Related
I came across this problem where given an array of integers, tell if the sequence of
integers will exit the array from left, right or
deadend. You enter the array from the left and move
N indices(where N is the value of the integer) in the
specified direction(positive is right, negative
is left)
Examples
[1,1,1] -> Exits Right
[1,-2]=> Exits Left
[2,0,-1]-> Deadends
[2,5,1,-2,0]-> Exits Right
One solution which comes to my mind is if value of all integers are positive then
Exits Right or Exits Left. However this solution does not cover all the scenario.
I need help to solve this problem.
You can do this:
Create a variable to hold index position and initialize it with first value
Loop over array and on every iteration, compute new value of index by adding value of pointed index.
At the end of loop, check:
Right: If index >= array.length`
Left: if index < 0
Deadend: If index is in bounds
Based on this, below is an example using Javascript:
function printDirection(arr) {
let index = arr[0];
for (let i = 1; i < arr.length; i++) {
/**
* Below condition covers following cases:
* 1. If the value is undefined. This will happen if index is out of bound
* 2. If value is 0. In this case, `index` will never change and remaining iterations can be skipped
*/
if (!arr[index]) break;
index += arr[index]
}
if (index >= arr.length) {
console.log('Exit Right')
} else if (index < 0) {
console.log('Exit Left')
} else {
console.log('Deadend')
}
}
const data = [
[1, 1, 1],
[1, -2],
[2, 0, -1],
[2, 5, 1, -2, 0],
]
data.forEach((arr) => printDirection(arr))
Here some hacky golang:
package main
import (
"fmt"
)
func WhereIsTheExit(arr []int) {
if (len(arr) == 0) {
fmt.Println("No elements")
return
}
i := arr[0]
for p := 1; p < len(arr); p++ {
fmt.Printf("Current value: %d\n", i)
if (i > len(arr) - 1 || i < 0) {
break
}
i += arr[i]
fmt.Printf("Next value: %d\n", i)
}
if (i >= len(arr)) {
fmt.Println("====> right")
} else if (i < 0) {
fmt.Println("====> left")
} else {
fmt.Println("====> deadend")
}
}
func main() {
empty := []int{}
deadend := []int{1,2,0,-3}
deadend2 := []int{1,0,-1}
right := []int{2,0,3,0,0}
right2 := []int{1,2,0,4,0,2,7,1}
left := []int{1,-2}
left2 := []int{1,2,0,3,0,0,-10}
WhereIsTheExit(empty)
WhereIsTheExit(deadend)
WhereIsTheExit(deadend2)
WhereIsTheExit(right)
WhereIsTheExit(right2)
WhereIsTheExit(left)
WhereIsTheExit(left2)
}
Try out: https://play.golang.org/p/KU4mapYf_b3
I want to find the length smallest subarray whose sum is equal to k.
Input: arr[] = {2, 4, 6, 10, 2, 1}, K = 12
Output: 2
Explanation:
All possible subarrays with sum 12 are {2, 4, 6} and {10, 2}.
Input: arr[] = { 1, 2, 4, 3, 2, 4, 1 }, K = 7
Output: 2
Here's a solution using JavaScript.
It could be made more efficient, for sure, but I've coded it to work.
function lengthOfShortestSubArrayOfSumK(array, k) {
var combos=[];
for(var i=0; i<Math.pow(2, array.length); i++) {
var bin=("0".repeat(array.length)+i.toString(2)).slice(-array.length).split("");
var ones=bin.reduce((count, digit)=>{count+=digit=="1";return count;},0);
var sum=bin.reduce((sum, digit, index)=>{sum+=digit=="1"?array[index]:0;return sum;},0);
combos.push([bin, ones, sum]);
};
return combos.filter(combo=>combo[2]==k).sort((a, b)=>a[1]-b[1])[0][1];
}
var arraysAndKs=[
{array:[2, 4, 6, 10, 2, 1], k:12},
{array:[1, 2, 4, 3, 2, 4, 1], k:7}
];
for(arrayAndK of arraysAndKs)
console.log("Length of shortest sub array of ["+arrayAndK.array.join(", ")+"] with sum "+arrayAndK.k+" is : "+lengthOfShortestSubArrayOfSumK(arrayAndK.array, arrayAndK.k));
The Binary number between 0 and array.length squared will give us a representation of included array items in the sum.
We count how many "ones" are in that Binary number.
We sum array items masked by those "one"s.
We save into combos array an array of the Binary number, "one"s count, and sum.
We filter combos for sum k, sort by count of "one"s, and retrun the first's "one"s count.
I'm sure this can be translated to any programming language.
You can use an algorithm that finds a subset in size K, and save another variable that stores the number of members that make up such a subarray.
The algorithm for finding a K subarray is:
initialize an array of size K, Each place (idx) indicates whether there is a subarray that amounts to idx (I used a dictionary)
Go over any number (i) in the array, and any sum (j) we can reach in the previous iteration now we can reach j + i.
If in the K place it is marked TRUE, then there is a subarray that amounts to K.
Here's the solution in Python
def foo(arr,k):
dynamic = {0:0}
for i in arr:
temp = {}
for j, l in dynamic.items():
if i + j <= k: # if not it's not interesting us
# choose the smallest subarray
temp[i+j] = min(l+1,dynamic.get(i+j,len(arr)))
dynamic.update(temp)
return dynamic.get(k,-1)
the complexity is O(N*K).
I assumed that the subarray refers to any possible combinations of original array.
Here is a Python code that solves the problem under the condition that the subset must be contiguous:
in O(N) complexity
def shortest_contiguous_subarray(arr,k):
if k in arr:
return 1
n = len(arr)
sub_length = float('inf')
sub = arr[(i:=0)]
j = 1
while j < n:
while sub < k and j < n:
sub += arr[j]
j += 1
while sub > k:
sub -= arr[i]
i += 1
if sub == k:
# print(arr[i:j],j-i)
sub_length = min(sub_length,j-i)
sub -= arr[i]
i += 1
return sub_length if sub_length <= n else -1
This answer works for any array of positive numbers, and can be modified to work with arrays that have zero or negative elements if an O(n) pre-processing pass is performed (1. find the minimum element m, m <= 0, 2. make the whole array positive by adding -m+1 to all elements, 3. solve for sum + n*(1-m))
function search(input, goal) {
let queue = [ { avail: input.slice(), used: [], sum: 0 } ]; // initial state
for (let qi = 0; qi < queue.length; qi ++) {
let s = queue[qi]; // like a pop, but without using O(n) shift
for (let i = 0; i < s.avail.length; i++) {
let e = s.avail[i];
if (s.sum + e > goal) continue; // dead end
if (s.sum + e == goal) return [...s.used, e]; // eureka!!
queue.push({ // keep digging
avail: [...s.avail.slice(0, i), ...s.avail.slice(i+1)],
used: [...s.used, e],
sum: s.sum + e
});
}
}
return undefined; // no subset of input adds up to goal
}
console.log(search([2, 4, 6, 10, 2, 1], 12))
This is a classic breadth-first-search that does a little bit of pruning when it detects that we are already over the target sum. It can be further optimized to avoid exploring the same branch several times (for example, [4,2] is equivalent to [2,4]) - but this would require extra memory to keep a set of "visited" states. Additionally, you could add heuristics to explore more promising branches first.
I have done this by using unordered_map in c++. Hope this helps .
`
/* smallest subarray of sum k*/
#include<bits/stdc++.h>
using namespace std;
int main()
{
vector <int> v = {2,4,6,10,2,12};
int k=12;
unordered_map<int,int>m;
int start=0,end=-1;
int len=0,mini=INT_MAX;
int currsum=0;
for(int i=0;i<v.size();i++){
currsum+=v[i];
if(currsum==k){
start=0,end=i;
len=end-start+1;
mini=min(mini,len);
}
if(v[i]==k){
mini=min(mini,1);
}
if(m.find(currsum-k)!=m.end()){
end=i;
start=m[(currsum-k)]+1;
len=end-start+1;
mini=min(mini,len);
}
m[currsum]=i;
}
cout<<mini;
return 0;
}`
class Solution
{
static int findSubArraySum(int arr[], int N, int k)
{
// code here
// i use prefix sum and hashmap approach
HashMap<Integer, Integer> map = new HashMap<>();
map.put(0,1);
// this is bcoz when 1st element is valid one
int count=0;
int sum=0;
for(int i=0;i<N;i++){
sum += arr[i];
// prefix sum
if(map.containsKey(sum-k)){
count += map.get(sum-k);
}
map.put(sum, map.getOrDefault(sum,0)+1);
}
return count;
}
}
// this approach even for -ve numbers
// i came to dis solution by prefix sum approach
This version finds the entire optimal sub-array, not only its length. It's based on a recursion. It will test each number of the array against the optimal sub-array of the rest.
const bestSum = (targetSum, numbers) => {
var shortestCombination = null
for (var i = 0; i < numbers.length; i++) {
var current = numbers[i];
if (current == 0) {
continue
}
if (current == targetSum) {
return [current]
}
if (current > targetSum) {
continue;
}
// "remove" current from array
numbers[i] = 0;
// now the recursion:
var rest = bestSum(targetSum - current, numbers)
if (rest && (!shortestCombination || rest.length + 1 < shortestCombination.length)) {
shortestCombination = [current].concat(rest);
}
// restore current to array
numbers[i] = current
}
return shortestCombination
}
console.log(bestSum(7, [5, 3, 4, 7])) // Should be 7, not [3, 4]
This is my code in Python 3. I used the same idea of find the longest subarray with a sum equal to K. But in the below code for every prefix sum I am storing the recent index.
def smallestSubArraySumLength(a, n, k):
d=defaultdict(lambda:-1)
d[0]=-1
psum=0
maxl=float('inf')
for i in range(n):
psum+=a[I]
if psum-k in d:
maxl=min(maxl, i-d[psum-k])
d[psum]=i
return maxl
I am trying to make an algorithm, of Θ( n² ).
It accepts an unsorted array of n elements, and an integer z,
and has to return 3 indices of 3 different elements a,b,c ; so a+b+c = z.
(return NILL if no such integers were found)
I tried to sort the array first, in two ways, and then to search the sorted array.
but since I need a specific running time for the rest of the algorithm, I am getting lost.
Is there any way to do it without sorting? (I guess it does have to be sorted) either with or without sorting would be good.
example:
for this array : 1, 3, 4, 2, 6, 7, 9 and the integer 6
It has to return: 0, 1, 3
because ( 1+3+2 = 6)
Algorithm
Sort - O(nlogn)
for i=0... n-1 - O(1) assigning value to i
new_z = z-array[i] this value is updated each iteration. Now, search for new_z using two pointers, at begin (index 0) and end (index n-1) If sum (array[ptr_begin] + array[ptr_ens]) is greater then new_z, subtract 1 from the pointer at top. If smaller, add 1 to begin pointer. Otherwise return i, current positions of end and begin. - O(n)
jump to step 2 - O(1)
Steps 2, 3 and 4 cost O(n^2). Overall, O(n^2)
C++ code
#include <iostream>
#include <vector>
#include <algorithm>
int main()
{
std::vector<int> vec = {3, 1, 4, 2, 9, 7, 6};
std::sort(vec.begin(), vec.end());
int z = 6;
int no_success = 1;
//std::for_each(vec.begin(), vec.end(), [](auto const &it) { std::cout << it << std::endl;});
for (int i = 0; i < vec.size() && no_success; i++)
{
int begin_ptr = 0;
int end_ptr = vec.size()-1;
int new_z = z-vec[i];
while (end_ptr > begin_ptr)
{
if(begin_ptr == i)
begin_ptr++;
if (end_ptr == i)
end_ptr--;
if ((vec[begin_ptr] + vec[end_ptr]) > new_z)
end_ptr--;
else if ((vec[begin_ptr] + vec[end_ptr]) < new_z)
begin_ptr++;
else {
std::cout << "indices are: " << end_ptr << ", " << begin_ptr << ", " << i << std::endl;
no_success = 0;
break;
}
}
}
return 0;
}
Beware, result is the sorted indices. You can maintain the original array, and then search for the values corresponding to the sorted array. (3 times O(n))
The solution for the 3 elements which sum to a value (say v) can be done in O(n^2), where n is the length of the array, as follows:
Sort the given array. [ O(nlogn) ]
Fix the first element , say e1. (iterating from i = 0 to n - 1)
Now we have to find the sum of 2 elements sum to a value (v - e1) in range from i + 1 to n - 1. We can solve this sub-problem in O(n) time complexity using two pointers where left pointer will be pointing at i + 1 and right pointer will be pointing at n - 1 at the beginning. Now we will move our pointers either from left or right depending upon the total current sum is greater than or less than required sum.
So, overall time complexity of the solution will be O(n ^ 2).
Update:
I attached solution in c++ for the reference: (also, added comments to explain time complexity).
vector<int> sumOfthreeElements(vector<int>& ar, int v) {
sort(ar.begin(), ar.end());
int n = ar.size();
for(int i = 0; i < n - 2 ; ++i){ //outer loop runs `n` times
//for every outer loop inner loops runs upto `n` times
//therefore, overall time complexity is O(n^2).
int lo = i + 1;
int hi = n - 1;
int required_sum = v - ar[i];
while(lo < hi) {
int current_sum = ar[lo] + ar[hi];
if(current_sum == required_sum) {
return {i, lo, hi};
} else if(current_sum > required_sum){
hi--;
}else lo++;
}
}
return {};
}
I guess this is similar to LeetCode 15 and 16:
LeetCode 16
Python
class Solution:
def threeSumClosest(self, nums, target):
nums.sort()
closest = nums[0] + nums[1] + nums[2]
for i in range(len(nums) - 2):
j = -~i
k = len(nums) - 1
while j < k:
summation = nums[i] + nums[j] + nums[k]
if summation == target:
return summation
if abs(summation - target) < abs(closest - target):
closest = summation
if summation < target:
j += 1
elif summation > target:
k -= 1
return closest
Java
class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);
int closest = nums[0] + nums[nums.length >> 1] + nums[nums.length - 1];
for (int first = 0; first < nums.length - 2; first++) {
int second = -~first;
int third = nums.length - 1;
while (second < third) {
int sum = nums[first] + nums[second] + nums[third];
if (sum > target)
third--;
else
second++;
if (Math.abs(sum - target) < Math.abs(closest - target))
closest = sum;
}
}
return closest;
}
}
LeetCode 15
Python
class Solution:
def threeSum(self, nums):
res = []
nums.sort()
for i in range(len(nums) - 2):
if i > 0 and nums[i] == nums[i - 1]:
continue
lo, hi = -~i, len(nums) - 1
while lo < hi:
tsum = nums[i] + nums[lo] + nums[hi]
if tsum < 0:
lo += 1
if tsum > 0:
hi -= 1
if tsum == 0:
res.append((nums[i], nums[lo], nums[hi]))
while lo < hi and nums[lo] == nums[-~lo]:
lo += 1
while lo < hi and nums[hi] == nums[hi - 1]:
hi -= 1
lo += 1
hi -= 1
return res
Java
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> res = new LinkedList<>();
for (int i = 0; i < nums.length - 2; i++) {
if (i == 0 || (i > 0 && nums[i] != nums[i - 1])) {
int lo = -~i, hi = nums.length - 1, sum = 0 - nums[i];
while (lo < hi) {
if (nums[lo] + nums[hi] == sum) {
res.add(Arrays.asList(nums[i], nums[lo], nums[hi]));
while (lo < hi && nums[lo] == nums[-~lo])
lo++;
while (lo < hi && nums[hi] == nums[hi - 1])
hi--;
lo++;
hi--;
} else if (nums[lo] + nums[hi] < sum) {
lo++;
} else {
hi--;
}
}
}
}
return res;
}
}
Reference
You can see the explanations in the following links:
LeetCode 15 - Discussion Board
LeetCode 16 - Discussion Board
LeetCode 15 - Solution
You can use something like:
def find_3sum_restr(items, z):
# : find possible items to consider -- O(n)
candidates = []
min_item = items[0]
for i, item in enumerate(items):
if item < z:
candidates.append(i)
if item < min_item:
min_item = item
# : find possible couples to consider -- O(n²)
candidates2 = []
for k, i in enumerate(candidates):
for j in candidates[k:]:
if items[i] + items[j] <= z - min_item:
candidates2.append([i, j])
# : find the matching items -- O(n³)
for i, j in candidates2:
for k in candidates:
if items[i] + items[j] + items[k] == z:
return i, j, k
This O(n + n² + n³), hence O(n³).
While this is reasonably fast for randomly distributed inputs (perhaps O(n²)?), unfortunately, in the worst case (e.g. for an array of all ones, with a z > 3), this is no better than the naive approach:
def find_3sum_naive(items, z):
n = len(items)
for i in range(n):
for j in range(i, n):
for k in range(j, n):
if items[i] + items[j] + items[k] == z:
return i, j, k
I wonder why my solution to this LeetCode "Move Zeros" problem is slower than the majority of other submissions. Is there a better way to approach this problem to make it faster?
The question is as follows:
Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements. You must do this in-place without making a copy of the array.
Example:
Input: [0,1,0,3,12]
Output: [1,3,12,0,0]
This is my solution:
func moveZeroes(_ nums: inout [Int]) {
var index = 0
for (i,n) in nums.enumerated()
{
if n != 0
{
nums[index] = n
index += 1
}
}
while index < nums.count
{
nums[index] = 0
index += 1
}
}
LeetCode gives me these statistics:
Runtime: 52 ms, faster than 40.50% of Swift online submissions for Move Zeroes.
Memory Usage: 19.4 MB, less than 13.33% of Swift online submissions for Move Zeroes.
EDIT 1:
If I approach the problem as follows, it does not move the zeros at the end,
EDIT 2:
Here is 36ms in-place solution for you :
class Solution {
func moveZeroes(_ nums: inout [Int]) {
if nums.count < 2 {
return
}
var j = 0
while j < nums.count, nums[j] != 0 {
j += 1
}
if j < nums.count - 1 {
for i in j+1..<nums.count {
if nums[i] != 0 {
nums.swapAt(i, j)
j += 1
}
}
}
}
}
From what I can see, it's likely other submissions are doing this
Check and count 0's in string
Remove 0's
Replace number of 0's at the end of the string
A logical method no doubt, but I'd say yours just picks the basic needs of the challenge and goes for it.
I would personally use:
input = input.filter { $0 != 0 } + input.filter { $0 == 0 }
which can be simplified to one pass:
let nonZeros = input.filter { $0 != 0 }
input = nonZeros + Array(repeating: 0, count: input.count - nonZeros.count)
EDIT: The simplest version without creating a new array would be some primitive version of bubble sort, e.g.:
var numZeros = 0
// iterate array from start to end
for (offset, element) in input.enumerated() {
if element == 0 {
// count every zero
numZeros += 1
} else if numZeros > 0 {
// move every non-zero element left
input[offset - numZeros] = element
// replace with zero
input[offset] = 0
}
}
Another approach is the half-stable-partition algorithm. The benefit is the items are swapped rather than removed and inserted/appended.
Half-stable means the order of the left side of the split point is preserved.
extension Array {
mutating func halfStablePartition(indexes : IndexSet) { // code is O(n)
guard var i = indexes.first, i < count else { return }
var j = index(after: i)
var k = indexes.integerGreaterThan(i) ?? endIndex
while j != endIndex {
if k != j { swapAt(i, j); formIndex(after: &i) }
else { k = indexes.integerGreaterThan(k) ?? endIndex }
formIndex(after: &j)
}
}
}
var input = [0,1,0,3,12]
let indices = IndexSet(input.indices.filter{input[$0] == 0})
input.halfStablePartition(indexes: indices)
Swift 4.2 or later using removeAll mutating method:
Mutating the input:
class Solution {
func moveZeroes(_ nums: inout [Int]) {
var counter = 0
nums.removeAll {
if $0 == 0 {
counter += 1
return true
}
return false
}
nums += repeatElement(0, count: counter)
}
}
A similar approach for Swift 4.1 or earlier
func moveZeroes(_ nums: inout [Int]) {
var counter = 0
nums.indices.reversed().forEach {
if nums[$0] == 0 {
counter += 1
nums.remove(at: $0)
}
}
nums += repeatElement(0, count: counter)
}
var input = [0,1,0,3,12]
moveZeroes(&input)
input // [1, 3, 12, 0, 0]
Non mutating approach:
func moveZeroes(_ nums: [Int]) -> [Int] {
var counter = 0
return nums.filter {
if $0 == 0 { counter += 1 }
return $0 != 0
} + repeatElement(0, count: counter)
}
let input = [0,1,0,3,12]
let zerosMoved = moveZeroes(input)
zerosMoved // [1, 3, 12, 0, 0]
For modifying array in place, and keeping it:
O(n) for Time Complexity
O(1) for Space Complexity
Cracked my head way to long for this one. The cleanest way if you swap element that is NOT zero:
func moveZeroes(_ nums: inout [Int]) {
// amount of swaps, will be used a as reference for next swap index
var j = 0
for (i, e) in nums.enumerated() {
if e != 0 {
nums.swapAt(j, i)
j += 1
}
}
}
One fast solution is to shift non-zero elements to the left by the amount of zeros encountered until then:
func moveZeroes(_ nums: inout [Int]) {
var offset = 0
for i in 0..<nums.count {
if nums[i] == 0 { offset += 1 }
else { nums.swapAt(i, i-offset) }
}
}
This solution takes exactly N steps, and at each step we either perform an addition, or a swap, which are both quite fast.
Your solution, on the other hand required two iterations, resulting in 2*N steps, which is why it was slower than other solutions.
Suppose I have an array of M elements, all numbers, negative or positive or zero.
Can anyone suggest an algorithm to select N elements from the array, such that the sum of these N elements is the smallest possible positive number?
Take this array for example:
-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200
Now I have to select any 5 elements such that their sum is the smallest possible positive number.
Formulation
For i = 1, ..., M:
Let a_i be the ith number in your list of candidates
Let x_i denote whether the ith number is included in your set of N chosen numbers
Then you want to solve the following integer programming problem.
minimize: sum(a_i * x_i)
with respect to: x_i
subject to:
(1) sum(a_i * x_i) >= 0
(2) sum(x_i) = N
(3) x_i in {0, 1}
You can apply an integer program solver "out of the box" to this problem to find the optimal solution or a suboptimal solution with controllable precision.
Resources
Integer programming
Explanation of branch-and-bound integer program solver
If you want to find the best possible solution, you can simply use brute force ie. try all posible combinations of fiwe numbers.
Something like this very quick and dirty algorithm:
public List<Integer> findLeastPositivSum(List<Integer> numbers) {
List<Integer> result;
Integer resultSum;
List<Integer> subresult, subresult2, subresult3, subresult4, subresult5;
for (int i = 0; i < numbers.size() - 4; i++) {
subresult = new ArrayList<Integer>();
subresult.add(numbers.get(i));
for (int j = i + 1; j < numbers.size() - 3; j++) {
subresult2 = new ArrayList<Integer>(subresult);
subresult2.add(j);
for (int k = j + 1; k < numbers.size() - 2; k++) {
subresult3 = new ArrayList<Integer>(subresult2);
subresult3.add(k);
for (int l = k + 1; l < numbers.size() - 1; l++) {
subresult4 = new ArrayList<Integer>(subresult3);
subresult4.add(k);
for (int m = l + 1; m < numbers.size(); m++) {
subresult5 = new ArrayList<Integer>(subresult4);
subresult5.add(k);
Integer subresultSum = sum(subresult5);
if (subresultSum > 0) {
if (result == null || resultSum > subresultSum) {
result = subresult;
}
}
}
}
}
}
}
return result;
}
public Integer sum(List<Integer> list) {
Integer result = 0;
for (Integer integer : list) {
result += integer;
}
return result;
}
This is really quick and dirty algorithm, it can be done more elegantly. I can provide cleaner algorithm e.g. using recursion.
It can be also further optimized. E.g. you can remove similar numbers from input list as first step.
Let initial array be shorted already, or i guess this will work even when it isnt shorted..
N -> Length of array
M -> Element req.
R[] -> Answer
TEMP[] -> For calculations
minSum -> minSum
A[] -> Initial input
All above variables are globally defined
int find(int A[],int start,int left)
{
if(left=0)
{
//sum elements in TEMP[] and save it as curSum
if(curSum<minSum)
{
minSum=curSum;
//assign elements from TEMP[] to R[] (i.e. our answer)
}
}
for(i=start;i<=(N-left);i++)
{
if(left==M)
curSum=0;
TEMP[left-1]=A[i];
find(A[],i+1,left-1);
}
}
// Made it in hurry so maybe some error would be existing..
Working solution on ideone :
http://ideone.com/YN8PeW
I suppose Kadane’s Algorithm would do the trick, although it is for the maximum sum but I have also implemented it to find the minimum sum, though can't find the code right now.
Here's something sub optimal in Haskell, which (as with many of my ideas) could probably be further and better optimized. It goes something like this:
Sort the array (I got interesting results by trying both ascending and descending)
B N = first N elements of the array
B (i), for i > N = best candidate; where (assuming integers) if they are both less than 1, the candidates are compared by the absolute value of their sums; if they are both 1 or greater, by their sums; and if only one candidate is greater than 0 then that candidate is chosen. If a candidate's sum is 1, return that candidate as the answer. The candidates are:
B (i-1), B (i-1)[2,3,4..N] ++ array [i], B (i-1)[1,3,4..N] ++ array [i]...B (i-1)[1,2..N-1] ++ array [i]
B (i-2)[2,3,4..N] ++ array [i], B (i-2)[1,3,4..N] ++ array [i]...B (i-2)[1,2..N-1] ++ array [i]
...
B (N)[2,3,4..N] ++ array [i], B (N)[1,3,4..N] ++ array [i]...B (N)[1,2..N-1] ++ array [i]
Note that for the part of the array where the numbers are negative (in the case of ascending sort) or positive (in the case of descending sort), step 3 can be done immediately without calculations.
Output:
*Main> least 5 "desc" [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
(10,[-1000,600,300,100,10])
(0.02 secs, 1106836 bytes)
*Main> least 5 "asc" [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
(50,[300,100,-200,-100,-50])
(0.02 secs, 1097492 bytes)
*Main> main -- 10000 random numbers ranging from -100000 to 100000
(1,[-106,4,-40,74,69])
(1.77 secs, 108964888 bytes)
Code:
import Data.Map (fromList, insert, (!))
import Data.List (minimumBy,tails,sort)
import Control.Monad.Random hiding (fromList)
array = [-1000,-700,-400,-200,-100,-50,10,100,300,600,800,1200]
least n rev arr = comb (fromList listStart) [fst (last listStart) + 1..m]
where
m = length arr
r = if rev == "asc" then False else True
sorted = (if r then reverse else id) (sort arr)
listStart = if null lStart
then [(n,(sum $ take n sorted,take n sorted))]
else lStart
lStart = zip [n..]
. takeWhile (all (if r then (>0) else (<0)) . snd)
. foldr (\a b -> let c = take n (drop a sorted) in (sum c,c) : b) []
$ [0..]
s = fromList (zip [1..] sorted)
comb list [] = list ! m
comb list (i:is)
| fst (list ! (i-1)) == 1 = list ! (i-1)
| otherwise = comb updatedMap is
where updatedMap = insert i bestCandidate list
bestCandidate = comb' (list!(i - 1)) [i - 1,i - 2..n] where
comb' best [] = best
comb' best (j:js)
| fst best == 1 = best
| otherwise =
let s' = map (\x -> (sum x,x))
. (take n . map (take (n - 1)) . tails . cycle)
$ snd (list!j)
t = s!i
candidate = minimumBy compare' (map (add t) s')
in comb' (minimumBy compare' [candidate,best]) js
add x y#(a,b) = (x + a,x:b)
compare' a#(a',_) b#(b',_)
| a' < 1 = if b' < 1 then compare (abs a') (abs b') else GT
| otherwise = if b' < 1 then LT else compare a' b'
rnd :: (RandomGen g) => Rand g Int
rnd = getRandomR (-100000,100000)
main = do
values <- evalRandIO (sequence (replicate (10000) rnd))
putStrLn (show $ least 5 "desc" values)
Assumption: M is the original array
Pesudocode
S = sort(M);
R = [];
sum = 0;
for(i=0, i < length(S); i++){
sum = sum + S[i];
if(sum < 1){
R.push(S[i]);
}else{
return R;
}
}