake when I tried to save one register in a display hack! Ben Gurley had an amazing display hack using only about six or seven instructions, and it was a great wonder. But it was basically line-oriented. It occurred to me that it would be exciting to have curves, and I was trying to get a curve display hack with minimal instructions.
Here is a link to the hakmem: http://inwap.com/pdp10/hbaker/hakmem/hacks.html
I think it would be possible to use a modulo because sin() is periodic.
Then you don’t have to worry about the problems.
double time = 0;
long unsigned int timesteps = 0;
double sine;
void controll_loop()
{
timesteps++;
time += 30e-6;
if( time > 1 )
{
time -= 1;
}
sine = sin( 2 * M_PI * 280 * time );
...
}
Fascinating thread. Minsky's algorithm mentioned in Walter Mitty's answer reminded me of a method for drawing circles that was published in Electronics & Wireless World and that I kept. (Credit: https://www.electronicsworld.co.uk/magazines/). I'm attaching it here for interest.
However, for my own similar projects (for audio synthesis) I use a lookup table, with enough points that linear interpolation is accurate enough (do the math(s)!)

Monte Carlo integration of the Gaussian function f(x) = exp(-x^2/2) in C incorrect output

I'm writing a short program to approximate the definite integral of the gaussian function f(x) = exp(-x^2/2), and my codes are as follows:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double gaussian(double x) {
return exp((-pow(x,2))/2);
}
int main(void) {
srand(0);
double valIntegral, yReal = 0, xRand, yRand, yBound;
int xMin, xMax, numTrials, countY = 0;
do {
printf("Please enter the number of trials (n): ");
scanf("%d", &numTrials);
if (numTrials < 1) {
printf("Exiting.\n");
return 0;
}
printf("Enter the interval of integration (a b): ");
scanf("%d %d", &xMin, &xMax);
while (xMin > xMax) { //keeps looping until a valid interval is entered
printf("Invalid interval!\n");
printf("Enter the interval of integration (a b): ");
scanf("%d %d", &xMin, &xMax);
}
//check real y upper bound
if (gaussian((double)xMax) > gaussian((double)xMin))
yBound = gaussian((double)xMax);
else
yBound = gaussian((double)xMin);
for (int i = 0; i < numTrials; i++) {
xRand = (rand()% ((xMax-xMin)*1000 + 1))/1000.00 + xMin; //generate random x value between xMin and xMax to 3 decimal places
yRand = (rand()% (int)(yBound*1000 + 1))/1000.00; //generate random y value between 0 and yBound to 3 decimal places
yReal = gaussian(xRand);
if (yRand < yReal)
countY++;
}
valIntegral = (xMax-xMin)*((double)countY/numTrials);
printf("Integral of exp(-x^2/2) on [%.3lf, %.3lf] with n = %d trials is: %.3lf\n\n", (double)xMin, (double)xMax, numTrials, valIntegral);
countY = 0; //reset countY to 0 for the next run
} while (numTrials >= 1);
return 0;
}
However, the outputs from my code doesn't match the solutions. I tried to debug and print out all xRand, yRand and yReal values for 100 trials (and checked yReal value with particular xRand values with Matlab, in case I had any typos), and those values didn't seem to be out of range in any way... I don't know where my mistake is.
The correct output for # of trials = 100 on [0, 1] is 0.810, and mine is 0.880; correct output for # of trials = 50 on [-1, 0] is 0.900, and mine was 0.940. Can anyone find where I did wrong? Thanks a lot.
Another question is, I can't find a reference to the use of following code:
double randomNumber = rand() / (double) RAND MAX;
but it was provided by the instructor and he said it would generate a random number from 0 to 1. Why did he use '/' instead of '%' after "rand()"?
There's a few logical errors / discussion points in your code, both mathematics and programming-wise.
First of all, just to get it out of the way, we're talking about the standard gaussian here, i.e.
except, the definition of the gaussian on line 6, omits the
normalising term. Given the outputs you seem to expect, this seems to have been done on purpose. Fair enough. But if you wanted to calculate the actual integral, such that a practically infinite range (e.g. [-1000, 1000]) would sum up to 1, then you would need that term.
Is my code logically correct?
No. Your code has two logical errors: one on line 29 (i.e. your if statement), and one on line 40 (i.e. the calculation of valIntegral), which is a direct consequence of the first logical error.
For the first error, consider the following plot to see why:
Your Monte Carlo process effectively considers a bounded box over a certain range, and then says "I will randomly place points inside this box, and then count the proportion of the total number of points that randomly fell under the curve; the integral estimate is then the area of the bounded box itself, times this proportion".
Now, if both
and
are to the left of the mean (i.e. 0), then your if statement correctly sets the box's upper bound (i.e. yBound) to
such that the topmost bound of the box contains the highest part of that curve. So, e.g., to estimate the integral for the range [-2,-1], you set the upper bound to
.
Similarly, if both
and
are to the right of the mean, then you correctly set yBound to
However, if
, you should be setting yBound to neither
nor
, since the 0 point is higher than both!. So in this case, your yBound should simply be at the peak of the Gaussian, i.e.
(which in your case of an unnormalised Gaussian, this takes a value of '1').
Therefore, the correct if statement is as follows:
if (xMax < 0.0)
{ yBound = gaussian((double)xMax); }
else if (xMin > 0.0)
{ yBound = gaussian((double)xMin); }
else
{ yBound = gaussian(0.0); }
As for the second logical error, we already mentioned that the value of the integral is the "area of the bounding box" times the "proportion of successes". However, you seem to ignore the height of the box in your calculation. It is true that in the special case where
, the height of your unnormalised Gaussian function defaults to '1', therefore this term can be omitted. I suspect that this is why it may have been missed. However, in the other two cases, the height of the bounding box is necessarily less than 1, and therefore needs to be included in the calculation. So the correct code for line 40 should be:
valIntegral = yBound * (xMax-xMin) * (((double)countY)/numTrials);
Why am I not getting the correct output?
Even despite the above logical errors, as we've discussed above, your output should have been correct for the specific intervals [0,1] and [-1,0] (since they include the mean and therefore the correct yBound of 1). So why are you still getting a 'wrong' output?
The answer is, you are not. Your output is "correct". Except, a Monte Carlo process involves randomness, and 100 trials is not a big enough number to lead to consistent results. If you run the same range for 100 trials again and again, you'll see you'll get very different results each time (though, overall, they'll be distributed around the right value). Run with 1000000 trials, and you'll see that the result becomes a lot more precise.
What's up with that randomNumber code?
The rand() function returns an integer in the range [0, RAND_MAX], where RAND_MAX is system-specific (have a look at man 3 rand).
The modulo approach (i.e. %) works as follows: consider the range [-0.1, 0.3]. This range spans 0.4 units. 0.4 * 1000 + 1 = 401. For a random number from 0 to RAND_MAX, doing rand() modulo 401 will always result in a random number in the range [0,400]. If you then divide this back by 1000, you get a random number in the range [0, 0.4]. Add this to your xmin offset (here: -0.1) and you get a random number in the range [-0.1, 0.3].
In theory, this makes sense. However, unfortunately, as already pointed out in the other answer here, as a method it is susceptible to modulo bias, because RAND_MAX isn't necessarily exactly divisible by 401, therefore the top part of that range leading up to RAND_MAX overrepresents some numbers compared to others.
By contrast, the approach given to you by your teacher is simply saying: divide the result of the rand() function with RAND_MAX. This effectively normalises the returned random number into the range [0,1]. This is a much more straightforward thing to do, and it avoids modulo bias.
Therefore, the way I would implement this would be to make it into a function:
double randomNumber(void) {
return rand() / (double) RAND_MAX;
}
which then simplifies your computations as follows too:
xRand = randomNumber() * (xMax-xMin) + xMin;
yRand = randomNumber() * yBound;
You can see that this is a much more accurate thing to do, if you use a normalised gaussian, i.e.
double gaussian(double x) {
return exp((-pow(x,2.0))/2.0) / sqrt(2.0 * M_PI);
}
and then compare the two methods. You will see that the randomNumber() method for an "effectively infinite" range (e.g. [-1000,1000]) gives the correct result of 1, whereas the modulo approach tends to give numbers that are larger than 1.
Your code has no obvious bug (though there is a bug in the upper bound calculation, as #TasosPapastylianou points out, though it isn't the issue in your test cases). On 100 trials, your answer of 0.880 is closer to the actual value of the integral (0.855624...) than 0.810, and neither of those numbers are so far from the true value to suggest an outright bug in the code. Seems to be within sampling error (though see below). Here is a histogram of 1000 runs of a Monte Carlo integration (done in R, but with the same algorithm) of e^(-x^2/2) on [0,1] with 100 trials:
Unless your instructor specified the algorithm and the seed in precise detail, you shouldn't expect the exact same answer.
As far as your second question about rand() / (double) RAND MAX: it is an attempt to avoid modulo bias. It is possible that such a bias is effecting your code (especially given the way you round to 3 decimal places), since it does seem to overestimate the integral (based on running it a dozen times or so). Perhaps you could use that in your code and see if you get better results.

Need Floating Point Precision Using Unsigned Int

I'm working with a microchip that doesn't have room for floating point precision, however. I need to account for fractional values during some equations. So far I've had good luck using the old *100 -> /100 method like so:
increment = (short int)(((value1 - value2)*100 / totalSteps));
// later in the code I loop through the number of totolSteps
// adding back the increment to arrive at the total I want at the precise time
// time I need it.
newValue = oldValue + (increment / 100);
This works great for values from 0-255 divided by a totalSteps of up to 300. After 300, the fractional values to the right of the decimal place, become important, because they add up over time of course.
I'm curious if anyone has a better way to save decimal accuracy within an integer paradigm? I tried using *1000 /1000, but that didn't work at all.
Thank you in advance.
Fractions with integers is called fixed point math.
Try Googling "fixed point".
Fixed point tips and tricks are out of the scope of SO answer...
Example: 5 tap FIR filter
// C is the filter coefficients using 2.8 fixed precision.
// 2 MSB (of 10) is for integer part and 8 LSB (of 10) is the fraction part.
// Actual fraction precision here is 1/256.
int FIR_5(int* in, // input samples
int inPrec, // sample fraction precision
int* c, // filter coefficients
int cPrec) // coefficients fraction precision
{
const int coefHalf = (cPrec > 0) ? 1 << (cPrec - 1) : 0; // value of 0.5 using cPrec
int sum = 0;
for ( int i = 0; i < 5; ++i )
{
sum += in[i] * c[i];
}
// sum's precision is X.N. where N = inPrec + cPrec;
// return to original precision (inPrec)
sum = (sum + coefHalf) >> cPrec; // adding coefHalf for rounding
return sum;
}
int main()
{
const int filterPrec = 8;
int C[5] = { 8, 16, 208, 16, 8 }; // 1.0 == 256 in 2.8 fixed point. Filter value are 8/256, 16/256, 208/256, etc.
int W[5] = { 10, 203, 40, 50, 72}; // A sampling window (example)
int res = FIR_5(W, 0, C, filterPrec);
return 0;
}
Notes:
In the above example:
the samples are integers (no fraction)
the coefs have fractions of 8 bit.
8 bit fractions mean that each change of 1 is treated as 1/256. 1 << 8 == 256.
Useful notation is Y.Xu or Y.Xs. where Y is how many bits are allocated for the integer part and X for he fraction. u/s denote signed/unsigned.
when multiplying 2 fixed point numbers, their precision (size of fraction bits) are added to each other.
Example A is 0.8u, B is 0.2U. C=A*B. C is 0.10u
when dividing, use a shift operation to lower the result precision. Amount of shifting is up to you. Before lowering precision it's better to add a half to lower the error.
Example: A=129 in 0.8u which is a little over 0.5 (129/256). We want the integer part so we right shift it by 8. Before that we want to add a half which is 128 (1<<7). So A = (A + 128) >> 8 --> 1.
Without adding a half you'll get a larger error in the final result.
Don't use this approach.
New paradigm: Do not accumulate using FP math or fixed point math. Do your accumulation and other equations with integer math. Anytime you need to get some scaled value, divide by your scale factor (100), but do the "add up" part with the raw, unscaled values.
Here's a quick attempt at a precise rational (Bresenham-esque) version of the interpolation if you truly cannot afford to directly interpolate at each step.
div_t frac_step = div(target - source, num_steps);
if(frac_step.rem < 0) {
// Annoying special case to deal with rounding towards zero.
// Alternatively check for the error term slipping to < -num_steps as well
frac_step.rem = -frac_step.rem;
--frac_step.quot;
}
unsigned int error = 0;
do {
// Add the integer term plus an accumulated fraction
error += frac_step.rem;
if(error >= num_steps) {
// Time to carry
error -= num_steps;
++source;
}
source += frac_step.quot;
} while(--num_steps);
A major drawback compared to the fixed-point solution is that the fractional term gets rounded off between iterations if you are using the function to continually walk towards a moving target at differing step lengths.
Oh, and for the record your original code does not seem to be properly accumulating the fractions when stepping, e.g. a 1/100 increment will always be truncated to 0 in the addition no matter how many times the step is taken. Instead you really want to add the increment to a higher-precision fixed-point accumulator and then divide it by 100 (or preferably right shift to divide by a power-of-two) each iteration in order to compute the integer "position".
Do take care with the different integer types and ranges required in your calculations. A multiplication by 1000 will overflow a 16-bit integer unless one term is a long. Go through you calculations and keep track of input ranges and the headroom at each step, then select your integer types to match.
Maybe you can simulate floating point behaviour by saving
it using the IEEE 754 specification
So you save mantisse, exponent, and sign as unsigned int values.
For calculation you use then bitwise addition of mantisse and exponent and so on.
Multiplication and Division you can replace by bitwise addition operations.
I think it is a lot of programming staff to emulate that but it should work.
Your choice of type is the problem: short int is likely to be 16 bits wide. That's why large multipliers don't work - you're limited to +/-32767. Use a 32 bit long int, assuming that your compiler supports it. What chip is it, by the way, and what compiler?

How to generate a random uniformly distributed number between -32000 and 32000

How can I generate a random uniformly distributed number in the rang of -32000 to 32000. I have already done how to generate random number without uniform distribution. The code for non-uniform distribution is given below:
sint16 min= Some value a;
sint16 max= Some value b;
sint32 array[1536];
uint16 i;
for(i=0; i<1536; i++) {
r= rand()%(max+min+1)+min;
array[i]=r;
}
This code produces non-uniform distribution. I think for uniform distribution I need to remove the modulus operation. Any suggestions please.
When the span (max+1-min) is small compared to RAND_MAX, the non-uniformity is small, and people often leave it non-uniform in applications that can tolerate it. (However, they usually distribute the non-uniformities over the entire interval. Your code groups the excess elements at the low end of the interval.)
If you want the distribution to be perfectly uniform, then it is necessary to reject some samples. This trims the number of possible values so that it is a perfect multiple of the desired span:
Let span = max+1-min.
Let M = the largest multiple of span not greater than RAND_MAX+1.
// Get samples from random-number generator until one is in range.
do
sample = rand();
while (M <= sample);
// Scale and translate to desired interval.
sample = sample / (M/span) + min;
(This assumes that span ≤ RAND_MAX+1. If you want a bigger span than rand provides, you must “paste together” samples from rand to make bigger numbers. However, it will still be necessary to use rejection to trim the samples, unless the span is a factor of some power of RAND_MAX+1.)
Assuming rand(), returns uniformly distributed integral numbers in the range [0,RAND_MAX], you can generate uniformly distributed numbers in the range [0,N] easily, as long as N<=RAND_MAX.
int uniform_rand(int N)
{
int res;
do{
res=rand();
}while(res>N);
return res;
}
You can also shift the distribution to cover the range [min,max] as long as max-min <= RAND_MAX and max>=min of course.
int sample = min + uniform_rand(max-min);
Working example
http://coliru.stacked-crooked.com/a/50fa635270697fbf
Notice
While this solution is straightforward, you can dramatically increase performance of the uniform_rand() function by using:
the largest multiple of N not greater than RAND_MAX+1.
as pointed out in Eric's answer.
EDIT: Completely revised my initial answer after caf's legitimate criticism. (see comments)
The modulo operation gives only a slight advantage to lower numbers, so we could non-strictly consider the distribuiton uniform.
With this regard, you could generate random numbers between -32000,32000 like this:
r = rand() % 64000;
r -= 32000;

WAV-file analysis C (libsndfile, fftw3)

I'm trying to develop a simple C application that can give a value from 0-100 at a certain frequency range at a given timestamp in a WAV-file.
Example: I have frequency range of 44.1kHz (typical MP3 file) and I want to split that range into n amount of ranges (starting from 0). I then need to get the amplitude of each range, being from 0 to 100.
What I've managed so far:
Using libsndfile I'm now able to read the data of a WAV-file.
infile = sf_open(argv [1], SFM_READ, &sfinfo);
float samples[sfinfo.frames];
sf_read_float(infile, samples, 1);
However, my understanding of FFT is rather limited. But I know it's required inorder to get the amplitudes at the ranges I need. But how do I move on from here? I found the library FFTW-3, which seems to be suited for the purpose.
I found some help here: https://stackoverflow.com/a/4371627/1141483
and looked at the FFTW tutorial here: http://www.fftw.org/fftw2_doc/fftw_2.html
But as I'm unsure about the behaviour of the FFTW, I don't know to progress from here.
And another question, assuming you use libsndfile: If you force the reading to be single channeled (with a stereo file) and then read the samples. Will you then actually only be reading half of the samples of the total file? As half of them being from channel 1, or does automaticly filter those out?
Thanks a ton for your help.
EDIT: My code can be seen here:
double blackman_harris(int n, int N){
double a0, a1, a2, a3, seg1, seg2, seg3, w_n;
a0 = 0.35875;
a1 = 0.48829;
a2 = 0.14128;
a3 = 0.01168;
seg1 = a1 * (double) cos( ((double) 2 * (double) M_PI * (double) n) / ((double) N - (double) 1) );
seg2 = a2 * (double) cos( ((double) 4 * (double) M_PI * (double) n) / ((double) N - (double) 1) );
seg3 = a3 * (double) cos( ((double) 6 * (double) M_PI * (double) n) / ((double) N - (double) 1) );
w_n = a0 - seg1 + seg2 - seg3;
return w_n;
}
int main (int argc, char * argv [])
{ char *infilename ;
SNDFILE *infile = NULL ;
FILE *outfile = NULL ;
SF_INFO sfinfo ;
infile = sf_open(argv [1], SFM_READ, &sfinfo);
int N = pow(2, 10);
fftw_complex results[N/2 +1];
double samples[N];
sf_read_double(infile, samples, 1);
double normalizer;
int k;
for(k = 0; k < N;k++){
if(k == 0){
normalizer = blackman_harris(k, N);
} else {
normalizer = blackman_harris(k, N);
}
}
normalizer = normalizer * (double) N/2;
fftw_plan p = fftw_plan_dft_r2c_1d(N, samples, results, FFTW_ESTIMATE);
fftw_execute(p);
int i;
for(i = 0; i < N/2 +1; i++){
double value = ((double) sqrtf(creal(results[i])*creal(results[i])+cimag(results[i])*cimag(results[i]))/normalizer);
printf("%f\n", value);
}
sf_close (infile) ;
return 0 ;
} /* main */
Well it all depends on the frequency range you're after. An FFT works by taking 2^n samples and providing you with 2^(n-1) real and imaginary numbers. I have to admit I'm quite hazy on what exactly these values represent (I've got a friend who has promised to go through it all with me in lieu of a loan I made him when he had financial issues ;)) other than an angle around a circle. Effectively they provide you with an arccos of the angle parameter for a sine and cosine for each frequency bin from which the original 2^n samples can be, perfectly, reconstructed.
Anyway this has the huge advantage that you can calculate magnitude by taking the euclidean distance of the real and imaginary parts (sqrtf( (real * real) + (imag * imag) )). This provides you with an unnormalised distance value. This value can then be used to build a magnitude for each frequency band.
So lets take an order 10 FFT (2^10). You input 1024 samples. You FFT those samples and you get 512 imaginary and real values back (the particular ordering of those values depends on the FFT algorithm you use). So this means that for a 44.1Khz audio file each bin represents 44100/512 Hz or ~86Hz per bin.
One thing that should stand out from this is that if you use more samples (from whats called the time or spatial domain when dealing with multi dimensional signals such as images) you get better frequency representation (in whats called the frequency domain). However you sacrifice one for the other. This is just the way things go and you will have to live with it.
Basically you will need to tune the frequency bins and time/spatial resolution to get the data you require.
First a bit of nomenclature. The 1024 time domain samples I referred to earlier is called your window. Generally when performing this sort of process you will want to slide the window on by some amount to get the next 1024 samples you FFT. The obvious thing to do would be to take samples 0->1023, then 1024->2047, and so forth. This unfortunately doesn't give the best results. Ideally you want to overlap the windows to some degree so that you get a smoother frequency change over time. Most commonly people slide the window on by half a window size. ie your first window will be 0->1023 the second 512->1535 and so on and so forth.
Now this then brings up one further problem. While this information provides for perfect inverse FFT signal reconstruction it leaves you with a problem that frequencies leak into surround bins to some extent. To solve this issue some mathematicians (far more intelligent than me) came up with the concept of a window function. The window function provides for far better frequency isolation in the frequency domain though leads to a loss of information in the time domain (ie its impossible to perfectly re-construct the signal after you have used a window function, AFAIK).
Now there are various types of window function ranging from the rectangular window (effectively doing nothing to the signal) to various functions that provide far better frequency isolation (though some may also kill surrounding frequencies that may be of interest to you!!). There is, alas, no one size fits all but I'm a big fan (for spectrograms) of the blackmann-harris window function. I think it gives the best looking results!
However as I mentioned earlier the FFT provides you with an unnormalised spectrum. To normalise the spectrum (after the euclidean distance calculation) you need to divide all the values by a normalisation factor (I go into more detail here).
this normalisation will provide you with a value between 0 and 1. So you could easily multiple this value by 100 to get your 0 to 100 scale.
This, however, is not where it ends. The spectrum you get from this is rather unsatisfying. This is because you are looking at the magnitude using a linear scale. Unfortunately the human ear hears using a logarithmic scale. This rather causes issues with how a spectrogram/spectrum looks.
To get round this you need to convert these 0 to 1 values (I'll call it 'x') to the decibel scale. The standard transformation is 20.0f * log10f( x ). This will then provide you a value whereby 1 has converted to 0 and 0 has converted to -infinity. your magnitudes are now in the appropriate logarithmic scale. However its not always that helpful.
At this point you need to look into the original sample bit depth. At 16-bit sampling you get a value that is between 32767 and -32768. This means your dynamic range is fabsf( 20.0f * log10f( 1.0f / 65536.0f ) ) or ~96.33dB. So now we have this value.
Take the values we've got from the dB calculation above. Add this -96.33 value to it. Obviously the maximum amplitude (0) is now 96.33. Now didivde by that same value and you nowhave a value ranging from -infinity to 1.0f. Clamp the lower end to 0 and you now have a range from 0 to 1 and multiply that by 100 and you have your final 0 to 100 range.
And that is much more of a monster post than I had originally intended but should give you a good grounding in how to generate a good spectrum/spectrogram for an input signal.
and breathe
Further reading (for people other than the original poster who has already found it):
Converting an FFT to a spectogram
Edit: As an aside I found kiss FFT far easier to use, my code to perform a forward fft is as follows:
CFFT::CFFT( unsigned int fftOrder ) :
BaseFFT( fftOrder )
{
mFFTSetupFwd = kiss_fftr_alloc( 1 << fftOrder, 0, NULL, NULL );
}
bool CFFT::ForwardFFT( std::complex< float >* pOut, const float* pIn, unsigned int num )
{
kiss_fftr( mFFTSetupFwd, pIn, (kiss_fft_cpx*)pOut );
return true;
}

Resources