It happened to me when I was reading about PostgreSQL on its wiki page where it refers to itself as an ORDBMS. I always knew about Microsoft SQL Server which is an RDBM system. Can someone help me understand the main differences between Relational Database Management System(RDBMS) and Object Relational Database Management System (ORDBMS) and in what scenarios should I use one of them?
Also, my key question is related to the fact that in the world of Microsoft SQL Server we often use a layer of Entity Framework (EF) to do the object relational mapping on the application side. So, in ORDBMS world are all the responsibilities of an ORM already fulfilled by the database itself in entirety or there could be use cases or scenarios where I would end up using an ORM like Entity Framework on top of ORDBMS as well? Do people really even use ORMs on top of an ORDBMS system?
Taken from http://www.aspfree.com/c/a/database/introduction-to-rdbms-oodbms-and-ordbms/:
RDBMS
The main elements of RDBMS are based on Ted Codd’s 13 rules for a relational system, the concept of relational integrity, and normalization. The three fundamentals of a relational database are that all information must be held in the form of a table, where all data are described using data values. The second fundamental is that each value found in the table columns does not repeat. The final fundamental is the use of Standard Query Language (SQL).
Benefits of RDBMS are that the system is simple, flexible, and productive. Because the tables are simple, data is easier to understand and communicate with others. RDBMS are flexible because users do not have to use predefined keys to input information. Also, RDBMS are more productive because SQL is easier to learn. This allows users to spend more time inputting instead of learning. More importantly, RDBMS’s biggest advantage is the ease with which users can create and access data and extend it if needed. After the original database is created, new data categories can be added without the existing application being changed.
There are limitations to the relational database management system. First, relational databases do not have enough storage area to handle data such as images, digital and audio/video. The system was originally created to handle the integration of media, traditional fielded data, and templates. Another limitation of the relational database is its inadequacy to operate with languages outside of SQL. After its original development, languages such as C++ and JavaScript were formed. However, relational databases do not work efficiently with these languages. A third limitation is the requirement that information must be in tables where relationships between entities are defined by values.
ORDMS
Object-Relational database (ORDBMS) is the third type of database common today. ORDBMS are systems that “attempt to extend relational database systems with the functionality necessary to support a broader class of applications and, in many ways, provide a bridge between the relational and object-oriented paradigms.”
ORDBMS was created to handle new types of data such as audio, video, and image files that relational databases were not equipped to handle. In addition, its development was the result of increased usage of object-oriented programming languages, and a large mismatch between these and the DBMS software.
One advantage of ORDBMS is that it allows organizations to continue using their existing systems, without having to make major changes. A second advantage is that it allows users and programmers to start using object-oriented systems in parallel.
There are challenges in implementing an ORDBMS. The first is storage and access methods. The second is query processing, and the third is query optimization.
Most database players don't support it, or don't support it exclusively. It is complex, and not used broadly. Even if "data" is OO in nature, the databases existed decades ago, and they cannot take ORDBMS (or OODBMS). Learning curve also imposes problems.
ORDBMS/OODBMS are like virtual registry view you see in Registry Editor. Contents are tree-styled objects. But internally they might be stored as flat/hierarchical or in relational manner. You really don't care - the APIs provide you the view of registry information.
Similarly, even if major players don't support (and won't support) OO nature of database, they may provide some extensions. Or, you may have to craft your own framework for OO data. A movie database, having actors and directors can be represented using relations (tables). Actors, directors, shooting-locations would also be classes/objects, and can easily be represented using tables, and referential integrity imposed by database/DB designer.
You, as a developer would make this relational nature of data to an object-oriented form having Movie as a class, referencing actors/directors (1:1 or 1:N). I am not aware how/what EE facilitates this, but it would be doing mapping this way only.
Object-Relational Databases
Object oriented technology on top of relational technology and in the relational context.
Objects are stored in tables of objects rather than in tables of rows.
Support of major object oriented features: complex types, inheritance, aggregation, methods
Advantage: Extension of a well-known technology
Disadvantages: Mixture of both technologies may result in difficult to understand schemas
Has Performance problems
Object-relational systems include features such as complex object extensibility, encapsulation, inheritance, and better interfaces to OO languages.
ORDBMSs allow developers to embed new classes of data objects into the relational data model abstraction (and on top of SQL).
Following diagram shows how data can be accessed.
Related
the use of a triplestore means that we are going to use a database that have a table with 3 coluns and 7 indexes?
I mean using a triple store always is relationed with that relational model?
From http://en.wikipedia.org/wiki/Triplestore:
A triplestore is a purpose-built database for the storage and retrieval of Resource Description Framework (RDF) metadata.
It looks like that the high-performance triplestores use a non-relational model:
Some triplestores have been built as database engines from scratch, while others have been built on top of existing commercial relational database engines (i.e. SQL-based).4 Like the early development of OLAP databases, this intermediate approach allowed large and powerful database engines to be constructed for little programming effort in the initial phases of triplestore development. Long-term though it seems likely that native triplestores will have the advantage for performance. A difficulty with implementing triplestores over SQL is that although "triples" may thus be "stored", implementing efficient querying of a graph-based RDF model (i.e. mapping from SPARQL) onto SQL queries is difficult.5
Not necessarily. There are triplestores that rely on other RDBMS systems as backends. Examples of this case are: Jena/SDB, 3store or Virtuoso.
Others implement their own native persistent model customized to respond better to the RDF data model, like 4store, Jena/TDB or BigData. These tend to scale better.
Conceptually, yes - a triple is a binary relation with a subject, predicate, and object (e.g. <JohnSmith--marriedTo->JillSmith>.
Higher arity relations are not possible in a triple store as they are in a normal RDBMS (though you can fake them via the use of multiple triples).
The implementation varies though, as previous answers state.
Most triple stores actually store quads, so they can group triples into subsets ("Named Graphs" in RDF-speak).
The indexes are of course optional, but usually present in some form - again often modified to accommodate quads.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I've been hearing things about NoSQL and that it may eventually become the replacement for SQL DB storage methods due to the fact that DB interaction is often a bottle neck for speed on the web.
So I just have a few questions:
What exactly is it?
How does it work?
Why would it be better than using a SQL Database? And how much better is it?
Is the technology too new to start implementing yet or is it worth taking a look into?
There is no such thing as NoSQL!
NoSQL is a buzzword.
For decades, when people were talking about databases, they meant relational databases. And when people were talking about relational databases, they meant those you control with Edgar F. Codd's Structured Query Language. Storing data in some other way? Madness! Anything else is just flatfiles.
But in the past few years, people started to question this dogma. People wondered if tables with rows and columns are really the only way to represent data. People started thinking and coding, and came up with many new concepts how data could be organized. And they started to create new database systems designed for these new ways of working with data.
The philosophies of all these databases were different. But one thing all these databases had in common, was that the Structured Query Language was no longer a good fit for using them. So each database replaced SQL with their own query languages. And so the term NoSQL was born, as a label for all database technologies which defy the classic relational database model.
So what do NoSQL databases have in common?
Actually, not much.
You often hear phrases like:
NoSQL is scalable!
NoSQL is for BigData!
NoSQL violates ACID!
NoSQL is a glorified key/value store!
Is that true? Well, some of these statements might be true for some databases commonly called NoSQL, but every single one is also false for at least one other. Actually, the only thing NoSQL databases have in common, is that they are databases which do not use SQL. That's it. The only thing that defines them is what sets them apart from each other.
So what sets NoSQL databases apart?
So we made clear that all those databases commonly referred to as NoSQL are too different to evaluate them together. Each of them needs to be evaluated separately to decide if they are a good fit to solve a specific problem. But where do we begin? Thankfully, NoSQL databases can be grouped into certain categories, which are suitable for different use-cases:
Document-oriented
Examples: MongoDB, CouchDB
Strengths: Heterogenous data, working object-oriented, agile development
Their advantage is that they do not require a consistent data structure. They are useful when your requirements and thus your database layout changes constantly, or when you are dealing with datasets which belong together but still look very differently. When you have a lot of tables with two columns called "key" and "value", then these might be worth looking into.
Graph databases
Examples: Neo4j, GiraffeDB.
Strengths: Data Mining
While most NoSQL databases abandon the concept of managing data relations, these databases embrace it even more than those so-called relational databases.
Their focus is at defining data by its relation to other data. When you have a lot of tables with primary keys which are the primary keys of two other tables (and maybe some data describing the relation between them), then these might be something for you.
Key-Value Stores
Examples: Redis, Cassandra, MemcacheDB
Strengths: Fast lookup of values by known keys
They are very simplistic, but that makes them fast and easy to use. When you have no need for stored procedures, constraints, triggers and all those advanced database features and you just want fast storage and retrieval of your data, then those are for you.
Unfortunately they assume that you know exactly what you are looking for. You need the profile of User157641? No problem, will only take microseconds. But what when you want the names of all users who are aged between 16 and 24, have "waffles" as their favorite food and logged in in the last 24 hours? Tough luck. When you don't have a definite and unique key for a specific result, you can't get it out of your K-V store that easily.
Is SQL obsolete?
Some NoSQL proponents claim that their favorite NoSQL database is the new way of doing things, and SQL is a thing of the past.
Are they right?
No, of course they aren't. While there are problems SQL isn't suitable for, it still got its strengths. Lots of data models are simply best represented as a collection of tables which reference each other. Especially because most database programmers were trained for decades to think of data in a relational way, and trying to press this mindset onto a new technology which wasn't made for it rarely ends well.
NoSQL databases aren't a replacement for SQL - they are an alternative.
Most software ecosystems around the different NoSQL databases aren't as mature yet. While there are advances, you still haven't got supplemental tools which are as mature and powerful as those available for popular SQL databases.
Also, there is much more know-how for SQL around. Generations of computer scientists have spent decades of their careers into research focusing on relational databases, and it shows: The literature written about SQL databases and relational data modelling, both practical and theoretical, could fill multiple libraries full of books. How to build a relational database for your data is a topic so well-researched it's hard to find a corner case where there isn't a generally accepted by-the-book best practice.
Most NoSQL databases, on the other hand, are still in their infancy. We are still figuring out the best way to use them.
What exactly is it?
On one hand, a specific system, but it has also become a generic word for a variety of new data storage backends that do not follow the relational DB model.
How does it work?
Each of the systems labelled with the generic name works differently, but the basic idea is to offer better scalability and performance by using DB models that don't support all the functionality of a generic RDBMS, but still enough functionality to be useful. In a way it's like MySQL, which at one time lacked support for transactions but, exactly because of that, managed to outperform other DB systems. If you could write your app in a way that didn't require transactions, it was great.
Why would it be better than using a SQL Database? And how much better is it?
It would be better when your site needs to scale so massively that the best RDBMS running on the best hardware you can afford and optimized as much as possible simply can't keep up with the load. How much better it is depends on the specific use case (lots of update activity combined with lots of joins is very hard on "traditional" RDBMSs) - could well be a factor of 1000 in extreme cases.
Is the technology too new to start implementing yet or is it worth taking a look into?
Depends mainly on what you're trying to achieve. It's certainly mature enough to use. But few applications really need to scale that massively. For most, a traditional RDBMS is sufficient. However, with internet usage becoming more ubiquitous all the time, it's quite likely that applications that do will become more common (though probably not dominant).
Since someone said that my previous post was off-topic, I'll try to compensate :-) NoSQL is not, and never was, intended to be a replacement for more mainstream SQL databases, but a couple of words are in order to get things in the right perspective.
At the very heart of the NoSQL philosophy lies the consideration that, possibly for commercial and portability reasons, SQL engines tend to disregard the tremendous power of the UNIX operating system and its derivatives.
With a filesystem-based database, you can take immediate advantage of the ever-increasing capabilities and power of the underlying operating system, which have been steadily increasing for many years now in accordance with Moore's law. With this approach, many operating-system commands become automatically also "database operators" (think of "ls" "sort", "find" and the other countless UNIX shell utilities).
With this in mind, and a bit of creativity, you can indeed devise a filesystem-based database that is able to overcome the limitations of many common SQL engines, at least for specific usage patterns, which is the whole point behind NoSQL's philosophy, the way I see it.
I run hundreds of web sites and they all use NoSQL to a greater or lesser extent. In fact, they do not host huge amounts of data, but even if some of them did I could probably think of a creative use of NoSQL and the filesystem to overcome any bottlenecks. Something that would likely be more difficult with traditional SQL "jails". I urge you to google for "unix", "manis" and "shaffer" to understand what I mean.
If I recall correctly, it refers to types of databases that don't necessarily follow the relational form. Document databases come to mind, databases without a specific structure, and which don't use SQL as a specific query language.
It's generally better suited to web applications that rely on performance of the database, and don't need more advanced features of Relation Database Engines. For example, a Key->Value store providing a simple query by id interface might be 10-100x faster than the corresponding SQL server implementation, with a lower developer maintenance cost.
One example is this paper for an OLTP Tuple Store, which sacrificed transactions for single threaded processing (no concurrency problem because no concurrency allowed), and kept all data in memory; achieving 10-100x better performance as compared to a similar RDBMS driven system. Basically, it's moving away from the 'One Size Fits All' view of SQL and database systems.
In practice, NoSQL is a database system which supports fast access to large binary objects (docs, jpgs etc) using a key based access strategy. This is a departure from the traditional SQL access which is only good enough for alphanumeric values. Not only the internal storage and access strategy but also the syntax and limitations on the display format restricts the traditional SQL. BLOB implementations of traditional relational databases too suffer from these restrictions.
Behind the scene it is an indirect admission of the failure of the SQL model to support any form of OLTP or support for new dataformats. "Support" means not just store but full access capabilities - programmatic and querywise using the standard model.
Relational enthusiasts were quick to modify the defnition of NoSQL from Not-SQL to Not-Only-SQL to keep SQL still in the picture! This is not good especially when we see that most Java programs today resort to ORM mapping of the underlying relational model. A new concept must have a clearcut definition. Else it will end up like SOA.
The basis of the NoSQL systems lies in the random key - value pair. But this is not new. Traditional database systems like IMS and IDMS did support hashed ramdom keys (without making use of any index) and they still do. In fact IDMS already has a keyword NONSQL where they support SQL access to their older network database which they termed as NONSQL.
It's like Jacuzzi: both a brand and a generic name. It's not just a specific technology, but rather a specific type of technology, in this case referring to large-scale (often sparse) "databases" like Google's BigTable or CouchDB.
NoSQL the actual program appears to be a relational database implemented in awk using flat files on the backend. Though they profess, "NoSQL essentially has no arbitrary limits, and can work where other products can't. For example there is no limit on data field size, the number of columns, or file size" , I don't think it is the large scale database of the future.
As Joel says, massively scalable databases like BigTable or HBase, are much more interesting. GQL is the query language associated with BigTable and App Engine. It's largely SQL tweaked to avoid features Google considers bottle-necks (like joins). However, I haven't heard this referred to as "NoSQL" before.
NoSQL is a database system which doesn't use string based SQL queries to fetch data.
Instead you build queries using an API they will provide, for example Amazon DynamoDB is a good example of a NoSQL database.
NoSQL databases are better for large applications where scalability is important.
Does NoSQL mean non-relational database?
Yes, NoSQL is different from RDBMS and OLAP. It uses looser consistency models than traditional relational databases.
Consistency models are used in distributed systems like distributed shared memory systems or distributed data store.
How it works internally?
NoSQL database systems are often highly optimized for retrieval and appending operations and often offer little functionality beyond record storage (e.g. key-value stores). The reduced run-time flexibility compared to full SQL systems is compensated by marked gains in scalability and performance for certain data models.
It can work on Structured and Unstructured Data. It uses Collections instead of Tables
How do you query such "database"?
Watch SQL vs NoSQL: Battle of the Backends; it explains it all.
What exactly is NoSQL? Is it database systems that only work with {key:value} pairs?
As far as I know MemCache is one of such database systems, am I right?
What other popular NoSQL databases are there and where exactly are they useful?
Thanks, Boda Cydo.
I'm not agree with the answers I'm seeing, although it's true that NoSQL solutions tends to break the ACID rules, not all are created from that approach.
I think first you should define what is a SQL Solution and then you can put the "Not Only" in front of it, that will be more accurate definition of what is a NoSQL solution.
With this approach in mind:
SQL databases are a way to group all the data stores that are accessible using Structured Query Language as the main (and most of the time only) way to communicate with them, this means it requires that the database support the structures that are common to those systems like "tables", "columns", "rows", "relationships", etc.
Now, put the "Not Only" in front of the last sentence and you will get a definition of what means "NoSQL". NoSQL groups all the stores created as an attempt to solve problems which cannot fit into the table/column/rows structures or even in SQL Statements, in most of the cases these databases will not support relationships, they're abandoning the well known structures just because the problems have changed since their conception.
If you have a text file, and you create an API to store/retrieve/organize this information, then you have a NoSQL database in your hands.
All of these means that there are several solutions to store the information in a way that traditional SQL systems will not allow to achieve better performance, flexibility, etc etc. Every NoSQL provider tries to solve a different problem and that's why you wont be able to compare two different solutions, for example:
djondb is a document store created to be used as
NoSQL enterprise solution supporting transactions, consistency, etc.
but sacrifice performance of its counterparts.
MongoDB is a document store (similar to
djondb) which accomplish great performance but trades some of the
ACID properties to achieve this.
CouchDB is another document store which
solves the queries slightly different providing views to retrieve the
information without doing a full query every time.
...
As you may have noticed I only talked about the document stores, that's because I wanted to show you that 3 different document stores implementations have different approach, therefore you should keep in mind the golden rule of NoSQL stores "Use the right tool for the right job".
I'm the creator of djondb and I've been doing a lot of research even before trying to start my own NoSQL implementation, but this is a field where the concepts will keep changing the way we see the information storage.
From wikipedia:
NoSQL is an umbrella term for a loosely defined class of non-relational data stores that break with a long history of relational databases and ACID guarantees. Data stores that fall under this term may not require fixed table schemas, and usually avoid join operations. The term was first popularised in early 2009.
The motivation for such an architecture was high scalability, to support sites such as Facebook, advertising.com, etc...
To quickly get a handle on NoSQL systems, see this blog post I wrote: Visual Guide to NoSQL Systems. Essentially, NoSQL systems sacrifice either consistency or availability in favor of tolerance to network partitions.
What is NoSQL ?
NoSQL is the acronym for Not Only SQL. The basic qualities of NoSQL databases are schemaless, distributed and horizontally scalable on commodity hardware. The NoSQL databases offers variety of functions to solve various problems with variety of data types, where “blob” used to be the only data type in RDBMS to store unstructured data.
1 Dynamic Schema
NoSQL databases allows schema to be flexible. New columns can be added anytime. Rows may or may not have values for those columns and no strict enforcement of data types for columns. This flexibility is handy for developers, especially when they expect frequent changes during the course of product life cycle.
2 Variety of Data
NoSQL databases support any type of data. It supports structured, semi-structured and unstructured data to be stored. Its supports logs, images files, videos, graphs, jpegs, JSON, XML to be stored and operated as it is without any pre-processing. So it reduces the need for ETL (Extract – Transform – Load).
3 High Availability Cluster
NoSQL databases support distributed storage using commodity hardware. It also supports high availability by horizontal scalability. This features enables NoSQL databases get the benefit of elastic nature of the Cloud infrastructure services.
4 Open Source
NoSQL databases are open source software. The usage of software is free and most of them are free to use in commercial products. The open sources codebase can be modified to solve the business needs. There are minor variations in the open source software licenses, users must be aware of license agreements.
5 NoSQL – Not Only SQL
NoSQL databases not only depend SQL to retrieve data. They provide rich API interfaces to perform DML and CRUD operations. These are APIs are move developer friendly and supported in variety of programming languages.
Take a look at these:
http://en.wikipedia.org/wiki/Nosql#List_of_NoSQL_open_source_projects
and this:
http://www.mongodb.org/display/DOCS/Comparing+Mongo+DB+and+Couch+DB
I used something called the Raima Data Manager more than a dozen years ago, that qualifies as NoSQL. It calls itself a "Set Oriented Database" Its not based on tables, and there is no query "language", just an C API for asking for subsets.
It's fast and easier to work with in C/C++ and SQL, there's no building up strings to pass to a query interpreter and the data comes back as an enumerable object rather than as an array. variable sized records are normal and don't waste space. I never saw the source code, but there were some hints at the interface that internally, the code used pointers a lot.
I'm not sure that the product I used is even sold anymore, but the company is still around.
MongoDB looks interesting, SourceForge is now using it.
I listened to a podcast with a team member. The idea with NoSQL isn't so much to replace SQL as it is to provide a solution for problems that aren't solved well with traditional RDBMS. As mentioned elsewhere, they are faster and scale better at the cost of reliability and atomicity (different solutions to different degrees). You wouldn't want to use one for a financial system, but a document based system would work great.
Here is a comprehensive list of NoSQL Databases: http://nosql-database.org/.
I'm glad that you have had success with RDM John! I work at Raima so it's great to hear feedback. For those looking for more information, here are a couple of resources:
Video Overview of RDM's General Architecture
Free Evaluation Download of RDM
Is LINQ a kind of Object-Relational Mapper?
LINQ in itself is a set of language extensions to aid querying, readability and reduce code. LINQ to SQL is a kind of OR Mapper, but it isn't particularly powerful. The Entity Framework is often referred to as an OR Mapper, but it does quite a lot more.
There are several other LINQ to X implementations around, including LINQ to NHibernate and LINQ to LLBLGenPro that offer OR Mapping and supporting frameworks in a broadly similar fashion to the Entity Framework.
If you are just learning LINQ though, I'd recommend you stick to LINQ to Objects to get a feel for it, rather than diving into one of the more complicated flavours :-)
LINQ is not an ORM at all. LINQ is a way of querying "stuff", and can be more or less seen as a SQL-like language extension for different things (IEnumerables).
There are various types of "stuff" that can be queried, among them SQL Server databases. This is called LINQ-to-SQL. The way it works is that it generates (implicit) classes based on the structure of the DB and your query. In this sense it works much more like a code generator.
LINQ-to-SQL is not an ORM because it doesn't try at all to solve the object-relational impedance mismatch. In an ORM you design the classes and then either map them manually to tables or let the ORM generate the database. If you then change the database for whatever reason (typically refactoring, renormalization, denormalization), many times you are able to keep the classes as they are by changing the mapping.
LINQ-to-SQL does nothing of the sort. Your LINQ queries will be tightly coupled to the database structure. If you change the DB, you will probably have to change the LINQ as well.
LINQ to SQL (part of Visual Studio 2008) is an OR Mapper.
LINQ is a new query language that can be used to query many different types of sources.
LINQ itself is not a ORM. LINQ is the language features and methods that exist in allowing you to query objects like SQL.
"LINQ to SQL" is a provider that allows us to use LINQ against SQL strongly-typed objects.
I think a good test to ascertain whether a platform or code block displays the characteristics of an O/R-M is simply:
With his solution hat on, does the developer(s) (or his/her code generator) have any direct, unabstracted knowledge of what's inside the database?
With this criterion, the answer for differing LINQ implementations can be
Yes, knowledge of the database schema is entirely contained within the roll-your-own, LINQ utilizing O/R-M code layerorNo, knowledge of the database schema is scattered throughout the application
Further, I'd extend this characterization to three simple levels of O/R-M.
1. Abandonment.
It's a small app w/ a couple of developers and the object/data model isn't that complex and doesn't change very often. The small dev team can stay on top of it.
2. Roll your own in the data access layer.
With some managable refactoring in a data access layer, the desired O/R-M functionality can be effected in an intermediate layer by the relatively small dev team. Enough to keep the entire team on the same page.
3. Enterprise-level O/R-M specification defining/overhead introducing tools.
At some level of complexity, the need to keep all devs on the same page just swamps any overhead introduced by the formality. No need to reinvent the wheel at this level of complexity. N-hibernate or the (rough) V1.0 Entity Framework are examples of this scale.
For a richer classification, from which I borrowed and simplified, see Ted Neward's classic post at
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
where he classifies O/R-M treatments (or abdications) as
1. Abandonment. Developers simply give up on objects entirely, and return to a programming model that doesn't create the object/relational impedance mismatch. While distasteful, in certain scenarios an object-oriented approach creates more overhead than it saves, and the ROI simply isn't there to justify the cost of creating a rich domain model. ([Fowler] talks about this to some depth.) This eliminates the problem quite neatly, because if there are no objects, there is no impedance mismatch.
2. Wholehearted acceptance. Developers simply give up on relational storage entirely, and use a storage model that fits the way their languages of choice look at the world. Object-storage systems, such as the db4o project, solve the problem neatly by storing objects directly to disk, eliminating many (but not all) of the aforementioned issues; there is no "second schema", for example, because the only schema used is that of the object definitions themselves. While many DBAs will faint dead away at the thought, in an increasingly service-oriented world, which eschews the idea of direct data access but instead requires all access go through the service gateway thus encapsulating the storage mechanism away from prying eyes, it becomes entirely feasible to imagine developers storing data in a form that's much easier for them to use, rather than DBAs.
3. Manual mapping. Developers simply accept that it's not such a hard problem to solve manually after all, and write straight relational-access code to return relations to the language, access the tuples, and populate objects as necessary. In many cases, this code might even be automatically generated by a tool examining database metadata, eliminating some of the principal criticism of this approach (that being, "It's too much code to write and maintain").
4. Acceptance of O/R-M limitations. Developers simply accept that there is no way to efficiently and easily close the loop on the O/R mismatch, and use an O/R-M to solve 80% (or 50% or 95%, or whatever percentage seems appropriate) of the problem and make use of SQL and relational-based access (such as "raw" JDBC or ADO.NET) to carry them past those areas where an O/R-M would create problems. Doing so carries its own fair share of risks, however, as developers using an O/R-M must be aware of any caching the O/R-M solution does within it, because the "raw" relational access will clearly not be able to take advantage of that caching layer.
5. Integration of relational concepts into the languages. Developers simply accept that this is a problem that should be solved by the language, not by a library or framework. For the last decade or more, the emphasis on solutions to the O/R problem have focused on trying to bring objects closer to the database, so that developers can focus exclusively on programming in a single paradigm (that paradigm being, of course, objects). Over the last several years, however, interest in "scripting" languages with far stronger set and list support, like Ruby, has sparked the idea that perhaps another solution is appropriate: bring relational concepts (which, at heart, are set-based) into mainstream programming languages, making it easier to bridge the gap between "sets" and "objects". Work in this space has thus far been limited, constrained mostly to research projects and/or "fringe" languages, but several interesting efforts are gaining visibility within the community, such as functional/object hybrid languages like Scala or F#, as well as direct integration into traditional O-O languages, such as the LINQ project from Microsoft for C# and Visual Basic. One such effort that failed, unfortunately, was the SQL/J strategy; even there, the approach was limited, not seeking to incorporate sets into Java, but simply allow for embedded SQL calls to be preprocessed and translated into JDBC code by a translator.
6. Integration of relational concepts into frameworks. Developers simply accept that this problem is solvable, but only with a change of perspective. Instead of relying on language or library designers to solve this problem, developers take a different view of "objects" that is more relational in nature, building domain frameworks that are more directly built around relational constructs. For example, instead of creating a Person class that holds its instance data directly in fields inside the object, developers create a Person class that holds its instance data in a RowSet (Java) or DataSet (C#) instance, which can be assembled with other RowSets/DataSets into an easy-to-ship block of data for update against the database, or unpacked from the database into the individual objects.
Linq To SQL using the dbml designer yes, otherwise Linq is just a set of extension methods for Enumerables.
There is a lot of information out there on object-relational mappers and how to best avoid impedance mismatch, all of which seem to be moot points if one were to use an object database. My question is why isn't this used more frequently? Is it because of performance reasons or because object databases cause your data to become proprietary to your application or is it due to something else?
Familiarity. The administrators of databases know relational concepts; object ones, not so much.
Performance. Relational databases have been proven to scale far better.
Maturity. SQL is a powerful, long-developed language.
Vendor support. You can pick between many more first-party (SQL servers) and third-party (administrative interfaces, mappings and other kinds of integration) tools than is the case with OODBMSs.
Naturally, the object-oriented model is more familiar to the developer, and, as you point out, would spare one of ORM. But thus far, the relational model has proven to be the more workable option.
See also the recent question, Object Orientated vs Relational Databases.
I've been using db4o which is an OODB and it solves most of the cons listed:
Familiarity - Programmers know their language better then SQL (see Native queries)
Performance - this one is highly subjective but you can take a look at PolePosition
Vendor support and maturity - can change over time
Cannot be used by programs that don't also use the same framework - There are OODB standards and you can use different frameworks
Versioning is probably a bit of a bitch - Versioning is actually easier!
The pros I'm interested in are:
Native queries - Db4o lets you write queries in your static typed language so you don't have to worry about mistyping a string and finding data missing at runtime,
Ease of use - Defining buissiness logic in the domain layer, persistence layer (mapping) and finally the SQL database is certainly violation of DRY. With OODB you define your domain where it belongs.
I agree - OODB have a long way to go but they are going. And there are domain problems out there that are better solved by OODB,
One objection to object databases is that it creates a tight coupling between the data and your code. For certain apps this may be OK, but not for others. One nice thing that a relational database gives you is the possibility to put many views on your data.
Ted Neward explains this and a lot more about OODBMSs a lot better than this.
It has nothing to do with performance. That is to say, basically all applications would perform better with an OODB. But that would also put lots of DBA's out of work/having to learn a new technology. Even more people would be out of work correcting errors in the data. That's unlikely to make OODBs popular with established companies. Gavin seems to be totally clueless, a better link would be Kirk
Cons:
Cannot be used by programs that
don't also use the same framework
for accessing the data store, making
it more difficult to use across the
enterprise.
Less resources available online for
non SQL-based database
No compatibility across database
types (can't swap to a different db
provider without changing all the
code)
Versioning is probably a bit of a
bitch. I'd guess adding a new
property to an object isn't quite as
easy as adding a new column to a
table.
Sören
All of the reasons you stated are valid, but I see the problem with OODBMS is the logical data model. The object-model (or rather the network model of the 70s) is not as simple as the relational one, and is therefore inferior.
jodonnel, i dont' see how use of object databases couples application code to the data. You can still abstract your application from the OODB through using a Repository pattern and replace with an ORM backed SQL database if you design things properly.
For an OO application, an OO database will provide a more natural fit for persisting objects.
What's probably true is that you tie your data to your domain model, but then that's the crux!
Wouldn't it be good to have a single way of looking at both data, business rules and processes using a domain centric view?
So, a big pro is that an OODB matches how most modern, enterprise level object orientated software applications are designed, there is no extra effort to design a data layer using a different (relational) design. Cheaper to build and maintain, and in many cases general higher performance.
Cons, just general lack of maturity and adoption i reckon...