Relational model of database management system - database

Instead of having separate relation what if the problem of having one big relation that will store all the data related to a system?

A single database may not fulfill all the needs of a complete system. For example : Lets take a ecommerce website. Here you have following important things :
Customer Information
Order information
Inventory Information etc.
Now if you see these three are not related to each other other than that they are all a part of ecommerce system. You don't need to store the user information along with inventory information in a single table as they are not related.
After this part is answered, Now, you can have doubts so as to why we need normalization. The objectives of normalization as mentioned here are:
To free the collection of relations from undesirable insertion, update and deletion dependencies;
To reduce the need for restructuring the collection of relations, as new types of data are introduced, and thus increase the life span of application programs;
To make the relational model more informative to users;
To make the collection of relations neutral to the query statistics, where these statistics are liable to change as time goes by.

Related

Using GAE datastore relationship vs flat kind design

We have a requirement to implement in GAE datastore. There are set of documents (in millions) and each document has a owner, some comments and revisions associated with it.
If the owner of document is leaving the organization, then we need to change the ownership of the document to the person who did last revision. Also we need to retain the revisions and comments for each document. This ownership change is to be implemented by a job which will process each and every document one by one.
Is it the right approach to have Parent-Child relationships between the entities Document,Comment and Revision like Document is the parent with Comment and Revision as its child? OR in typical NoSql way we need to flatten the table and make a single entity?
The typical NoSQL implementation needs only insert and read but no updates. Is this the way the Google datastore works? Please clarify.
Our research says that we can have relationship but that will look more like RDBMS.
To choose proper schema design, you should clarify how you plan to work with data and keep in mind datastore limitations. In brief:
NoSql approach (single entity)
one update per second per entity group
you read and write the whole entity every time (except for projection queries)
Parent-child relations (ancestor relationships)
cannot be changed in future
form single entity-group so you achieve strong consistency while reading the query
one update per second per entity group! (So if you have a case with lots of live comments this wont work for you)
RDBMS approach (tables and relations)
datastore has no joins on multiple tables (so only split data in tables where you are not intending to query together)
eventually consistent reads

Should this information be calculated in real time or stored in a seperate database?

I am working on a group project and we are having a discussion about whether to calculate data that we want from an existing database and store it in a new database to query later, or calculate the data from the existing database every time we need to use it. I was wondering what the pros and cons may be for either implementation. Is there any advice you could give?
Edit: Here is more elaborate explanation. We have a large database that has a lot of information being submitted to it daily. We are building a system to track certain points of data. For example, we are getting the count of how many times a user does something that is entered in the database. Using this example (are actual idea is a bit more complex), we are discussing to methods of getting the count of actions per users. The first method is to create a database that stores the users and their action count, and query this database every time we need the action count. The second method would be to query the large database and count the actions per user every time we need to use it. I hope this explanation helps explain. Thoughts?
Edit 2: Two more things that may be useful to point out is 1: I only have read access to the large database and 2: My ultimate goal is to display this information on a web page for end users.
This is a generic question about optimization by caching. The following was my answer to essentially the same question. Even though that question provided a bunch of different details, none of them were specific enough to merit a non-generic answer either:
The more you want to calculate at query time, the more you want views,
calculated columns and stored or user routines. The more you want to
calculate at normalized base update time, the more you want cascades
and triggers. The more you want to calculate at some other (scheduled
or ad hoc) time, the more you use snapshots aka materialized views and
updated denormalized bases. You can combine these. Any time the
database is accessed it can be enabled by and restricted by stored
routines or other api.
Until you can show that they are in adequate, views and calculated
columns are the simplest.
The whole idea of a DBMS is to store a representation of your
application state as the database (which normalization reduces the
redundancy of) and then you query and let the DBMS implement and
optimize calculation of the answer. You haven't presented a reason for
not doing that in the most straightforward way possible.
[sic]
Always make sure an application is reading its own personal ("external") database that is a view of "the" ("conceptual") database so that when you change the implemention of the former (plus the rest of some combined interfact) by the latter (plus the rest of some compbined mechanisms) your applications do not have to change ("logical independence"). Here the applications are your users' and your trackers'.
Ultimately you must instrument and guestimate. When it is worth it you start caching. Preferably as much as possible in terms of high-level notions like views and snapshots and as little as possible in non-DBMS code. One of he benefits of the relational model is that it is easy to describe a strightforward relational interface in terms of another straightforward relational interface. You protect your applications from change by offering an interface that hides secrets of implementation or which of a family of interfaces is the current one.

How to handle different organization with single DB?

Background
building an online information system which user can access through any computer. I don't want to replicate DB and code for every university or organization.
I just want user to hit a domain like www.example.com sign in and use it.
For second user it will also hit the same domain www.example.com sign in and use it. but the data for them are different.
Scenario
suppose a university has 200 employees, 2nd university has 150 and so on.
Qusetion
Do i need to have separate employee table for each university or is it OK to have a single table with a column that has University ID?
I assume 2nd is best but Suppose i have 20 universities or organizations and a total of thousands of employees.
What is the best approach?
This same thing is for all table? This is just to give you an example.
Thanks
The approach will depend upon the data, usage, and client requirements/restrictions.
Use an integrated model, as suggested by duffymo. This may be appropriate if each organization is part of a larger whole (i.e. all colleges are part of a state college board) and security concerns about cross-query access are minimal2. This approach has a minimal amount of separation between each organization as the same schema1 and relations are "openly" shared. It leads to a very simple model initially, but it can become very complicated (with compound FKs and correct usage of such) if needing relations for organization-specific values because it adds another dimension of data.
Implement multi-tenancy. This can be achieved with implicit filters on the relations (perhaps hidden behinds views and store procedures), different schemas, or other database-specific support. Depending upon implementation this may or may not share schema or relations even though all data may reside in the same database. With implicit isolation, some complicated keys or relationships can be hidden/eliminated. Multi-tenancy isolation also generally makes it harder/impossible to cross-query.
Silo the databases entirely. Each customer or "organization" has a separate database. This implies separate relations and schema groups. I have found this approach to to be relatively simple with automated tooling, but it does require managing multiple database. Direct cross-querying is impossible, although "linked databases" can be used if there is a need.
Even though it's not "a single DB", in our case, we had the following restrictions 1) not allowed to ever share/expose data between organizations, and 2) each organization wanted their own local database. Thus, our product ended up using a silo approach. Make sure that the approach chosen meets customer requirements.
None of these approaches will have any issue with "thousands", "hundreds of thousands", or even "millions" of records as long as the indices and queries are correctly planned. However, switching from one to another can violate many assumed constraints and so the decision should be made earlier on.
1 In this response I am using "schema" to refer to the security grouping of database objects (e.g. tables, views) and not the database model itself. The actual database model used can be common/shared, as we do even when using separate databases.
2 An integrated approach is not necessarily insecure - but it doesn't inherently have some of the built-in isolation of other designs.
I would normalize it to have UNIVERSITY and EMPLOYEE tables, with a one-to-many relationship between them.
You'll have to take care to make sure that only people associated with a given university can see their data. Role based access will be important.
This is called a multi-tenant architecture. you should read this:
http://msdn.microsoft.com/en-us/library/aa479086.aspx
I would go with Tenant Per Schema, which means copying the structure across different schemas, however, as you should keep all your SQL DDL in source control, this is very easy to script.
It's easy to screw up and "leak" information between tenants if doing it all in the same table.

Top-down vs. Bottom-up database design: Real world examples

Ok, I can find hundreds of references on the internet of the difference between top-down database design vs bottom up database design approaches, however, I can't seeem to find any real world examples, or any inofrmation on which design is really more suitable for what circumstances.
Can anyone help me out?
I'm basing this answer on this Data Modeling Wikipedia article.
About half way down the Wikipedia page, there's a section called "Modeling methodologies".
A top down approach is used to create a new database. You model the objects at a logical level, then you apply the objects to a physical database design. For example, a relational database would need the objects to be mapped to tables.
To use a real world example, a payroll system would have to have person objects, along with other objects that hold pay rules (overtime for over 40 hours a week, overtime for more than 10 hours a day, etc.). There would be a pay period object, which holds the dates of the pay period and the pay day. This description isn't a complete design. As you think about the application more, you come up with additional objects that need to exist, and additional entities that need to be part of existing objects.
A bottom up approach is used to migrate a database from one physical database to another. Migrating from Oracle to IBM's DB2 usually requires some changes, as the column data types are not completely compatible. You would create tables based on the existing tables. Sometimes, you try to make a near exact copy, to minimize the application coding changes. Other times, you alter the table structure, usually to normalize further or to group columns together in a more logical way. Yes, the application code would have to change to accommodate the new database schema. But sometimes, the pain is worth the gain.
I've seen lots of database migrations. They're hard to describe in a post. They are painful to work through.
To understand the differences between these approaches, let's consider some jobs that are bottom-up in nature. In statistical analysis, analysts are taught to take a sample from a small population and then infer the results to the overall population. Physicians are also trained in the bottom-up approach. Doctors examine specific symptoms and then infer the general disease that causes the symptoms.
An example of jobs that require the top-down approach include project management and engineering tasks where the overall requirements must be specified before the detail can be understood. For example, an automobile manufacturer must follow a top-down approach to meet the overall specifications for the car. If a car has the requirement that it cost less than 15,000 dollars, gets 25 miles per gallon, and seating five people. In order to meet these requirements the designers must start by creating a specification document and then drilling down to meet these requirements.
taken from http://www.dba-oracle.com/t_object_top_down_bottom_up.htm

is EAV - Hybrid a bad database design choice

We have to redesign a legacy POI database from MySQL to PostgreSQL. Currently all entities have 80-120+ attributes that represent individual properties.
We have been asked to consider flexibility as well as good design approach for the new database. However new design should allow:
n no. of attributes/properties for any entity i.e. no of attributes for any entity are not fixed and may change on regular basis.
allow content admins to add new properties to existing entities on the fly using through admin interfaces rather than making changes in db schema all the time.
There are quite a few discussions about performance issues of EAV but if we don't go with a hybrid-EAV we end up:
having lot of empty columns (we still go and add new columns even if 99% of the data does not have those properties)
spend more time maintaining database esp. when attributes keep changing.
no way of allowing content admins to add new properties to existing entities
Anyway here's what we are thinking about the new design (basic ERD included):
Have separate tables for each entity containing some basic info that is exclusive e.g. id,name,address,contact,created,etc etc.
Have 2 tables attribute type and attribute to store properties information.
Link each entity to an attribute using a many-to-many relation.
Store addresses in different table and link to entities using foreign key.
We think this will allow us to be more flexible when adding,removing or updating on properties.
This design, however, will result in increased number of joins when fetching data e.g.to display all "attributes" for a given stadium we might have a query with 20+ joins to fetch all related attributes in a single row.
What are your thoughts on this design, and what would be your advice to improve it.
Thank you for reading.
I'm maintaining a 10 year old system that has a central EAV model with 10M+ entities, 500M+ values and hundreds of attributes. Some design considerations from my experience:
If you have any business logic that applies to a specific attribute it's worth having that attribute as an explicit column. The EAV attributes should really be stuff that is generic, the application shouldn't distinguish attribute A from attribute B. If you find a literal reference to an EAV attribute in the code, odds are that it should be an explicit column.
Having significant amounts of empty columns isn't a big technical issue. It does need good coding and documentation practices to compartmentalize different concerns that end up in one table:
Have conventions and rules that let you know which part of your application reads and modifies which part of the data.
Use views to ease poking around the database with debugging tools.
Create and maintain test data generators so you can easily create schema conforming dummy data for the parts of the model that you are not currently interested in.
Use rigorous database versioning. The only way to make schema changes should be via a tool that keeps track of and applies change scripts. Postgresql has transactional DDL, that is one killer feature for automating schema changes.
Postgresql doesn't really like skinny tables. Each attribute value results in 32 bytes of data storage overhead in addition to the extra work of traversing all the rows to pull the data together. If you mostly read and write the attributes as a batch, consider serializing the data into the row in some way. attr_ids int[], attr_values text[] is one option, hstore is another, or something client side, like json or protobuf, if you don't need to touch anything specific on the database side.
Don't go out of your way to put everything into one single entity table. If they don't share any attributes in a sensible way, use multiple instantitions of the specific EAV pattern you use. But do try to use the same pattern and share any accessor code between the different instatiations. You can always parametrise the code on the entity name.
Always keep in mind that code is data and data is code. You need to find the correct balance between pushing decisions into the meta-model and expressing them as code. If you make the meta-model do too much, modifying it will need the same kind of ability to understand the system, versioning tools, QA procedures, staging as your code, but it will have none of the tools. In essence you will be doing programming in a very awkward non-standard language. On the other hand, if you leave too much in the code, every trivial change will need a new version of your software. People tend to err on the side of making the meta-model too complex. Building developer tools for meta-models is hard and tedious work and has limited benefit. On the other hand, making the release process cheaper by automating everything that happens from commit to deploy has many side benefits.
EAV can be useful for some scenarios. But it is a little like "the dark side". Powerful, flexible and very seducing it is. But it's something of an easy way out. An easy way out of doing proper analysis and design.
I think "entity" is a bit over the top too general. You seem to have some idea of what should be connected to that entity, like address and contact. What if you decide to have "Books" in the model. Would they also have adresses and contacts? I think you should try to find the right generalizations and keep the EAV parts of the model to a minium. Whenever you find yourself wanting to show a certain subset of the attributes, or test for existance of the value, or determining behaviour based on the value you should really have it modelled as a columns.
You will not get a better opportunity to design this system than now. The requirements are known since the previous version, and also what worked and what didn't. (Just don't fall victim to the Second System Effect)
One good implementation of EAV can be found in magento, a cms for ecommerce. There is a lot of bad talk about EAV those days, but I challenge anyone to come up with another solution than EAV for dealing with infinite product attributes.
Sure you can go about enumerating all the columns you would need for every product in the world, but that would take you a lot of time and you would inevitably forget product attributes in the way.
So the bottom line is : use EAV for infinite stuff but don't rely on EAV for all the database's tables. Hence an hybrid EAV and relational db, when done right, is a powerful tool that could not be acomplished by only using fixed columns.
Basically EAV is trying to implement a database within a database, and it leads to madness. The queries to pull data become overly complex, and your data has no stable, specific model to keep it in some kind of order.
I've written EAV systems for limited applications, but as a generic solution it's usually a bad idea.

Resources