I am using Python 2.7. From previous posts, I am learning Python and I have moved from arrays and now I am working on loops. I am also trying to work with operations using arrays.
A1 = np.random.random_integers(35, size=(10.,5.))
A = np.array(A1)
B1 = np.random.random_integers(68, size=(10.,5.))
B = np.array(B1)
D = np.zeros(10,5) #array has 10 rows and 5 columns filled with zeros to give me the array size I want
for j in range (1,5):
for k in range (1,5):
D[j,k] = 0
for el in range (1,10):
D[j,k] = D[j,k] + A[j] * B[k]
The error I am getting is : setting an array element with a sequence
Is my formatting incorrect?
Because A, B and D are all 2D arrays, then D[j,k]
is a single element, while A[j] (the same as A[j,:]) is a 1D array which, in this case, has 5 elements. Similar for B[k] = B[k,:], i.e. also a 5 element array.
A[j] * B[k] is therefore also five element array, which can not be stored in the place of a single element, and you therefore get the error: setting an array element with a sequence.
If you want to select single elements from A and B, then the last line should be
D[j,k] = D[j,k] + A[j,k] * B[j,k]
Some further comments on your code:
# A is already a numpy array, so 'A = np.array(A1)' is redundant and can be omitted
A = np.random.random_integers(35, size=(10.,5.))
# Same as above
B = np.random.random_integers(68, size=(10.,5.))
D = np.zeros([10,5]) # This is the correct syntax for creating a 2D array with the np.zeros() function
for j in range(1,5):
for k in range(1,5):
# D[j,k] = 0 You have already defined D to be zero for all elements with the np.zeros function, so there is no need to do it again
for el in range(1,75):
D[j,k] = D[j,k] + A[j] * B[k]
EDIT:
Well, I do not have enough reputation to comment on your post #Caroline.py, so I will do it here instead:
First of all, remember that python uses zero indexing, so 'range(1,5)' gives you '[1,2,3,4]', which means that you would not reach the first index, i.e. index 0. Thus you would probably want to use 'range(0,5)', which is the same as just 'range(5)', instead.
I can see that you changed the el range from 75 to 10. If you don't use el to anything, it just means that you add perform the last line 10 times.
I don't know what you want to do, but if you want to store the multiple of A and B in D, then this should be right:
for j in range(10):
for k in range(5):
D[j,k] = A[j,k] * B[j,k]
or just
D = A * B
Related
Given n pairs of integers. Split into two subsets A and B to minimize sum(maximum difference among first values of A, maximum difference among second values of B).
Example : n = 4
{0, 0}; {5;5}; {1; 1}; {3; 4}
A = {{0; 0}; {1; 1}}
B = {{5; 5}; {3; 4}}
(maximum difference among first values of A, maximum difference among second values of B).
(maximum difference among first values of A) = fA_max - fA_min = 1 - 0 = 1
(maximum difference among second values of B) = sB_max - sB_min = 5 - 4 = 1
Therefore, the answer if 1 + 1 = 2. And this is the best way.
Obviously, maximum difference among the values equals to (maximum value - minimum value). Hence, what we need to do is find the minimum of (fA_max - fA_min) + (sB_max - sB_min)
Suppose the given array is arr[], first value if arr[].first and second value is arr[].second.
I think it is quite easy to solve this in quadratic complexity. You just need to sort the array by the first value. Then all the elements in subset A should be picked consecutively in the sorted array. So, you can loop for all ranges [L;R] of the sorted. Each range, try to add all elements in that range into subset A and add all the remains into subset B.
For more detail, this is my C++ code
int calc(pair<int, int> a[], int n){
int m = 1e9, M = -1e9, res = 2e9; //m and M are min and max of all the first values in subset A
for (int l = 1; l <= n; l++){
int g = m, G = M; //g and G are min and max of all the second values in subset B
for(int r = n; r >= l; r--) {
if (r - l + 1 < n){
res = min(res, a[r].first - a[l].first + G - g);
}
g = min(g, a[r].second);
G = max(G, a[r].second);
}
m = min(m, a[l].second);
M = max(M, a[l].second);
}
return res;
}
Now, I want to improve my algorithm down to loglinear complexity. Of course, sort the array by the first value. After that, if I fixed fA_min = a[i].first, then if the index i increase, the fA_max will increase while the (sB_max - sB_min) decrease.
But now I am still stuck here, is there any ways to solve this problem in loglinear complexity?
The following approach is an attempt to escape the n^2, using an argmin list for the second element of the tuples (lets say the y-part). Where the points are sorted regarding x.
One Observation is that there is an optimum solution where A includes index argmin[0] or argmin[n-1] or both.
in get_best_interval_min_max we focus once on including argmin[0] and the next smallest element on y and so one. The we do the same from the max element.
We get two dictionaries {(i,j):(profit, idx)}, telling us how much we gain in y when including points[i:j+1] in A, towards min or max on y. idx is the idx in the argmin array.
calculate the objective for each dict assuming max/min or y is not in A.
combine the results of both dictionaries, : (i1,j1): (v1, idx1) and (i2,j2): (v2, idx2). result : j2 - i1 + max_y - min_y - v1 - v2.
Constraint: idx1 < idx2. Because the indices in the argmin array can not intersect, otherwise some profit in y might be counted twice.
On average the dictionaries (dmin,dmax) are smaller than n, but in the worst case when x and y correlate [(i,i) for i in range(n)] they are exactly n, and we do not win any time. Anyhow on random instances this approach is much faster. Maybe someone can improve upon this.
import numpy as np
from random import randrange
import time
def get_best_interval_min_max(points):# sorted input according to x dim
L = len(points)
argmin_b = np.argsort([p[1] for p in points])
b_min,b_max = points[argmin_b[0]][1], points[argmin_b[L-1]][1]
arg = [argmin_b[0],argmin_b[0]]
res_min = dict()
for i in range(1,L):
res_min[tuple(arg)] = points[argmin_b[i]][1] - points[argmin_b[0]][1],i # the profit in b towards min
if arg[0] > argmin_b[i]: arg[0]=argmin_b[i]
elif arg[1] < argmin_b[i]: arg[1]=argmin_b[i]
arg = [argmin_b[L-1],argmin_b[L-1]]
res_max = dict()
for i in range(L-2,-1,-1):
res_max[tuple(arg)] = points[argmin_b[L-1]][1]-points[argmin_b[i]][1],i # the profit in b towards max
if arg[0]>argmin_b[i]: arg[0]=argmin_b[i]
elif arg[1]<argmin_b[i]: arg[1]=argmin_b[i]
# return the two dicts, difference along y,
return res_min, res_max, b_max-b_min
def argmin_algo(points):
# return the objective value, sets A and B, and the interval for A in points.
points.sort()
# get the profits for different intervals on the sorted array for max and min
dmin, dmax, y_diff = get_best_interval_min_max(points)
key = [None,None]
res_min = 2e9
# the best result when only the min/max b value is includes in A
for d in [dmin,dmax]:
for k,(v,i) in d.items():
res = points[k[1]][0]-points[k[0]][0] + y_diff - v
if res < res_min:
key = k
res_min = res
# combine the results for max and min.
for k1,(v1,i) in dmin.items():
for k2,(v2,j) in dmax.items():
if i > j: break # their argmin_b indices can not intersect!
idx_l, idx_h = min(k1[0], k2[0]), max(k1[1],k2[1]) # get index low and idx hight for combination
res = points[idx_h][0]-points[idx_l][0] -v1 -v2 + y_diff
if res < res_min:
key = (idx_l, idx_h) # new merged interval
res_min = res
return res_min, points[key[0]:key[1]+1], points[:key[0]]+points[key[1]+1:], key
def quadratic_algorithm(points):
points.sort()
m, M, res = 1e9, -1e9, 2e9
idx = (0,0)
for l in range(len(points)):
g, G = m, M
for r in range(len(points)-1,l-1,-1):
if r-l+1 < len(points):
res_n = points[r][0] - points[l][0] + G - g
if res_n < res:
res = res_n
idx = (l,r)
g = min(g, points[r][1])
G = max(G, points[r][1])
m = min(m, points[l][1])
M = max(M, points[l][1])
return res, points[idx[0]:idx[1]+1], points[:idx[0]]+points[idx[1]+1:], idx
# let's try it and compare running times to the quadratic_algorithm
# get some "random" points
c1=0
c2=0
for i in range(100):
points = [(randrange(100), randrange(100)) for i in range(1,200)]
points.sort() # sorted for x dimention
s = time.time()
r1 = argmin_algo(points)
e1 = time.time()
r2 = quadratic_algorithm(points)
e2 = time.time()
c1 += (e1-s)
c2 += (e2-e1)
if not r1[0] == r2[0]:
print(r1,r2)
raise Exception("Error, results are not equal")
print("time of argmin_algo", c1, "time of quadratic_algorithm",c2)
UPDATE: #Luka proved the algorithm described in this answer is not exact. But I will keep it here because it's a good performance heuristics and opens the way to many probabilistic methods.
I will describe a loglinear algorithm. I couldn't find a counter example. But I also couldn't find a proof :/
Let set A be ordered by first element and set B be ordered by second element. They are initially empty. Take floor(n/2) random points of your set of points and put in set A. Put the remaining points in set B. Define this as a partition.
Let's call a partition stable if you can't take an element of set A, put it in B and decrease the objective function and if you can't take an element of set B, put it in A and decrease the objective function. Otherwise, let's call the partition unstable.
For an unstable partition, the only moves that are interesting are the ones that take the first or the last element of A and move to B or take the first or the last element of B and move to A. So, we can find all interesting moves for a given unstable partition in O(1). If an interesting move decreases the objective function, do it. Go like that until the partition becomes stable. I conjecture that it takes at most O(n) moves for the partition to become stable. I also conjecture that at the moment the partition becomes stable, you will have a solution.
I am trying to generate a matrix, that has all unique combinations of [0 0 1 1], I wrote this code for this:
v1 = [0 0 1 1];
M1 = unique(perms([0 0 1 1]),'rows');
• This isn't ideal, because perms() is seeing each vector element as unique and doing:
4! = 4 * 3 * 2 * 1 = 24 combinations.
• With unique() I tried to delete all the repetitive entries so I end up with the combination matrix M1 →
only [4!/ 2! * (4-2)!] = 6 combinations!
Now, when I try to do something very simple like:
n = 15;
i = 1;
v1 = [zeros(1,n-i) ones(1,i)];
M = unique(perms(vec_1),'rows');
• Instead of getting [15!/ 1! * (15-1)!] = 15 combinations, the perms() function is trying to do
15! = 1.3077e+12 combinations and it's interrupted.
• How would you go about doing in a much better way? Thanks in advance!
You can use nchoosek to return the indicies which should be 1, I think in your heart you knew this must be possible because you were using the definition of nchoosek to determine the expected final number of permutations! So we can use:
idx = nchoosek( 1:N, k );
Where N is the number of elements in your array v1, and k is the number of elements which have the value 1. Then it's simply a case of creating the zeros array and populating the ones.
v1 = [0, 0, 1, 1];
N = numel(v1); % number of elements in array
k = nnz(v1); % number of non-zero elements in array
colidx = nchoosek( 1:N, k ); % column index for ones
rowidx = repmat( 1:size(colidx,1), k, 1 ).'; % row index for ones
M = zeros( size(colidx,1), N ); % create output
M( rowidx(:) + size(M,1) * (colidx(:)-1) ) = 1;
This works for both of your examples without the need for a huge intermediate matrix.
Aside: since you'd have the indicies using this approach, you could instead create a sparse matrix, but whether that's a good idea or not would depend what you're doing after this point.
I have a numpy array A of size 10 with values ranging from 0-4. I want to create a new 2-D array B from this with its ith column being a vector corresponding to the ith element of A.
For example, the value 1 as the first element of A would correspond to B having a column vector [0,1,0,0,0] as it's first column. A having 4 as its third element would correspond to B having it's 3rd column as [0,0,0,1,0]
I have the following code:
import numpy as np
A = np.random.randint(0,5,10)
B = np.ones((5,10))
iden = np.identity(5, dtype=np.float64)
for i in range(0,10):
a = A[i]
B[:,i:i+1] = iden[:,a:a+1]
print A
print B
The code is doing what it's supposed to be doing but I am sure there are more efficient ways of doing this. Can anyone please suggest some?
That could be solved by initializing an array of zeros and then integer-indexing into it with indices from A and assigning 1s, like so -
M,N = 5,10
A = np.random.randint(0,M,N)
B = np.zeros((M,N))
B[A,np.arange(len(A))] = 1
I have matrices:
a= 0.8147 0.1270 0.6324
0.9058 0.9134 0.0975
b= 0.2785 0.9649 0.9572
0.5469 0.1576 0.4854
0.9575 0.9706 0.8003
c = 0.1419 0.7922
0.4218 0.9595
0.9157 0.6557
and also I have another matrix
I= 1 3 1 1
2 1 3 2
I want to get d matrix such that
d= a(1,3) b(3,1) c(1,1)
a(2,1) b(1,3) c(3,2)
where indices come as two consecutive entries of I matrix.
This is one example I get. However, I get different size matrices for a,b,c,.. and I.
Added: I is m x (n+3) which includes indices, and other (n+2) matrices which have corresponding entries are X,A1,A2,...,An,Y. When n is given, A1,A2,...,An matrices are generated.
Can someone please help me to write Matlab code for this task?
You can do it with varargin. Assuming that your matrices are constructed such that you can form your desired output in the way you want (Updated according to Carmine's answer):
function out = IDcombiner(I, varargin)
out = zeros(size(I, 1), nargin-1);
idx = #(m, I, ii) (sub2ind(size(m), I(:, ii), I(:, ii+1)));
for ii = 1:1:nargin-1
out(:, ii) = varargin{ii}(idx(varargin{ii}, I, ii));
end
Now using this function you can make your selection on a flexible number of inputs:
out = IDcombiner(I, a, b, c)
out =
0.6324 0.9575 0.1419
0.9058 0.9572 0.6557
There is also a one-liner solution, which I do not recommend, since it dramatically decreases the readability of the code and doesn't help you gain much:
IDcombiner = #(I,varargin) ...
cell2mat(arrayfun(#(x) varargin{x}(sub2ind(size(varargin{x}), ...
I(:,x), I(:,x+1))), 1:nargin-1, 'UniformOutput', false));
Normally a matrix is not interpreted as a list of indices, but you can have this if you use sub2ind. To use it you need the size of the matrix you are addressing. Let's make an example starting with a:
a(sub2ind(size(a), I(:,1), I(:,2)))
The code does not change if you first assign the newly generated matrices to a variable name.
will use the column I(:,1) as rows and I(:,2) as columns.
To make the code more readable you can define an anonymous function that does this, let's call it idx:
idx = #(m,I,i)(sub2ind(size(m), I(:,i), I(:,i+1)))
So finally the code will be
d = [a(idx(a,I,1)), b(idx(b,I,2)), c(idx(c,I,3))]
The code does not change if you first assign the newly generated matrices to a variable name.
Other details
Let's make an example with 2 central matrices:
a = rand(3,1) % 3 rows, 1 column
b = rand(3,3) % 3 rows, 3 columns
c = rand(3,3) % another squared matrix
d = rand(3,1) % 3 rows, 1 column
The definition of the anonymous function is the same, you just change the definition of the output vector:
output = [a(idx(a,I,1)), b(idx(b,I,2)), c(idx(c,I,3)), d(idx(d,I,3))]
Keep in mind that following that pattern you always need a I matrix with (n_matrices + 1) columns.
Generalization
Let's generalize this code for a number n of central matrices of size rxr and for "side matrices" of size rxc. I will use some values of those parameters for this example, but you can use what you want.
Let me generate an example to use:
r = 3;
c = 4;
n = 3;
a = rand(r,c); % 2D array
b = rand(r,r,n); % 3D array, along z = 1:n you have 2D matrices of size rxr
c = rand(r,c);
I = [1 3 1 2 1 3; 2 1 3 1 1 1];
The code I wrote can easily be extended using cat to append matrices (note the 2 in the function tells MATLAB to append on the direction of the columns) and a for cycle:
idx = #(m,I,i)(sub2ind(size(m), I(:,i), I(:,i+1)))
d = a(idx(a,I,1));
for i = 1:n
temp = b(:,:,i);
d = cat(2,d,temp(idx(tmp,I,i+1)));
end
d = cat(2,d,c(idx(c,I,n+1)));
If you really don't want to address anything "by hand", you can use cell arrays to put all the matrices together and then cyclically apply the anonymous function to each matrix in the cell array.
We all know how to select every other n element using index like A[1:n:end]. Suppose I have a 1000x1 array and I divide (conceptually) it into blocks of 5 elements, and I want to select every other block, i.e., to select A[1], A[2], A[3], A[4], A[5] and A[11], A[12], A[13], A[14], A[15], ..., you got the idea.
Of course I can generate an index array beforehand and use it, but I am wondering if there are more convenient ways.
So in effect you are trying to create a square wave indexing function, how about something like
n = 1:numel(A); %// assuming A is a vector (i.e. 1D)
w = 2^-3;
idx = sin(2*pi*w*n) > 0;
You then tune w to change block width.
Alternatively
w = 3
idx = floor(mod(0:n-1),2*w)/w);
You can reshape the array into a matrix:
A = rand(1000,1);
n = 5;
B = reshape(A,n,[]);
Now each column of B is a group:
B(:,1) == A(1:5)
B(:,2) == A(6:10)
...
From there you can select every other column of B the same way you would for a vector:
B = B(:,1:2:end);