I tried to apply IDDFS on this graph by first making it in tree form and the result was this :
At level 1: d,e,p
At level 2: d,b,e,c,e,h,r,p,q
At level 3: d,b,a,e,h,c,a,e,h,q,p,r,f,p,q
At level 4: d,b,a,e,h,p,q,c,a,e,h,q,p,q,r,f,c,GOAL
I am confused about those repeated nodes in the path, can we eliminate them or they will appear in the final path ?
Is this the correct approach of traversing the graph to reach the GOAL ? And how we come to know which node to visit next in graph(e.g as in tree we start from left to right).
And what would be the path if we apply DFS and BFS on same graph ?
Will there be any difference in DFS result and IDDFS ? It seems to be similar
Yes, you can and SHOULD get rid of repeated nodes when you implement DFS, by keeping track of which nodes you've already visited. If you don't, your code won't terminate when it finds a cycle. Don't forget to clear the set of visited nodes with each new level. So leave out the visited nodes from your listing, unless it's important to include nodes that are being considered but not re-visited.
If you write out the expansion for BFS and DFS, you'll see that IDDFS starts out looking like BFS and ends up looking more and more like DFS the more you crank up the level. When level = length-of-longest-path, voila, you get DFS, which is not surprising, since IDDFS is DFS, only with paths cut off at a given number; in that particular case, the number has no effect, because there aren't any paths long enough to be cut off.
The order in a graph is not well defined. You choose one order or another yourself. If you choose a next node at random, you get non-deterministic algorithms. If you choose them, dunno, alphabetically, then you get some determinism. Sometimes the distinction doesn't matter, but determinism is good for debugging your code, etc. Now, when you do this exercise, you do it to see patterns, so it's best to leave out the randomness.
Your question really does look like homework. ;)
Related
I have a list of cities and an energy expenditure between each of them. I want to find the "best" (shortest) path between some specific pairs, that leads to the least energy loss. All roads are two-way roads, same energy expenditure from one city to another in a pair, but in the "best" path, each city should be visited only once to prevent looping around the same city.
I've tried making a directed adjacency list graph and using Bellman Ford but i am indeed detecting negative cycles, making the shortest path non-existent, but can't figure out how to make the algorithm go through each node only once to prevent looping. I've thought about using something like BFS to just print all the possible paths from a source node to a destination and somehow skip going through the same node (summing up the weights afterwards perhaps). Any ideas of how I would possibly solve this, either modding the Bellman Ford or the BFS or using something else?
The problem of finding the lowest-cost simple path (a path that doesn’t repeat nodes) in a graph containing negative cycles is NP-hard, which means that at present we don’t have any efficient algorithms for the problem and it’s possible that none exists. (You can prove NP-hardness by a reduction from the Hamiltonian path problem: if you assign each edge in a graph cost -1, then there’s a Hamiltonian path from a node u to a node v if and only if the lowest-cost simple path between them has length n-1, where n is the number of nodes in the graph.)
There are some techniques to find short paths using at most a fixed number of hops. Check out the “Color Coding” algorithm for an example of one of these.
add the absolute value of the most negative weight to EVERY weight.
Apply the Dijkstra algorithm. https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
Subtract absolute value of the most negative weight times number of hops from cost of optimal path found in 2
PREMISE
So lately i have been thinking of a problem that is common to databases: trying to optimize insertion, search, deletion and update of data.
Usually i have seen that most of the databases nowadays use the BTree or B+Tree to solve such a problem, but they are usually used to store data inside the disk and i wanted to work with in-memory data, so i thought about using the AVLTree (the difference should be minimal because the purpose of the BTrees is kind of the same of the AVLTree but the implementation is different and so are the effects).
Before continuing with the reasoning behind this i would like to get in a deeper level of what i am trying to solve.
So in a modern database data stored in a table with a PRIMARY KEY which tends to be INDEXED (i am not very experienced in indexing so what i will say is basic reasoning i put into this problem), usually the PRIMARY KEY is an increasing number (even though nowadays is a bad practice) starting from 1.
Using normally an AVLTree should be more then enough to solve the problem cause this particular tree is always balanced and offers O(log2(n)) operations, BUT i wanted to reach this on a deeper level trying to optimize it even more then needed.
THEORY
So as the title of the question suggests i am trying to optimize the AVLTree merging it with a Btree.
Basically every node of this new Tree is lets say an array of ten elements every node as also the corresponding height in the tree and every element of the array is ordered ascending.
INSERTION
The insertion initally fills the array of the root node when the root node is full it generates the left and right children which also contains an array of 10 elements.
Whenever a new node is added the Tree autorebalances the nodes based on the first key of the vectors of the left and right child using also their height (note that this is actually how the AVLTree behaves but the AVLTree only has 2 nodes and no vector just the values).
SEARCH
Searching an element works this way: staring from the root we compare the value we are searching K with the first and last key of the array of the current node if the value is in between, we know that it surely will be in the array of the current node so we can start using a binarySearch with O(log2(n)) complexity into this array of ten elements, otherise we go on the left if the key we are searcing is smaller then the first key or we go to the right if it is bigger.
DELETION
The same of the searching but we delete the value.
UPDATE
The same of the searching but we update the value.
CONCLUSION
If i am not wrong this should have a complexity of O(log10(log2(10))) which is always logarithmic so we shouldn't care about this optimization, but in my opinion this could make the height of the tree so much smaller while providing also quick time on the search.
B tree and B+ tree are indeed used for disk storage because of the block design. But there is no reason why they could not be used also as in-memory data structure.
The advantages of a B tree include its use of arrays inside a single node. Look-up in a limited vector of maybe 10 entries can be very fast.
Your idea of a compromise between B tree and AVL would certainly work, but be aware that:
You need to perform tree rotations like in AVL in order to keep the tree balanced. In B trees you work with redistributions, merges and splits, but no rotations.
Like with AVL, the tree will not always be perfectly balanced.
You need to describe what will be done when a vector is full and a value needs to be added to it: the node will have to split, and one half will have to be reinjected as a leaf.
You need to describe what will be done when a vector gets a very low fill-factor (due to deletions). If you leave it like that, the tree could degenerate into an AVL tree where every vector only has 1 value, and then the additional vector overhead will make it less efficient than a genuine AVL tree. To keep the fill-factor of a vector above a minimum you cannot easily apply the redistribution mechanism with a sibling node, as would be done in B-trees. It would work with leaf nodes, but not with internal nodes. So this needs to be clarified...
You need to describe what will be done when a value in a vector is updated. Of course, you would insert it in its sorted position: but if it becomes the first or last value in that vector, this may violate the order with regards to left and right children, and so also there you may need to define more precisely the algorithm.
Binary search in a vector of 10 may be overkill: a simple left-to-right scan may be faster, as CPUs are optimised to read consecutive memory. This does not impact the time complexity, since we set that the vector size is limited to 10. So we are talking about doing either at most 4 comparisons (3-4 on average depending on binary search implementation) or at most 10 comparisons (5 on average).
If I am not wrong this should have a complexity of O(log10(log2(n))) which is always logarithmic
Actually, if that were true, it would be sub-logarithmic, i.e. O(loglogn). But there is a mistake here. The binary search in a vector is not related to n, but to 10. Also, this work comes in addition to finding the node with that vector. So it is not a logarithm of a logarithm, but a sum of logarithms:
O(log10n + log210) = O(log n)
Therefore the time complexity is no different than the one for AVL or B-tree -- provided that the algorithm is completed with the missing details, keeping within the logarithmic complexity.
You should maybe also consider to implement a pure B tree or B+ tree: that way you also benefit from some of the advantages that neither the AVL, nor the in-between structure has:
The leaves of the tree are all at the same level
No rotations are needed
The tree height only changes at one spot: the root.
B+ trees provide a very fast mean for iterating all values in their order.
I have some doubts regarding best first search algorithm. The pseudocode that I have is the following:
best first search pseudocode
First doubt: is it complete? I have read that it is not because it can enter in a dead end, but I don't know when can happen, because if the algorithm chooses a node that has not more neighbours it does not get stucked in it because this node is remove from the open list and in the next iteration the following node of the open list is treated and the search continues.
Second doubt: is it optimal? I thought that if it is visiting the nodes closer to the goal along the search process, then the solution would be the shortest, but it is not in that way and I do not know the reason for that and therefore, the reason that makes this algorithm not optimal.
The heuristic I was using is the straight line distance between two points.
Thanks for your help!!
Of course, if heuristic function underestimates the costs, best first search is not optimal. In fact, even if your heuristic function is exactly right, best first search is never guaranteed to be optimal. Here is a counter example. Consider the following graph:
The green numbers are the actual costs and the red numbers are the exact heuristic function. Let's try to find a path from node S to node G.
Best first search would give you S->A->G following the heuristic function. However, if you look at the graph closer, you would see that the path S->B->C->G has lower cost of 5 instead of 6. Thus, this is an example of best first search performing suboptimal under perfect heuristic function.
In general case best first search algorithm is complete as in worst case scenario it will search the whole space (worst option). Now, it should be also optimal - given the heuristic function is admissible - meaning it does not overestimate the cost of the path from any of the nodes to goal. (It also needs to be consistent - that means that it adheres to triangle inequality, if it is not then the algorithm would not be complete - as it could enter a cycle)
Checking your algorithm I do not see how the heuristic function is calculated. Also I do not see there is calculated the cost of the path to get to the particular node.
So, it needs to calculate the actual cost of the path to reach a particular node and then it needs to add a heuristics estimate of the cost of the path from the node towards goal.
The formula is f(n)=g(n)+h(n) where g(n) is the cost of the path to reach the node and h(n) is the heuristics estimating the cost of the cheapest path from n to the goal.
Check the implementation of A* algorithm which is an example of best first search on path planning.
TLDR In best first search, you need to calculate the cost of a node as a sum of the cost of the path to get to that node and the heuristic function that estimate the cost of the path from that node to the goal. If the heuristic function will be admissible and consistent the algorithm will be optimal and complete.
After implementing most of the common and needed functions for my Graph implementation, I realized that a couple of functions (remove vertex, search vertex and get vertex) don't have the "best" implementation.
I'm using adjacency lists with linked lists for my Graph implementation and I was searching one vertex after the other until it finds the one I want. Like I said, I realized I was not using the "best" implementation. I can have 10000 vertices and need to search for the last one, but that vertex could have a link to the first one, which would speed up things considerably. But that's just an hypothetical case, it may or may not happen.
So, what algorithm do you recommend for search lookup? Our teachers talked about Breadth-first and Depth-first mostly (and Dikjstra' algorithm, but that's a completely different subject). Between those two, which one do you recommend?
It would be perfect if I could implement both but I don't have time for that, I need to pick up one and implement it has the first phase deadline is approaching...
My guess, is to go with Depth-first, seems easier to implement and looking at the way they work, it seems a best bet. But that really depends on the input.
But what do you guys suggest?
If you’ve got an adjacency list, searching for a vertex simply means traversing that list. You could perhaps even order the list to decrease the needed lookup operations.
A graph traversal (such as DFS or BFS) won’t improve this from a performance point of view.
Finding and deleting nodes in a graph is a "search" problem not a graph problem, so to make it better than O(n) = linear search, BFS, DFS, you need to store your nodes in a different data structure optimized for searching or sort them. This gives you O(log n) for find and delete operations. Candidatas are tree structures like b-trees or hash tables. If you want to code the stuff yourself I would go for a hash table which normally gives very good performance and is reasonably easy to implement.
I think BFS would usually be faster an average. Read the wiki pages for DFS and BFS.
The reason I say BFS is faster is because it has the property of reaching nodes in order of their distance from your starting node. So if your graph has N nodes and you want to search for node N and node 1, which is the node you start your search form, is linked to N, then you will find it immediately. DFS might expand the whole graph before this happens however. DFS will only be faster if you get lucky, while BFS will be faster if the nodes you search for are close to your starting node. In short, they both depend on the input, but I would choose BFS.
DFS is also harder to code without recursion, which makes BFS a bit faster in practice, since it is an iterative algorithm.
If you can normalize your nodes (number them from 1 to 10 000 and access them by number), then you can easily keep Exists[i] = true if node i is in the graph and false otherwise, giving you O(1) lookup time. Otherwise, consider using a hash table if normalization is not possible or you don't want to do it.
Depth-first search is best because
It uses much less memory
Easier to implement
the depth first and breadth first algorithms are almost identical, except for the use of a stack in one (DFS), a queue in the other (BFS), and a few required member variables. Implementing them both shouldn't take you much extra time.
Additionally if you have an adjacency list of the vertices then your look up with be O(V) anyway. So little to nothing will be gained via using one of the two other searches.
I'd comment on Konrad's post but I can't comment yet so... I'd like to second that it doesn't make a difference in performance if you implement DFS or BFS over a simple linear search through your list. Your search for a particular node in the graph doesn't depend on the structure of the graph, hence it's not necessary to confine yourself to graph algorithms. In terms of coding time, the linear search is the best choice; if you want to brush up your skills in graph algorithms, implement DFS or BFS, whichever you feel like.
If you are searching for a specific vertex and terminating when you find it, I would recommend using A*, which is a best-first search.
The idea is that you calculate the distance from the source vertex to the current vertex you are processing, and then "guess" the distance from the current vertex to the target.
You start at the source, calculate the distance (0) plus the guess (whatever that might be) and add it to a priority queue where the priority is distance + guess. At each step, you remove the element with the smallest distance + guess, do the calculation for each vertex in its adjacency list and stick those in the priority queue. Stop when you find the target vertex.
If your heuristic (your "guess") is admissible, that is, if it's always an under-estimate, then you are guaranteed to find the shortest path to your target vertex the first time you visit it. If your heuristic is not admissible, then you will have to run the algorithm to completion to find the shortest path (although it sounds like you don't care about the shortest path, just any path).
It's not really any more difficult to implement than a breadth-first search (you just have to add the heuristic, really) but it will probably yield faster results. The only hard part is figuring out your heuristic. For vertices that represent geographical locations, a common heuristic is to use an "as-the-crow-flies" (direct distance) heuristic.
Linear search is faster than BFS and DFS. But faster than linear search would be A* with the step cost set to zero. When the step cost is zero, A* will only expand the nodes that are closest to a goal node. If the step cost is zero then every node's path cost is zero and A* won't prioritize nodes with a shorter path. That's what you want since you don't need the shortest path.
A* is faster than linear search because linear search will most likely complete after O(n/2) iterations (each node has an equal chance of being a goal node) but A* prioritizes nodes that have a higher chance of being a goal node.
I've read in one of my AI books that popular algorithms (A-Star, Dijkstra) for path-finding in simulation or games is also used to solve the well-known "15-puzzle".
Can anyone give me some pointers on how I would reduce the 15-puzzle to a graph of nodes and edges so that I could apply one of these algorithms?
If I were to treat each node in the graph as a game state then wouldn't that tree become quite large? Or is that just the way to do it?
A good heuristic for A-Star with the 15 puzzle is the number of squares that are in the wrong location. Because you need at least 1 move per square that is out of place, the number of squares out of place is guaranteed to be less than or equal to the number of moves required to solve the puzzle, making it an appropriate heuristic for A-Star.
A quick Google search turns up a couple papers that cover this in some detail: one on Parallel Combinatorial Search, and one on External-Memory Graph Search
General rule of thumb when it comes to algorithmic problems: someone has likely done it before you, and published their findings.
This is an assignment for the 8-puzzle problem talked about using the A* algorithm in some detail, but also fairly straightforward:
http://www.cs.princeton.edu/courses/archive/spring09/cos226/assignments/8puzzle.html
The graph theoretic way to solve the problem is to imagine every configuration of the board as a vertex of the graph and then use a breath-first search with pruning based on something like the Manhatten Distance of the board to derive a shortest path from the starting configuration to the solution.
One problem with this approach is that for any n x n board where n > 3 the game space becomes so large that it is not clear how you can efficiently mark the visited vertices. In other words there is no obvious way to assess if the current configuration of the board is identical to one that has previously been discovered through traversing some other path. Another problem is that the graph size grows so quickly with n (it's approximately (n^2)!) that it is just not suitable for a brue-force attack as the number of paths becomes computationally infeasible to traverse.
This paper by Ian Parberry A Real-Time Algorithm for the (n^2 − 1) - Puzzle describes a simple greedy algorithm that iteritively arrives at a solution by completing the first row, then the first column, then the second row... It arrives at a solution almost immediately, however the solution is far from optimal; essentially it solves the problem the way a human would without leveraging any computational muscle.
This problem is closely related to that of solving the Rubik's cube. The graph of all game states it too large to solve by brue force, but there is a fairly simple 7 step method that can be used to solve any cube in about 1 ~ 2 minutes by a dextrous human. This path is of course non-optimal. By learning to recognise patterns that define sequences of moves the speed can be brought down to 17 seconds. However, this feat by Jiri is somewhat superhuman!
The method Parberry describes moves only one tile at a time; one imagines that the algorithm could be made better up by employing Jiri's dexterity and moving multiple tiles at one time. This would not, as Parberry proves, reduce the path length from n^3, but it would reduce the coefficient of the leading term.
Remember that A* will search through the problem space proceeding down the most likely path to goal as defined by your heurestic.
Only in the worst case will it end up having to flood fill the entire problem space, this tends to happen when there is no actual solution to your problem.
Just use the game tree. Remember that a tree is a special form of graph.
In your case the leaves of each node will be the game position after you make one of the moves that is available at the current node.
Here you go http://www.heyes-jones.com/astar.html
Also. be mindful that with the A-Star algorithm, at least, you will need to figure out a admissible heuristic to determine whether a possible next step is closer to the finished route than another step.
For my current experience, on how to solve an 8 puzzle.
it is required to create nodes. keep track of each step taken
and get the manhattan distance from each following steps, taking/going to the one with the shortest distance.
update the nodes, and continue until reaches the goal