L2 Normalize a 3 dimensional matrix in Matlab - arrays

Is there a quick way of normalizing each row of a 3 dimensional Matrix without resorting to slow for loops in Matlab?
Say my input data looks like this:
d(:,:,1) =
1 2 3
4 5 6
d(:,:,2) =
7 8 9
10 11 12
I know that I can get the norm of each row by using
norms = sqrt(sum(d.^2,2))
norms(:,:,1) =
3.7417
8.7750
norms(:,:,2) =
13.9284
19.1050
But how to divide now the second dimension with these norm values?
I know that in 2 dims I can use ./ however this seems not to work for 3 dimensional data.

bsxfun is your friend:
out = bsxfun(#rdivide, d, norms);
What this does is that it temporarily creates a 3D matrix that replicates each row of norms for as many columns as there are in d and it divides each element in an element-wise manner with d and norms.
We get:
>> d = cat(3, [1 2 3; 4 5 6], [7 8 9; 10 11 12]);
>> norms = sqrt(sum(d.^2,2));
>> out = bsxfun(#rdivide, d, norms)
out(:,:,1) =
0.2673 0.5345 0.8018
0.4558 0.5698 0.6838
out(:,:,2) =
0.5026 0.5744 0.6462
0.5234 0.5758 0.6281
We can also verify that each row is L2-normalized by determining the sum of squares along each row independently and ensuring that each result sums to 1:
>> sum(out.^2, 2)
ans(:,:,1) =
1.0000
1.0000
ans(:,:,2) =
1.0000
1.0000
If the approach with bsxfun doesn't quite make sense, an alternative you could use is to create a matrix that respects the same dimensions as d by using repmat... then you can perform the element-wise division you desire:
>> out = d ./ repmat(norms, [1 size(d,2) 1])
out(:,:,1) =
0.2673 0.5345 0.8018
0.4558 0.5698 0.6838
out(:,:,2) =
0.5026 0.5744 0.6462
0.5234 0.5758 0.6281
With repmat you specify how many times you want the matrix to be copied in each dimension. We only want the matrix to be replicated over the columns while the number of rows and slices are the same... hence the vector [1 size(d,2) 1] that specifies how many times you want the matrix copied in each dimension.
Actually, this is what bsxfun does under the hood without you having to deal with the headaches of creating this temporary matrix. This replication is done for you without having you think about it.

Related

MATLAB: Sort a 3d array by another 3d array

I have a 3d array A of random numbers which I'd like to order each k'th dimension individually:
A=rand(3,1,16);
[m, n, k]=size(A);
The array that dictates the order of each matrix in the 3rd dimension is B:
B=randi(3,3,1,16); %this should be without replacement but think it will work anyway
If A(:,1,1)=[0.5, 0.2, 0.6]' and B(:,1,1)=[3,1,2] then the ordered A should be [0.2, 0.6, 0.5]' and so on for each A(:,1,1:k). Please note it's not ordering A numerically.
A(B) is what I might have expected to work and keeps the dimensions but not the right orders.
I've tried to work through this: https://uk.mathworks.com/matlabcentral/answers/307838-sort-3d-matrix-according-to-another-3d-matrix without any success.
Any thoughts would be much appreciated.
To sort A along the k-th dimension based on B: if your data is not complex, a simple way is:
Pack A and B into a complex array where A is the imaginary part and B is the real part;
Sort along the k-th dimension based on the real part;
Keep the imaginary part.
This is done in one line as follows:
result = imag(sort(B+1j*A, k, 'ComparisonMethod', 'real'));
Example:
>> A = rand(2,4,3)
A(:,:,1) =
0.162182308193243 0.311215042044805 0.165648729499781 0.262971284540144
0.794284540683907 0.528533135506213 0.601981941401637 0.654079098476782
A(:,:,2) =
0.689214503140008 0.450541598502498 0.228976968716819 0.152378018969223
0.748151592823709 0.083821377996933 0.913337361501670 0.825816977489547
A(:,:,3) =
0.538342435260057 0.078175528753184 0.106652770180584 0.004634224134067
0.996134716626885 0.442678269775446 0.961898080855054 0.774910464711502
>> B = randi(9, size(A))
B(:,:,1) =
8 1 3 4
8 4 8 9
B(:,:,2) =
2 2 8 5
3 2 6 2
B(:,:,3) =
8 4 4 3
6 5 1 2
>> k = 2;
>> result = imag(sort(B+1j*A, k, 'ComparisonMethod', 'real'))
result(:,:,1) =
0.311215042044805 0.165648729499781 0.262971284540144 0.162182308193243
0.528533135506213 0.601981941401637 0.794284540683907 0.654079098476782
result(:,:,2) =
0.450541598502498 0.689214503140008 0.152378018969223 0.228976968716819
0.083821377996933 0.825816977489547 0.748151592823709 0.913337361501670
result(:,:,3) =
0.004634224134067 0.078175528753184 0.106652770180584 0.538342435260057
0.961898080855054 0.774910464711502 0.442678269775446 0.996134716626885

Multiplying arrays of matrices in MATLAB

I have a data set that consists of two 1800 x 900 x 3 x 3 arrays, which should each be interpreted as a 1800x900 array of 3x3 matrices. As part of the analysis, at one point I need to create another such array by, at each point of the 1800x900 array, multiplying the corresponding 3x3 matrices together.
There seem to be two ways to do this that I can think of. The obvious way is
C = zeros(size(A))
for i = 1:900
for j = 1:1800
C(i,j,:,:) = A(i,j,:,:)*B(i,j,:,:)
end
end
But that's quite a long loop and doesn't really take advantage of MATLAB's vectorization. The other way is
C = zeros(size(A))
for i = 1:3
for j = 1:3
for k = 1:3
C(:,:,i,j) = C(:,:,i,j) + A(:,:,i,k).*B(:,:,k,j)
end
end
end
where the large dimensions are getting vectorized and I'm basically using the for loops to implement the Einstein summation convention. This seems really inelegant, though, which makes me think there should be a better way. Is there?
Perfect job for bsxfun with permute:
C = permute(sum(bsxfun(#times, A, permute(B, [1 2 5 3 4])), 4), [1 2 3 5 4]);
In R2016b onwards you can avoid bsxfun thanks to implicit singleton expansion:
C = permute(sum(A .* permute(B, [1 2 5 3 4]), 4), [1 2 3 5 4]);

Multiply each row of a matrix by another matrix

Say I have the following matrix
B = [1 2 3;4 5 6;7 8 9;10 11 12]
and another matrix
A = [a b c;d e f;g h i]
How do I multiply each row of matrix B by the matrix A (without using a for loop), i.e.
for i = 1:4
c(i) = B(i,:)*A*B(i,:)'
end
many thanks in advance.
You can use:
c = diag(B*A*B.');
However, this computes a whole 4×4 matrix only to extract its diagonal, so it's not very efficient.
A more efficient way that only computes the desired values is:
c = sum(bsxfun(#times, permute(sum(bsxfun(#times, B, permute(A, [3 1 2])), 2), [1 3 2]), B), 2);
Here is a breakdown of the above code:
c1 = sum(bsxfun(#times, B, permute(A, [3 1 2])), 2); % B(i,:)*A
c = sum(bsxfun(#times, permute(c1, [1 3 2]), B), 2); % (B(i,:)*A)*B(i,:)'
The first permute is used so that the number of columns in B matches the number of columns in A. Following the element-wise multiplication in bsxfun() each row is summed up (remember, permute shifted the rows into the 2nd-dimension), reproducing the effect of the vector-matrix multiplication B(i,:) * A occurring in the for loop.
Following the first sum, the 2nd-dimension is a singleton dimension. So, we use the second permute to move the 2nd-dimension into the 3rd-dimension and produce a 2-D matrix. Now, both c1 and B are the same size. Following element-wise multiplication in the second bsxfun() each column is summed up (remember, permute shifted columns back into the 2nd-dimension), reproducing the effect of B(i,:) * A * B(i,:)'.
Take note of a hidden advantage in this approach. Since we are using element-wise multiplication to replicate the results of matrix multiplication, order of the arguments doesn't matter in the bsxfun() calls. One less thing to worry about!
Or, from Matlab R2016b onwards, you can replace bsxfun(#times,...) by .*, thanks to implicit expansion:
c = sum(permute(sum(B.*permute(A, [3 1 2]), 2), [1 3 2]).*B, 2);

summing over a matrix in different parts of that matrix in matlab

In a matrix, how can we sum part by part of the elements? Consider the primary matrix in a way that can be divided into smaller m by n matrix. then i want to sum the whole elements of each m by n matrix together and put the number instead of the m by n matrix
for example consider the following matrix, i want to sum every four elements and create another matrix:
A = [1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16];
And after summing i want to have:
B = [14 22
46 54];
I this example i summed 4 elements as a matrix of 2 by 2 then for example the result of summing 1,2,5 and 6 seats in the first element of the new matrix.
Let
m = 2; %// number of rows per block
n = 2; %// number of columns per block
You can do the sum with blockproc (from the Image Processing Toolbox), which is very suited for this task:
B = blockproc(A, [m n], #(x) sum(x.data(:)));
Or, if you build the appropriate indices, you can use accumarray:
[ii jj] = ndgrid(1:size(A,1), 1:size(A,2));
B = accumarray([ceil(ii(:)/n) ceil(jj(:)/m)], A(:))
One approach -
B = squeeze(sum(reshape(sum(reshape(A,m,[])),size(A,1)/m,n,[]),2))
Another approach if you would like to avoid squeeze, which is sometimes slower -
B = reshape(sum(reshape(reshape(sum(reshape(A,m,[])),size(A,1)/m,[])',n,[])),[],size(A,1)/m)'

Store matrix from a loop in Matlab

I have a 5 by 3 matrix, e.g the following:
A=[1 1 1; 2 2 2; 3 3 3; 4 4 4; 5 5 5]
I run a for loop:
for i = 1:5
AA = A(i)'*A(i);
end
My question is how to store each of the 5 (3 by 3) AA matrices?
Thanks.
You could pre-allocate enough memory to the AA matrix to hold all the results:
[r,c] = size(A); % get the rows and columns of A (r and c respectively)
AA = zeros(c,c,r); % pre-allocate memory to AA for all 5 products
% (so we have 5 3x3 arrays)
Now do almost the same loop as above BUT realize that A(i) in the above code only returns one element whereas you want the full row. So you want the data from row i but all columns which can be represented as 1:3 or just the colon :
for i=1:r
AA(:,:,i) = A(i,:)' * A(i,:);
end
In the above, A(i,:) is the ith row of A and we are setting all rows and columns in the third dimension (i) of AA to the result of the product.
Assuming, as in Geoff's answer, that you mean A(i,:)'*A(i,:) (to get 5 matrices of size 3x3 in your example), you can do it in one line with bsxfun and permute:
AA = bsxfun(#times, permute(A, [3 2 1]), permute(A, [2 3 1]));
(I'm also assuming that your matrices only contain real numbers, as in your example. If by ' you really mean conjugate transpose, you need to add a conj in the above).

Resources